Extra Virgin Olive Oil: Does It Modify Milk Composition of Hair Sheep?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Localization
2.2. Animal Handling and Experimental Design
2.3. Experimental Diets
2.4. Handling and Feeding
2.5. Weight Gain and Feed Conversion
2.6. Production and Chemical Composition of Milk
2.7. Fatty Acid Profile
2.8. Chemical Analysis
2.9. Statistical Analysis
3. Results
3.1. Voluntary Intake
3.2. Productive Behavior of Sheep and Lambs
3.3. Production and Chemical Composition of Milk
3.4. Fatty Acid Profile in Milk
4. Discussion
4.1. Voluntary Intake
4.2. Productive Behavior of Sheep and Lambs
4.3. Production and Chemical Composition of Milk
4.4. Milk Fatty Acid Profile
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Góngora-Pérez, R.D.; Góngora-González, S.F.; Magaña-Magaña, M.Á.; LaraLara, P.E. Technical and socioeconomic characterization of sheep production in the state of Yucatan, Mexico. Mesoam. Agron. 2010, 21, 131–144. [Google Scholar] [CrossRef]
- Núñez, A.C.; Martínez, P.E.; Rentaría, I.D. Effect of three protein supplements on weight gain in zebu/Swiss calves grazing on African Star grass (Cynodon plectostachyus). Rev. Científica UDO Agrícola 2005, 5, 103–106. [Google Scholar]
- Mosoni, P.; Chaucheyras-Durand, F.; Béra-Maillet, C.; Forano, E. Quantification by real-time PCR of cellulolytic bacteria in the rumen of sheep after supplementation of a forage diet with readily fermentable carbohydrates: Effect of a yeast additive. J. Appl. Microbiol. 2007, 103, 2676–2685. [Google Scholar] [CrossRef] [PubMed]
- Chilliard, Y.; Glasser, F.; Ferlay, A.; Bernard, L.; Rouel, J.; Doreau, M. Diet, rumen biohydrogenation and nutritional quality of cow and goat milk fat. Eur. J. Lipid Sci. Technol. 2007, 109, 828–855. [Google Scholar] [CrossRef]
- Sampelayo, M.S.; Chilliard, Y.; Schmidely, P.; Boza, J. Influence of type of diet on the fat constituents of goat and sheep milk. Small Rumin. Res. 2007, 68, 42–63. [Google Scholar] [CrossRef]
- Lock, A.L.; Kraft, J.; Rice, B.H.; Bauman, D.E. Biosynthesis and biological activity of rumenic acid: A natural CLA isomer. In Trans Fatty Acids in Human Nutrition; Woodhead Publishing: Cambridge, UK, 2012; pp. 195–230. [Google Scholar]
- Griinari, J.M.; Bauman, D.E. Biosynthesis of conjugated linoleic acid and its incorporation into meat and milk in ruminants. Adv. Conjug. Linoleic Acid Res. 1999, 1, 180–200. [Google Scholar]
- Bernard, L.; Bonnet, M.; Leroux, C.; Shingfield, K.J.; Chilliard, Y. Effect of sunflower-seed oil and linseed oil on tissue lipid metabolism, gene expression, and milk fatty acid secretion in alpine goats fed maize silage–based diets. J. Dairy Sci. 2009, 92, 6083–6094. [Google Scholar] [CrossRef] [Green Version]
