Nitrogen Fluxes in an Agro-Livestock System under Land Use Change: A Temporal Analysis in an Environmental Protection Unit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of the EPA Territory
2.2. Data Collection and Analysis Techniques
3. Results
Biological Indicators (N) | Period | |||
---|---|---|---|---|
2010 | 2015 | 2020 | ||
Beef cattle | N inputs kg ha−1 | 33.02 | 34.09 | 34.91 |
N outputs kg ha−1 | 8.65 | 9.68 | 8.99 | |
N surplus kg ha−1 | 24.37 | 24.41 | 25.92 | |
Rice | N inputs kg ha−1 | 41.53 | 32.55 | - |
N outputs kg ha−1 | 104.58 | 105.95 | - | |
N surplus kg ha−1 | −63.05 | −73.40 | - | |
System | N inputs kg ha−1 | 33.34 | 34.03 | 34.91 |
N outputs kg ha−1 | 12.31 | 13.35 | 8.99 | |
N surplus kg ha−1 | 21.03 | 20.68 | 25.92 |
Productive and Economic Indicators of the Production System
Production Indicators | Period | ||
---|---|---|---|
2010 | 2015 | 2020 | |
Herd slaughter rate | 14.70% | 22.88% | 19.43% |
Kg BW ha−1 | 68.15 | 121.06 | 99.61 |
Weaning rate | 47% | 53.77% | 61.46% |
Cattle stocking (AU ha−1) | 1.11 | 1.13 | 1.06 |
Economic Indicators (USD) | Period | |||
---|---|---|---|---|
2010 | 2015 | 2020 | ||
Beef cattle | Revenue ha−1 | 113.42 | 183.67 | 155.49 |
Cost ha−1 | 82.17 | 147.13 | 81.26 | |
Margin ha−1 | 31.24 | 36.53 | 74.23 | |
Rice | Revenue ha−1 | 1448.75 | 1881.79 | - |
Cost ha−1 | 2800.11 | 2069.58 | - | |
Margin ha−1 | −1351.35 | −187.78 | - | |
System | Revenue ha−1 | 164.39 | 248.48 | 155.49 |
Cost ha−1 | 185.91 | 220.51 | 81.26 | |
Margin ha−1 | −21.52 | 27.97 | 74.23 |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andrade, B.O.; Marchesi, E.; Burkart, S.; Setubal, R.B.; Lezama, F.; Perelman, S.; Schneider, A.A.; Trevisan, R.; Overbeck, G.E.; Boldrini, I.I. Vascular Plant Species Richness and Distribution in the Río de La Plata Grasslands. Bot. J. Linn. Soc. 2018, 188, 250–256. [Google Scholar] [CrossRef]
- Valério De Patta, P. Campos-Outcalt Responds. Am. J. Public Health 1999, 89, 1271. [Google Scholar] [CrossRef]
- Nicoloso, C.d.S.; Silveira, V.C.P.; Coelho Filho, R.C.; de Quadros, F.L.F. Typology of Family Livestock Production Systems in the Pampa Biome Using the MESMIS Method. Semin. Ciências Agrárias 2019, 40, 3249. [Google Scholar] [CrossRef]
- Silva, C.S.D.; Viana, J.G.A. Instituições Na Pecuária de Corte E Sua Influência Sobre O Avanço Da Sojicultura Na Campanha Gaúcha—Brasil. Rev. Econ. Sociol. Rural 2020, 58, e214991. [Google Scholar] [CrossRef]
- Nabinger, C. Diagnóstico de Sistemas de Produção de Bovinocultura de Corte Do Estado Do Rio Grande Do Sul, Brasil (2003–2004); Relatório, IEPE/UFRGS: Porto Alegre, Brazil, 2005; 265p. [Google Scholar]
- EMBRAPA. Indicadores de Desempenho Na Pecuária de Corte: Uma Revisão No Contexto Da Plataforma + Precoce; EMBRAPA: Brasília, Brazil, 2018; p. 32. [Google Scholar]
- Overbeck, G.E.; Müller, S.C.; Fidelis, A.; Pfadenhauer, J.; Pillar, V.D.; Blanco, C.C.; Boldrini, I.I.; Both, R.; Forneck, E.D. Brazil’s Neglected Biome: The South Brazilian Campos. Perspect. Plant Ecol. Evol. Syst. 2007, 9, 101–116. [Google Scholar] [CrossRef]
- Oliveira, U.; Soares-Filho, B.S.; Paglia, A.P.; Brescovit, A.D.; de Carvalho, C.J.B.; Silva, D.P.; Rezende, D.T.; Leite, F.S.F.; Batista, J.A.N.; Barbosa, J.P.P.P.; et al. Biodiversity Conservation Gaps in the Brazilian Protected Areas. Sci. Rep. 2017, 7, 9141. [Google Scholar] [CrossRef] [Green Version]