- Vargas-Bello-Pérez, E.; Vera, R.R.; Aguilar, C.; Lira, R.; Peña, I.; Valenzuela, A.; Cerda, H. Effect of dietary inclusion of lampante olive oil on milk and cheese fatty acid profiles of ewes. Fats Oils 2013, 64, 295–303. [Google Scholar] [CrossRef]
- Kliem, K.E.; Humphries, D.J.; Kirton, P.; Givens, D.I.; Reynolds, C.K. Differential effects of oilseed supplements on methane production and milk fatty acid concentrations in dairy cows. Animal 2019, 13, 309–317. [Google Scholar] [CrossRef]
- e Silva, L.S.; Cavalcanti, J.V.F.L.; Magalhães, A.L.R.; Santoro, K.R.; Goncalves, G.D.; Santana, L.P.V.; da Silva, J.K.B.; de Almeida, O.C. Soybean oil modulates the fatty acid synthesis in the mammary gland, improving nutritional quality of the goat milk. Small Rumin. Res. 2020, 183, 106041. [Google Scholar] [CrossRef]
- Mensink, R.P.; Zock, P.L.; Kester, A.D.; Katan, M.B. Effects of dietary fatty acids and carbohydrates on the ration of serum total to HDL cholesterol and on serum lipids and apolipoproteins: A meta-analysis of 60 controlled trials. Am. J. Clin. Nutr. 2003, 77, 1146–1155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shingfield, K.J.; Chilliard, Y.; Toivonen, V.; Kairenius, P.; Givens, D.I. Trans fatty acids and bioactive lipids in ruminant milk. In Bioactive Components of Milk; Springer: Berlin/Heidelberg, Germany, 2008; Volume 606, pp. 3–65. [Google Scholar]
- Dilzer, A.; Park, Y. Implication of conjugated linoleic acid (CLA) in human health. Crit. Rev. Food Sci. Nutr. 2012, 52, 488–513. [Google Scholar] [CrossRef] [PubMed]
- Antongiovanni, M.; Secchiari, P.; Mele, M.; Buccioni, A.; Serra, A.; Ferruzzi, G.; Rapaccini, S.; Pistoia, A. Olive oil calcium soaps and rumen protected methionine in the diet of lactating ewes: Effect on milk quality. Ital. J. Anim. Sci. 2002, 1, 55–63. [Google Scholar] [CrossRef]
- Martini, M.; Scolozzi, C.; Gatta, D.; Taccini, F.; Verità, P. Effects of olive oil calcium soaps and phase of lactation on the acid composition in the milk of massese ewes. Ital. J. Anim. Sci. 2004, 3, 353–362. [Google Scholar] [CrossRef]
- Gómez-Cortés, P.; Frutos, P.; Mantecón, A.R.; Juárez, M.; De la Fuente, M.A.; Hervás, G. Addition of olive oil to dairy ewe diets: Effect on milk fatty acid profile and animal performance. J. Dairy Sci. 2008, 91, 3119–3127. [Google Scholar] [CrossRef] [Green Version]
- INAFED (National Institute for Federalism and Municipal Development). Available online: http://www.inafed.gob.mx/work/enciclopedia/EMM31yucatan/municipios/31027a.html (accessed on 3 January 2020).
- INEGI (National Institute of Statistics and Geography). Available online: https://www.inegi.org.mx/app/cuadroentidad/AnuarioGeografico/Yuc/2018#mapa_m_climas (accessed on 3 January 2020).
- Cochran, W.G.; Cox, G.M. Experimental Designs, 2nd ed.; Trillas: Mexico City, Mexico, 1991. [Google Scholar]
- AFRC. Technical Committee on responses to nutrients. In Energy and Protein Requirements of Ruminants; CAB International: Wallingford, UK, 1993. [Google Scholar]
- Tsiplakou, E.; Mavrommatis, A.; Kalogeropoulos, T.; Chatzikonstantinou, M.; Koutsouli, P.; Sotirakoglou, K.; Labrou, N.; Zervas, G. The effect of dietary supplementation with rumen-protected methionine alone or in combination with rumen-protected choline and betaine on sheep milk and antioxidant capacity. J. Anim. Physiol. Anim. Nutr. 2017, 101, 1004–1013. [Google Scholar] [CrossRef]
- Pulina, G.; Macciotta, N.; Nudda, A. Milk composition and feeding in the Italian dairy sheep. Ital. J. Anim. Sci. 2005, 4 (Suppl. S1), 5–14. [Google Scholar] [CrossRef] [Green Version]
- Folch, J.; Leas, M.; Sloane-Stanley, G.H. Asimple method for isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 193, 265–275. [Google Scholar]
- Official Methods of Analysis (AOAC). Association of Official Analytical Chemists, 15th ed.; AOAC: Washington, DC, USA, 1980. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583. [Google Scholar] [CrossRef]
- SAS Institute. User’s Guide: Statistics Version 9.4; SAS Inst. Inc.: Cary, NC, USA, 2012. [Google Scholar]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary Heart-Disease—7 Dietary Factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Chelikani, P.K.; Ball, J.A.; Kennelly, J.J. Effect of feeding or abomasal infusion of canola oil in Holstein cows 1. Nutrient digestion and milk composition. J. Dairy Res. 2004, 71, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Sepúlveda, W.S.; Maza, M.T.; Pardos, L. Aspects of quality related to the consumption and production of lamb meat. Consumers versus producers. Meat Sci. 2011, 87, 366–372. [Google Scholar] [CrossRef]
- Benchaar, C.; Hassanat, F.; Martineau, R.; Gervais, R. Linseed oil supplementation to dairy cows fed diets based on red clover silage or corn silage: Effects on methane production, rumen fermentation, nutrient digestibility, N balance, and milk production. J. Dairy Sci. 2015, 98, 7993–8008. [Google Scholar] [CrossRef] [Green Version]
- Fiorentini, G.; Carvalho, I.P.C.; Messana, J.D.; Castagnino, P.S.; Berndt, A.; Canesin, R.C.; Frighetto, R.T.S.; Berchielli, T.T. Effect of lipid sources with different fatty acid profiles on the intake, performance, and methane emissions of feedlot Nellore steers. J. Anim. Sci. 2014, 92, 1613–1620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Vaddella, V.; Zhou, D. Effects of chestnut tannins and coconut oil on growth performance, methane emission, ruminal fermentation, and microbial populations in sheep. J. Dairy Sci. 2011, 94, 6069–6077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González, L.; Moreno, T.; Bispo, E.; Dugan, M.E.; Franco, D. Effect of supplementing different oils: Linseed, sunflower and soybean, on animal performance, carcass characteristics, meat quality and fatty acid profile of veal from “Rubia Gallega” calves. Meat Sci. 2014, 96, 829–836. [Google Scholar] [CrossRef] [PubMed]