- IUCN. International Union for Conservation of Nature’s Guidelines for Application of IUCN Red List Criteria at Regional and National Levels; Version 4.0; IUCN: Fontainebleau, France, 2010; Volume 4. [Google Scholar]
- Le Féon, V.; Poggio, S.L.; Torretta, J.P.; Bertrand, C.; Molina, G.A.R.; Burel, F.; Baudry, J.; Ghersa, C.M. Diversity and Life-History Traits of Wild Bees (Insecta: Hymenoptera) in Intensive Agricultural Landscapes in the Rolling Pampa, Argentina. J. Nat. Hist. 2016, 50, 1175–1196. [Google Scholar] [CrossRef]
- Viana, J.G.A.; Fagundes, T.T.; Troian, A.; Fleck, C.F. Evolução Do Crédito Rural No Rio Grande Do Sul: Análise Por Atividade E Finalidade Dos Recursos de 2006 a 2018. Rev. Agronegócio Meio Ambiente 2021, 14, e7686. [Google Scholar] [CrossRef]
- de Oliveira, T.E.; de Freitas, D.S.; Gianezini, M.; Ruviaro, C.F.; Zago, D.; Mércio, T.Z.; Dias, E.A.; do Nascimento Lampert, V.; Barcellos, J.O.J. Agricultural Land Use Change in the Brazilian Pampa Biome: The Reduction of Natural Grasslands. Land Use Policy 2017, 63, 394–400. [Google Scholar] [CrossRef]
- Cesar, A.; Marques, R.; Medina, E.; Izaguirre, M.L.; Federal, U.; Grande, R.; Molecular, B.; Molecular, B. Diversidade de Rizóbios Associados a Legumes Nativos Dos Campos Sulinos Do Rio Grande Do Sul—Brasil Fernanda Da Silva Moreira. Trop. Ecol. 2004, 45, 87–95. [Google Scholar]
- Spiess, E. Nitrogen, Phosphorus and Potassium Balances and Cycles of Swiss Agriculture from 1975 to 2008. Nutr. Cycl. Agroecosyst. 2011, 91, 351–365. [Google Scholar] [CrossRef]
- Matsumoto, N.; Paisancharoen, K.; Ando, S. Effects of Changes in Agricultural Activities on the Nitrogen Cycle in Khon Kaen Province, Thailand between 1990–1992 and 2000–2002. Nutr. Cycl. Agroecosyst. 2010, 86, 79–103. [Google Scholar] [CrossRef]
- Billen, G.; Lassaletta, L.; Garnier, J. A Vast Range of Opportunities for Feeding the World in 2050: Trade-off between Diet, N Contamination and International Trade. Environ. Res. Lett. 2015, 10, 025001. [Google Scholar] [CrossRef]
- Bonaudo, T.; Piraux, M.; Gameiro, A.H. Analysing Intensification, Autonomy and Efficiencies of Livestock Production through Nitrogen Flows: A Case Study of an Emblematic Amazonian Territory. Agric. Syst. 2021, 190, 103072. [Google Scholar] [CrossRef]
- Le Noë, J.; Billen, G.; Garnier, J. How the Structure of Agro-Food Systems Shapes Nitrogen, Phosphorus, and Carbon Fluxes: The Generalized Representation of Agro-Food System Applied at the Regional Scale in France. Sci. Total Environ. 2017, 586, 42–55. [Google Scholar] [CrossRef]
- FUNDAÇÃO MARRONA. Estância Do Vinte E Oito; Infraestrutura: Alegrete, Brazil, 2021; 3p. [Google Scholar]
- Marques, A.C.R.; de Oliveira, L.B.; Schwalbert, R.; Del Frari, B.K.; Brunetto, G.; de Quadros, F.L.F.; Nabinger, C.; Nicoloso, F.T. Growth Strategies as Determinants of CO2 Sequestration and Response to Nitrogen Fertilisation in C4 Grasses in South American Natural Grasslands. Crop Pasture Sci. 2020, 71, 776. [Google Scholar] [CrossRef]
- Lassaletta, L.; Billen, G.; Grizzetti, B.; Garnier, J. The Relationship between Crop Yield and Nitrogen Input to Cropland in 131 Countries: 50 Years Trends. In Proceedings of the 18th Nitrogen Workshop—The Nitrogen Challenge: Building A Blueprint for Nitrogen Use Efficiency and Food Security, Lisbon, Portugal, 30 June–3 July 2014; pp. 545–546. [Google Scholar]
- NBR ISO 9000/2000; Sistema de Gestão Da Qualidade: Fundamentos E Vocabulário. Editora Abril: Rio de Janeiro, Brazil, 2004; 26p.