- Kholif, A.E.; Morsy, T.A.; Abdo, M.M. Crushed flaxseed versus flaxseed oil in the diets of Nubian goats: Effect on feed intake, digestion, ruminal fermentation, blood chemistry, milk production, milk composition and milk fatty acid profile. Anim. Feed. Sci. Technol. 2018, 244, 66–75. [Google Scholar] [CrossRef]
- Hervás, G.; Toral, P.G.; Fernández-Díez, C.; Badia, A.D.; Frutos, P. Effect of supplementation of the diet of dairy sheep with soybean oil on the productive performance of animals and the fatty acid profile and CLA composition of milk. Animals 2021, 8, 2476. [Google Scholar] [CrossRef]
- Marín, A.L.M.; Sánchez, N.N.; Sigler, A.I.G.; Blanco, F.P.; García, V.D.; Ruipérez, F.H. Meta-analysis of the use of seeds and oils in the diet of sheep and goats. Pesqui. Agropecuária Bras. 2015, 50, 821–828. [Google Scholar] [CrossRef]
- Martínez-Marín, A.L.; Pérez-Hernández, M.; Pérez-Alba, L.M.; Carrión-Pardo, D.; Gómez-Castro, A.G. Addition of vegetable oils to the diet of dairy goats: Effect on digestibility and productive results. Arch. Vet. Med. 2012, 44, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Parente, M.D.O.M.; Susin, I.; Nolli, C.P.; Ferreira, E.M.; Gentil, R.S.; Polizel, D.M.; Pires, A.V.; Alves, S.P.; Bessa, R.J.B. Effects of supplementation with vegetable oils, including castor oil, on milk production of ewes and on growth of their lambs. J. Anim. Sci. 2018, 96, 354–363. [Google Scholar] [CrossRef] [PubMed]
- Gallardo, B.; Gómez-Cortés, P.; Mantecón, A.R.; Juárez, M.; Manso, T.; De la Fuente, M.A. Effects of olive and fish oil Ca soaps in ewe diets on milk fat and muscle and subcutaneous tissue fatty-acid profiles of suckling lambs. Animal 2014, 8, 1178–1190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Appeddu, L.A.; Ely, D.G.; Aaron, D.K.; Deweese, W.P.; Fink, E. Effects of supplementing with calcium salts of palm oil fatty acids or hydrogenated tallow on ewe milk production and twin lamb growth. J. Anim. Sci. 2004, 82, 2780–2789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gómez-Cortés, P.; Bodas, R.; Mantecón, A.R.; de la Fuente, M.A.; Manso, T. Milk composition and fatty acid profile of residual and available milk from ewes fed with diets supplemented with different vegetable oils. Small Rumin. Res. 2011, 97, 72–75. [Google Scholar] [CrossRef]
- Bichi, E.; Hervás, G.; Toral, P.G.; Loor, J.J.; Frutos, P. Milk fat depression induced by dietary marine algae in dairy ewes: Persistency of milk fatty acid composition and animal performance responses. J. Dairy Sci. 2013, 96, 524–532. [Google Scholar] [CrossRef] [Green Version]
- Kholif, A.E.; Morsy, T.A.; Abd El Tawab, A.M.; Anele, U.Y.; Galyean, M.L. Effect of supplementing diets of Anglo-Nubian goats with soybean and flaxseed oils on lactational performance. J. Agric. Food Chem. 2016, 64, 6163–6170. [Google Scholar] [CrossRef]
- Cenkvári, É.; Fekete, S.; Fébel, H.; Veresegyházi, T.; Andrásofszky, E. Investigation on the effects of Ca-soaps of oil linseed on rumen fermentation in sheep on milk composition of goats. J. Anim. Physiol. Anim. Nutr. 2005, 89, 172–178. [Google Scholar] [CrossRef]
- Manso, T.; Bodas, R.; Castro, T.; Jimeno, V.; Mantecon, A.R. Animal performance and fatty acid composition of lambs fed with different vegetable oils. Meat Sci. 2009, 83, 511–516. [Google Scholar] [CrossRef]
- Annison, E.F. Metabolite utilization by the ruminant mammary gland. Biochem. Lact. 1983, 13, 399–436. [Google Scholar]
- Prado, L.A.; Schmidely, P.; Nozière, P.; Ferlay, A. Milk saturated fatty acids, odd- and branched-chain fatty acids, and isomers of C18:1, C18:2, and C18:3n -3 according to their duodenal flows in dairy cows: A meta-analysis approach. J. Dairy Sci. 2019, 102, 3053–3070. [Google Scholar] [CrossRef] [Green Version]
Ingredient | Concentrate (g/kg) | P. purpureum (g/kg) | Olive Oil (g/kg) | Total |
---|---|---|---|---|
P. purpureum | 0 | 200 | 0 | |
Ground sorghum | 181 | 0 | 0 | |
Soybean meal | 198 | 0 | 0 | |
Molasses | 100 | 0 | 0 | |
Wheat bran | 300 | 0 | 0 | |
Mineral blend | 20 | 0 | 0 | |
ADE vitamins | 1 | 0 | 0 | |
Total | 800 | 200 | 1000 | |
Chemical composition (g/kg) | ||||
DM | 847 | 283 | 0 | |
OM | 919 | 953 | 0 | |
CP | 161 | 31 | 0 | |
EE | 43 | 19.2 | 999 | |
NDF | 447 | 693 | 0 | |
ADF | 245 | 470 | 0 | |
ME (MJ/kg DM) | 10.61 | 7.6 | 37.7 | |
Fatty acid composition (g/kg) | ||||
C16:0 | 0.00 | 2.44 | 6.69 | |
C18:0 | 0.26 | 0.27 | 4.40 | |
C18:1 | 9.39 | 0.33 | 695 | |
C18:3 | 1.62 | 10.71 | 2.20 | |
C20:0 | 6.03 | 0.36 | 1.60 | |
∑SFA | 6.29 | 3.07 | 12.69 | |
∑MUFA | 9.39 | 0.33 | 695 | |
∑PUFA | 1.62 | 10.71 | 2.20 |
Component | % Olive Oil | |||
---|---|---|---|---|
0 | 2 | 4 | 6 | |
DM | 734.2 | 722.6 | 711.4 | 700.6 |
OM | 925.0 | 911.2 | 897.1 | 883.4 |
CP | 135.0 | 132.9 | 130.8 | 128.8 |
EE | 38.2 | 53.4 | 68.0 | 82.2 |
NDF | 496.2 | 488.4 | 480.8 | 473.5 |
ADF | 290.0 | 285.4 | 281.0 | 276.7 |
ME (MJ) | 10.0 | 10.4 | 10.9 | 11.3 |
Fatty acid profile (g/kg DM) | ||||
C16:0 | 0.01 | 0.11 | 0.22 | 0.32 |
C18:0 | 0.01 | 0.08 | 0.15 | 0.21 |
C18:1 | 0.32 | 11.3 | 21.84 | 32.11 |
C18:3 | 0.10 | 0.13 | 0.16 | 0.19 |
C20:0 | 0.21 | 0.23 | 0.25 | 0.27 |