- Dentener, F.; Drevet, J.; Lamarque, J.F.; Bey, I.; Eickhout, B.; Fiore, A.M.; Hauglustaine, D.; Horowitz, L.W.; Krol, M.; Kulshrestha, U.C.; et al. Nitrogen and Sulfur Deposition on Regional and Global Scales: A Multimodel Evaluation. Global Biogeochem. Cycles 2006, 20, 20. [Google Scholar] [CrossRef]
- Medeiros, S.R.; Gomes, R.d.C.; Bungenstab, D.J. Nutrição de Bovinos de Corte Fundamentos E Aplicações; Embrapa: Brasilia, Braizl, 2015; 178p. [Google Scholar]
- Meinzen-Dick, R.; Johnson, N.; Quisumbing, A.R.; Njuki, J.; Behrman, J.A.; Rubin, D.; Peterman, A.; Waithanji, E. The Gender Asset Gap and Its Implications for Agricultural and Rural Development. In Gender in Agriculture; Springer: Dordrecht, The Netherlands, 2014; pp. 91–115. [Google Scholar]
- Weber, F.H.; Gutkoski, L.C.; Elias, M.C. Caracterização Química de Cariopses de Aveia (Avena sativa L.) Da Cultivar UPF 18. Ciência Tecnol. Aliment. 2002, 22, 39–44. [Google Scholar] [CrossRef] [Green Version]
- Walter, M.; Marchezan, E.; de Avila, L.A. Arroz: Composição E Características Nutricionais. Ciência Rural 2008, 38, 1184–1192. [Google Scholar] [CrossRef] [Green Version]
- Van der Hoek, K.W. Nitrogen Efficiency in Global Animal Production. Environ. Pollut. 1998, 102, 127–132. [Google Scholar] [CrossRef]
- Lassaletta, L.; Billen, G.; Grizzetti, B.; Anglade, J.; Garnier, J. 50 Year Trends in Nitrogen Use Efficiency of World Cropping Systems: The Relationship between Yield and Nitrogen Input to Cropland. Environ. Res. Lett. 2014, 9, 105011. [Google Scholar] [CrossRef]
- FAO—Food and Agriculture Organization of The United Nations. World Fertilizer Trends and Outllok to 2022; FAO: Rome, Italy, 2019. [Google Scholar]
- D’aurea, A.P.; da Silva Cardoso, A.; Guimarães, Y.S.R.; Fernandes, L.B.; Ferreira, L.E.; Reis, R.A. Mitigating Greenhouse Gas Emissions from Beef Cattle Production in Brazil through Animal Management. Sustainability 2021, 13, 7207. [Google Scholar] [CrossRef]
- IPCC. Refinement to the 2006. IPCC Guidelines for National Greenhouse Gas Inventories; IPCC: Kyoto, Japan, 2019; 17p. [Google Scholar]
- Lassaletta, L.; Billen, G.; Garnier, J.; Bouwman, L.; Velazquez, E.; Mueller, N.D.; Gerber, J.S. Nitrogen use in the global food system: Past trends and future trajectories of agronomic performance, pollution, trade, and dietary demand. Environ. Res. Lett. 2016, 11, 095007. [Google Scholar] [CrossRef]
- Silveira, V.C.P.; Vargas, A.F.d.C.; Oliveira, J.O.R.; Gomes, K.E.; Motta, A.F. Qualidade Da Pastagem Nativa Obtida Por Diferentes Métodos de Amostragem E Em Diferentes Solos Na Apa Do Ibirapuitã, Brasil. Ciência Rural 2005, 35, 582–588. [Google Scholar] [CrossRef] [Green Version]
- Gonzatto, R.; Miola, E.C.C.; Doneda, A.; Pujol, S.B.; Aita, C.; Giacomini, S.J. Volatilização de Amônia E Emissão de Óxido Nitroso Após Aplicação de Dejetos Líquidos de Suínos Em Solo Cultivado Com Milho. Ciência Rural 2013, 43, 1590–1596. [Google Scholar] [CrossRef] [Green Version]