∑SFA | 0.23 | 0.42 | 0.61 | 0.80 |
∑MUFA | 0.32 | 11.25 | 21.84 | 32.11 |
∑PUFA | 0.10 | 0.129 | 0.16 | 0.19 |
Items | % Olive Oil | Contrast | |||||||
---|---|---|---|---|---|---|---|---|---|
0 | 2 | 4 | 6 | SE | p-Value | L | Q | C | |
LW (kg) | 38.42 | 37.88 | 38.08 | 36.01 | 0.93 | 0.26 | 0.09 | 0.41 | 0.47 |
MDW (kg) | 15.40 | 15.25 | 15.26 | 14.68 | 0.28 | 0.27 | 0.08 | 0.43 | 0.55 |
TDMI (kg/d) | 2.08 | 1.96 | 1.96 | 2.06 | 0.07 | 0.45 | 0.79 | 0.11 | 0.93 |
DMI (% PV) | 5.44 a | 5.04 ab | 4.89 b | 5.32 ab | 0.12 | 0.01 | 0.37 | 0.001 | 0.58 |
OM (kg/d) | 1.93 | 1.77 | 1.73 | 1.78 | 0.06 | 0.13 | 0.08 | 0.10 | 0.93 |
CP (kg/d) | 0.29 a | 0.27 ab | 0.26 b | 0.27 ab | 0.008 | 0.04 | 0.03 | 0.06 | 0.89 |
EE (kg/d) | 0.08 ab | 0.12 b | 0.166 ab | 0.214 a | 0.004 | <0.0001 | <0.0001 | 0.38 | 0.86 |
NDF (kg/d) | 1.02 | 0.93 | 0.90 | 0.94 | 0.034 | 0.26 | 0.166 | 0.14 | 0.96 |
ADF (kg/d) | 0.59 | 0.54 | 0.53 | 0.54 | 0.02 | 0.37 | 0.22 | 0.19 | 0.97 |
DMI (g/kg0.75) | 135.24 a | 125.04 ab | 121.11 b | 130.30 ab | 3.33 | 0.02 | 0.21 | 0.004 | 0.65 |
OM (g/kg0.75) | 124.98 a | 115.60 ab | 111.97 b | 120.50 ab | 3.12 | 0.02 | 0.22 | 0.005 | 0.64 |
CP (g/kg0.75) | 19.10 a | 17.52 b | 16.95 b | 18.16 ab | 0.42 | 0.004 | 0.07 | 0.001 | 0.68 |
EE (g/kg0.75) | 5.32 b | 7.95 b | 10.83 b | 14.46 a | 0.20 | <0.0001 | <0.0001 | 0.01 | 0.59 |
NDF (g/kg0.75) | 65.55 | 60.86 | 58.99 | 63.61 | 2.004 | 0.10 | 0.39 | 0.02 | 0.68 |
ADF (g/kg0.75) | 37.80 | 35.19 | 34.10 | 36.83 | 1.31 | 0.20 | 0.49 | 0.04 | 0.70 |
Items | % Olive Oil | Contrast | |||||||
---|---|---|---|---|---|---|---|---|---|
0 | 2 | 4 | 6 | SE | p-Value | L | Q | C | |
IW (kg) | 33.05 | 34.74 | 35.98 | 34.78 | 2.17 | 0.82 | 0.52 | 0.52 | 0.84 |
FW (kg) | 41.20 | 39.75 | 40.86 | 40.84 | 3.47 | 0.99 | 0.99 | 0.84 | 0.81 |
TWP (kg) | 8.15 | 5.01 | 4.88 | 6.06 | 1.68 | 0.51 | 0.41 | 0.22 | 0.82 |
DMI (kg/d) | 2.08 | 1.96 | 1.96 | 2.06 | 0.07 | 0.45 | 0.80 | 0.11 | 0.93 |
CC (kg/d) | 1.76 a | 1.60 ab | 1.56 b | 1.60 ab | 0.05 | 0.03 | 0.02 | 0.06 | 0.87 |
FC(g/d) | 492.81 | 469.88 | 461.94 | 490.13 | 20.98 | 0.67 | 0.86 | 0.23 | 0.82 |
OOC (g/d) | 0.00 d | 46. 62 c | 93. 98 b | 138. 21 a | 2.59 | <0.0001 | <0.0001 | 0.65 | 0.74 |
Items | % Olive Oil | Contrast | |||||||
---|---|---|---|---|---|---|---|---|---|
0 | 2 | 4 | 6 | SE | p-Value | L | Q | C | |
BW (kg) | 3.74 | 4.58 | 5.48 | 5.76 | 0.52 | 0.06 | 0.01 | 0.60 | 0.78 |
KW (kg) | 13.04 | 16.90 | 16.62 | 19.63 | 1.68 | 0.10 | 0.02 | 0.81 | 0.34 |
WGL (kg) | 9.30 | 12.32 | 11.13 | 13.87 | 1.41 | 0.19 | 0.07 | 0.92 | 0.22 |
DWG (kg/d) | 0.21 | 0.27 | 0.24 | 0.31 | 0.03 | 0.20 | 0.07 | 0.87 | 0.23 |
Items | % Olive Oil | Contrast | |||||||
---|---|---|---|---|---|---|---|---|---|
0 | 2 | 4 | 6 | SE | p-Value | L | Q | C | |