- Delaby, L.; Dourmad, J.-Y.; Béline, F.; Lescoat, P.; Faverdin, P.; Fiorelli, J.-L.; Vertès, F.; Veysset, P.; Morvan, T.; Parnaudeau, V.; et al. Origin, Quantities and Fate of Nitrogen Flows Associated with Animal Production. Adv. Anim. Biosci. 2014, 5, 28–48. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.; Dong, J. Responses of Alpine Soil Nitrification and Denitrification Rates to Nitrogen Addition Gradient—The Role of Functional Genes. Agriculture 2023, 13, 245. [Google Scholar] [CrossRef]
- Bretas, I.L.; Paciullo, D.S.C.; Alves, B.J.R.; Martins, M.R.; Cardoso, A.S.; Lima, M.A.; Rodrigues, R.A.R.; Silva, F.F.; Chizzotti, F.H.M. Nitrous Oxide, Methane, and Ammonia Emissions from Cattle Excreta on Brachiaria Decumbens Growing in Monoculture or Silvopasture with Acacia mangium and Eucalyptus Grandis. Agric. Ecosyst. Environ. 2020, 295, 106896. [Google Scholar] [CrossRef]
- Rhoden, A.C.; Viana, J.G.A.; Silveira, V.C.P. Change in Land Use and Economic Dynamics of the Ibirapuitã River Environmental Protection Area of the Brazilian Pampa Biome. Semin. Ciências Agrárias 2022, 43, 2137–2154. [Google Scholar] [CrossRef]
- Mandarino, R.A.; Barbosa, F.A.; Lopes, L.B.; Telles, V.; Florence, E.d.A.S.; Bicalho, F.L. Evaluation of Good Agricultural Practices and Sustaintability Indicators in Livestock Systems under Tropical Conditions. Agric. Syst. 2019, 174, 32–38. [Google Scholar] [CrossRef]
- Vargas, L.P.; Vargas, A.F.d.C.; Silveira, V.C.P. Ecosystem Services and Production Systems of Family Cattle Farms: An Analysis of Animal Production in Pampa Biome. Semin. Ciências Agrárias 2020, 41, 661–676. [Google Scholar] [CrossRef]
- Elias, D. Globalização e Fragmentação do Espaço Agrícola do Brasil. Scr. Nov. Rev. Electrónica Geogr. Y Ciencias Soc. 2006, X, 165. [Google Scholar]
- Gottschall, C.; Bittencourt, H.R.; Mattos, R.C.; Gregory, R.M. Retardo Da Realização Da IATF Sobre O Desempenho Reprodutivo Na Estação de Acasalamento de Vacas de Corte Lactantes. Arq. Bras. Med. Veterinária Zootec. 2012, 64, 295–304. [Google Scholar] [CrossRef] [Green Version]
- Billen, G.; Lassaletta, L.; Garnier, J. A Biogeochemical View of the Global Agro-Food System: Nitrogen Flows Associated with Protein Production, Consumption and Trade. Glob. Food Sec. 2014, 3, 209–219. [Google Scholar] [CrossRef]
- Gameiro, A.H.; Bonaudo, T.; Tichit, M. Nitrogen, Phosphorus and Potassium Accounts in the Brazilian Livestock Agro-Industrial System. Reg. Environ. Chang. 2019, 19, 893–905. [Google Scholar] [CrossRef]
- Yanni, S.F.; Whalen, J.K.; Simpson, M.J.; Janzen, H.H. Plant Lignin and Nitrogen Contents Control Carbon Dioxide Production and Nitrogen Mineralization in Soils Incubated with Bt and Non-Bt Corn Residues. Soil Biol. Biochem. 2011, 43, 63–69. [Google Scholar] [CrossRef]
- Rezende, V.T.; Bonaudo, T.; Alves, R.B.; Nacimento, R.A.; Gameiro, A.H. Cascade Effect of Nitrogen on Brazilian Soybean Production Chain. Nitrogen 2021, 2, 128–138. [Google Scholar] [CrossRef]