DMP (g/d) | 1158.78 | 1314.40 | 1032.80 | 1292.00 | 85.53 | 0.07 | 0.75 | 0.54 | 0.01 |
CPC (g/d) | 1108.15 | 1256.61 | 1058.01 | 1284.96 | 91.53 | 0.21 | 0.41 | 0.66 | 0.05 |
FC (g/d) | 1129.68 | 1284.61 | 1079.26 | 1310.44 | 70.77 | 0.20 | 0.41 | 0.67 | 0.05 |
EC (kcal/d) | 1015.46 | 1004.61 | 1071.96 | 1019.18 | 22.33 | 0.14 | 0.44 | 0.35 | 0.05 |
Chemical composition of milk (g/100 g) | |||||||||
Fat | 6.41 | 6.30 | 6.87 | 6.42 | 0.21 | 0.22 | 0.51 | 0.41 | 0.06 |
Protein | 5.10 | 4.98 | 5.20 | 5.08 | 0.08 | 0.27 | 0.63 | 0.92 | 0.05 |
Non-fat solids | 12.17 | 11.93 | 12.02 | 12.04 | 0.08 | 0.24 | 0.42 | 0.12 | 0.27 |
Daily performance g/d | |||||||||
Fat | 72.26 | 82.29 | 71.86 | 85.81 | 6.40 | 0.30 | 0.29 | 0.76 | 0.12 |
Protein | 60.49 | 67.87 | 60.74 | 72.29 | 5.63 | 0.36 | 0.26 | 0.71 | 0.18 |
Fatty Acid (g/100 g Fatty Acids) | % Olive Oil | Contrast | |||||||
---|---|---|---|---|---|---|---|---|---|
0 | 2 | 4 | 6 | SE | p-Value | L | Q | C | |
C4:0 | 1.02 | 0.78 | 1.04 | 0.66 | 0.14 | 0.21 | 0.24 | 0.65 | 0.07 |
C6:0 | 0.68 | 0.63 | 0.70 | 0.52 | 0.05 | 0.06 | 0.06 | 0.21 | 0.08 |
C8:0 | 9.31 a | 7.92 a | 8.30 a | 5.84 b | 0.50 | <0.0001 | <0.0001 | 0.28 | 0.04 |
C10:0 | 9.31 a | 7.92 a | 8.30 a | 5.84 b | 0.50 | <0.0001 | <0.0001 | 0.28 | 0.04 |
C12:0 | 0.46 ab | 0.45 ab | 0.65 a | 0.31 b | 0.06 | 0.006 | 0.38 | 0.01 | 0.01 |
C11:0 | 0.19 ab | 0.19 ab | 0.24 a | 0.13 b | 0.02 | 0.03 | 0.30 | 0.04 | 0.04 |
C13:0 | 3.66 a | 3.31 ab | 2.89 ab | 2.63 b | 0.22 | 0.008 | 0.0007 | 0.85 | 0.82 |
C14:0 | 0.44 a | 0.47 ab | 0.66 b | 0.37 b | 0.06 | 0.01 | 0.94 | 0.01 | 0.02 |
C14:1 | 0.09 a | 0.09 a | 0.06 b | 0.09 a | 0.007 | 0.004 | 0.15 | 0.04 | 0.004 |
C15:0 | 1.45 ab | 1.19 BC | 1.56 to | 1.06 c | 0.09 | 0.001 | 0.06 | 0.22 | 0.001 |
C15:1 | 0.35 a | 0.29 ab | 0.25 b | 0.27 b | 0.02 | 0.005 | 0.001 | 0.07 | 0.70 |
C16:0 | 14.98 a | 14.63 a | 13.74 a | 11.53 b | 0.50 | <0.0001 | <0.0001 | 0.06 | 0.72 |
C16:1 | 1.10 | 0.95 | 1.18 | 0.86 | 0.29 | 0.87 | 0.71 | 0.76 | 0.49 |
C17:0 | 0.96 a | 0.69 b | 0.66 b | 0.62 b | 0.07 | 0.004 | 0.001 | 0.10 | 0.45 |
C17:1 | 0.40 a | 0.29 ab | 0.35 ab | 0.27 b | 0.03 | 0.03 | 0.02 | 0.76 | 0.03 |
C18:0 | 9.58 a | 8.59 a | 9.61 a | 7.45 b | 0.29 | <0.0001 | <0.0001 | 0.04 | 0.002 |
C18:1cis-9 | 19.11 c | 23.36 ab | 20.44 bc | 27.02 a | 1.09 | <0.0001 | <0.0001 | 0.28 | 0.0009 |
C18:1 1n9t | 0.07 | 0.08 | 0.06 | 0.09 | 0.01 | 0.20 | 0.41 | 0.17 | 0.14 |
C18:2n6c | 9.74 b | 10.86 b | 15.31 ab | 16.95 a | 1.48 | 0.001 | 0.0002 | 0.85 | 0.35 |
C18:2n6t | 2.42 | 1.97 | 2.45 | 2.55 | 0.28 | 0.46 | 0.48 | 0.33 | 0.29 |
C20:0 | 0.19 ab | 0.21 ab | 0.17 b | 0.24 a | 0.01 | 0.01 | 0.08 | 0.09 | 0.03 |
C18:3n6 | 0.21 a | 0.17 ab | 0.16 b | 0.16 b | 0.01 | 0.01 | 0.003 | 0.19 | 0.92 |
C20:1 | 0.13 | 0.11 | 0.08 | 0.11 | 0.01 | 0.17 | 0.23 | 0.11 | 0.26 |
C18:3n3 | 11.45 a | 12.67 a | 8.87 ab | 10.73 b | 0.54 | <0.0001 | 0.01 | 0.55 | <0.0001 |
C21:0 | 1.33 | 0.68 | 0.86 | 1.63 | 0.43 | 0.35 | 0.60 | 0.08 | 0.90 |
C20:2 | 0.11 | 0.10 | 0.11 | 0.12 | 0.01 | 0.74 | 0.57 | 0.39 | 0.69 |
C22:0 | 0.16 | 0.19 | 0.16 | 0.22 | 0.02 | 0.24 | 0.19 | 0.45 | 0.16 |
C20:3n6 | 0.13 | 0.11 | 0.11 | 0.14 | 0.01 | 0.46 | 0.67 | 0.12 | 0.91 |
C22:1n9 | 0.19 | 0.22 | 0.20 | 0.27 | 0.03 | 0.35 | 0.13 | 0.62 | 0.39 |
C20:3n3 | 0.07 | 0.06 | 0.05 | 0.07 | 0.007 | 0.25 | 0.77 | 0.11 | 0.20 |
C23:0 | 0.07 | 0.06 | 0.05 | 0.08 | 0.008 | 0.14 | 0.74 | 0.07 | 0.14 |
C20:4n6 | 0.08 b | 0.10 b | 0.09 b | 0.14 a | 0.008 | 0.0001 | 0.0002 | 0.05 | 0.03 |
C22:2 | 0.07 | 0.06 | 0.05 | 0.07 | 0.007 | 0.17 | 0.51 | 0.08 | 0.19 |
C24:0 | 0.35 | 0.48 | 0.32 | 0.89 | 0.17 | 0.07 | 0.06 | 0.20 | 0.17 |
C20:5n3 | 0.15 b | 0.18 ab | 0.22 ab | 0.27 a | 0.03 | 0.04 | 0.004 | 0.76 | 0.91 |
C24:1 | 0.03 | 0.03 | 0.02 | 0.03 | 0.004 | 0.36 | 0.54 | 0.42 | 0.13 |
∑ SFA | 56.72 a | 53.02 ab | 50.13 b | 43.61 c | 1.73 | <0.0001 | <0.0001 | 0.42 | 0.56 |
∑ MUFA | 13.28 a | 11.70 ab | 13.13 a | 11.51 b | 0.44 | 0.001 | 0.01 | 0.65 | 0.001 |
∑PUFA | 29.77 c | 35.08 bc | 36.60 b | 45.06 a | 1.81 | <0.0001 | <0.0001 | 0.39 | 0.18 |
AI | 0.09 ab | 0.09 b | 0.13 a | 0.06 b | 0.01 | 0.0003 | 0.16 | 0.004 | 0.001 |
TI | 0.17 a | 0.14 ab | 0.18 a | 0.10 b | 0.01 | 0.006 | 0.06 | 0.11 | 0.007 |
Δ 9-desaturase index | 0.21 a | 0.19 a | 0.12 b | 0.20 a | 0.01 | 0.005 | 0.21 | 0.01 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arcos-Álvarez, D.N.; Aguilar-Urquizo, E.; Ramon-Ugalde, J.; Hernández-Núñez, E.; Giácoman-Vallejos, G.; González-Sánchez, A.A.; Alvarado-Lopez, C.J.; Gonzalez-Ronquillo, M.; Chay-Canul, A.J.; Vargas-Bello-Pérez, E.; et al. Extra Virgin Olive Oil: Does It Modify Milk Composition of Hair Sheep? Agriculture 2023, 13, 1610. https://doi.org/10.3390/agriculture13081610
Arcos-Álvarez DN, Aguilar-Urquizo E, Ramon-Ugalde J, Hernández-Núñez E, Giácoman-Vallejos G, González-Sánchez AA, Alvarado-Lopez CJ, Gonzalez-Ronquillo M, Chay-Canul AJ, Vargas-Bello-Pérez E, et al. Extra Virgin Olive Oil: Does It Modify Milk Composition of Hair Sheep? Agriculture. 2023; 13(8):1610. https://doi.org/10.3390/agriculture13081610
Chicago/Turabian StyleArcos-Álvarez, Darwin N., Edgar Aguilar-Urquizo, Julio Ramon-Ugalde, Emanuel Hernández-Núñez, Germán Giácoman-Vallejos, Avel Adolfo González-Sánchez, Carlos Juan Alvarado-Lopez, Manuel Gonzalez-Ronquillo, Alfonso J. Chay-Canul, Einar Vargas-Bello-Pérez, and et al. 2023. "Extra Virgin Olive Oil: Does It Modify Milk Composition of Hair Sheep?" Agriculture 13, no. 8: 1610. https://doi.org/10.3390/agriculture13081610