- Leinonen, I.; Eory, V.; MacLeod, M. Applying a Process-Based Livestock Model to Predict Spatial Variation in Agricultural Nutrient Flows in Scotland. J. Clean. Prod. 2019, 209, 180–189. [Google Scholar] [CrossRef]
- Rychel, K.; Meurer, K.H.E.; Getahun, G.T.; Bergström, L.; Kirchmann, H.; Kätterer, T. Lysimeter Deep N Fertilizer Placement Reduced Leaching and Improved N Use Efficiency. Nutr. Cycl. Agroecosyst. 2023, 126, 213–228. [Google Scholar] [CrossRef]
- Carneiro, F.L. Fragmentação Internacional da Produção e Cadeias Globais de Valor; IPEA: Brasilia, Brazil, 2015; 52p. [Google Scholar]
- Frederico, S. Agricultura Científica Globalizada E Fronteira Agrícola Moderna No Brasil. Confins 2013. [Google Scholar] [CrossRef]
- Depablos, L.; Homem, B.G.C.; Ferreira, I.M.; Bernardes, T.F.; Boddey, R.M.; Lara, M.A.S.; Casagrande, D.R. Nitrogen Cycling in Tropical Grass-Legume Pastures Managed under Canopy Light Interception. Nutr. Cycl. Agroecosyst. 2021, 121, 51–67. [Google Scholar] [CrossRef]
- Richter, J.; Roelcke, M. The N-cycle as determined by intensive agriculture—Examples from central Europe and China. Nutr. Cycl. Agroecosyst. 2000, 57, 33–46. [Google Scholar] [CrossRef]
- Cecchini, L.; Romagnoli, F.; Chiorri, M.; Torquati, B. Eco-Efficiency and Its Determinants: The Case of the Italian Beef Cattle Sector. Agriculture 2023, 13, 1107. [Google Scholar] [CrossRef]
- Feketéné Ferenczi, A.; Szűcs, I.; Bauerné Gáthy, A. Economic Sustainability Assessment of a Beekeeping Farm in Hungary. Agriculture 2023, 13, 1262. [Google Scholar] [CrossRef]
- Alves, L.A.; Denardin, L.G.d.O.; Martins, A.P.; Anghinoni, I.; Carvalho, P.C.d.F.; Tiecher, T. Soil Acidification and P, K, Ca and Mg Budget as Affected by Sheep Grazing and Crop Rotation in a Long-Term Integrated Crop-Livestock System in Southern Brazil. Geoderma 2019, 351, 197–208. [Google Scholar] [CrossRef]
- Cabon, F.; Girard, G.; Ledoux, E. Modelling of the Nitrogen Cycle in Farm Land Areas. Fertil. Res. 1991, 27, 161–169. [Google Scholar] [CrossRef]
- Simões, D.; Caixeta-Filho, J.V.; Palekar, U.S. Fertilizer Distribution Flows and Logistic Costs in Brazil: Changes and Benefits Arising from Investments in Port Terminals. Int. Food Agribus. Manag. Rev. 2018, 21, 407–422. [Google Scholar] [CrossRef]
- Giordano, M.; Petropoulos, S.A.; Rouphael, Y. The Fate of Nitrogen from Soil to Plants: Influence of Agricultural Practices in Modern Agriculture. Agriculture 2021, 11, 944. [Google Scholar] [CrossRef]
Item of N | Measurement of N | Source |
---|---|---|
Atmospheric deposition | 12 kg N/ha/year | [23] |
Biological fixation | 20 kg N/ha/year | [20] |
Feed | 20% of crude protein | [24] |
Leaching * | 0.00225 kg N/N | [25] |
Fertilizers | Urea: 46% N | Manufacturers |
Protected urea: 45 | ||
NPK fertilizer: 5%. | ||
Oat seeds | Crude protein 12% (N × 6.25) | [26] |
Rice seeds | Crude protein 7% (N × 5.95) | [27] |
Excretion | Yearlings: 25 kgN/animal/year | [28,29,30] |
Cows for fattening: 60 kgN/animal/year | ||
Steers and bulls: 40 kgN/animal/year | ||
N excretion volatilization | 12% of N excreted | [31] |
Synthetic N volatilization | 15% of N applied | [32] |
Nitrification | Direct emission: 1% of N applied | [32] |
Indirect emission: 1% of volatilized N | ||
Beef carcass | 3.08% N | [30,33] |
Economic and Biological Production Indicators | Measurement |
---|---|
Herd slaughter rate | Number of animals traded/number of initial stock animals of the year |
Kilograms (kg) of live weight (BW) ha−1 | Total kilograms of live animals marketed/hectare |
Weaning rate | Number of weaned calves/number of cows |
Cattle stocking | Number of animal units (AU)/hectare |
Income (USD)/kg BW | Revenue from livestock marketing/total kilograms of live animals marketed |
Cost (USD)/kg BW | Livestock operating costs/total kilograms of live animals marketed |
Margin (USD)/kg BW | Revenue/kg BW − Cost/kg BW |
Revenue (USD) ha−1 | Revenue from marketing/hectare/year |
Cost (USD) ha−1 | Operational costs/hectare/year |
Margin (USD) ha−1 | Revenue/hectare − cost/hectare |
N inputs ha−1 | N inputs/hectare |
N output ha−1 | Outputs and losses of N/hectare |
N surplus ha−1 | Difference between N inputs/hectare and output |
Ratio of N conversion to carcass | Kg of carcass produced/Kilos (kg) of N inputs to beef cattle |
N efficiency | N inputs to livestock/N exported (herd traded) |
N self-sufficiency (%) | N%: (∑N inputs − (∑ration + fertilizer + seed)) × 100/N inputs |
Cost (USD) per kilo (kg) of excess N | Cost (USD) ha of system/kg N surplus in system |
Indicators | Period | ||
---|---|---|---|
2010 | 2015 | 2020 | |
Ratio of N to carcass | 0.13 kg N | 0.14 kg N | 0.10 kg N |
N efficiency | 3.05% | 4.22% | 4.37% |
N self-sufficiency (%) | 90.41% | 88.58% | 82.62% |
Cost (USD) per kg N surplus | USD 8.84 | USD 10.66 | USD 3.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rhoden, A.C.; Almeida Viana, J.G.; Pires Silveira, V.C.; Bonaudo, T.C.; Kozloski, G.V. Nitrogen Fluxes in an Agro-Livestock System under Land Use Change: A Temporal Analysis in an Environmental Protection Unit. Agriculture 2023, 13, 1524. https://doi.org/10.3390/agriculture13081524
Rhoden AC, Almeida Viana JG, Pires Silveira VC, Bonaudo TC, Kozloski GV. Nitrogen Fluxes in an Agro-Livestock System under Land Use Change: A Temporal Analysis in an Environmental Protection Unit. Agriculture. 2023; 13(8):1524. https://doi.org/10.3390/agriculture13081524
Chicago/Turabian StyleRhoden, Angélica Cristina, João Garibaldi Almeida Viana, Vicente Celestino Pires Silveira, Thierry Christophe Bonaudo, and Gilberto Vilmar Kozloski. 2023. "Nitrogen Fluxes in an Agro-Livestock System under Land Use Change: A Temporal Analysis in an Environmental Protection Unit" Agriculture 13, no. 8: 1524. https://doi.org/10.3390/agriculture13081524
APA StyleRhoden, A. C., Almeida Viana, J. G., Pires Silveira, V. C., Bonaudo, T. C., & Kozloski, G. V. (2023). Nitrogen Fluxes in an Agro-Livestock System under Land Use Change: A Temporal Analysis in an Environmental Protection Unit. Agriculture, 13(8), 1524. https://doi.org/10.3390/agriculture13081524