Estimating Livelihood Vulnerability and Its Impact on Adaptation Strategies in the Context of Disaster Avoidance Resettlement in Southern Shaanxi, China
Abstract
:1. Introduction
2. Data Sources and Research
2.1. Data Sources
2.2. Research Methods
2.2.1. Indicator System for Measuring Livelihood Vulnerability
2.2.2. The Livelihood Vulnerability Assessment Model
2.2.3. The Multinomial Logistic Regression Analysis Model
3. Results
3.1. Descriptive Statistical Analysis of Livelihood Vulnerability
3.2. Analysis of the Households’ Livelihood Vulnerability
3.3. The Regression Results of the Adaptive Strategies of Relocated Households
3.4. Robustness Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Janvry, A.D.; Sadoulet, E. Income Strategies Among Rural Households in Mexico: The Role of off-farm Activities. World Dev. 2001, 29, 467–480. [Google Scholar] [CrossRef]
- Apata, T.G.; Apata, O.M.; Igbalajobi, O.A.; Awoniyi, S.M.O. Determinants of rural poverty in Nigeria: Evidence from small holder farmers in South-western, Nigeria. J. Sci. Technol. Educ. Res. 2010, 1, 85–91. [Google Scholar]
- Jamshed, A.; Birkmann, J.; Rana, I.A.; McMillan, J.M. The relevance of city size to the vulnerability of surrounding rural areas: An empirical study of flooding in Pakistan. Int. J. Disaster Risk Reduct. 2020, 48, 101601. [Google Scholar]
- Li, C.; Guo, M.; Li, S.; Marcus, F. The impact of the anti-poverty relocation and settlement program on rural households’ well-being and ecosystem dependence: Evidence from Western China. Soc. Nat. Resour. 2021, 34, 40–59. [Google Scholar] [CrossRef]
- Qian, Z.; Xue, J. Small town urbanization in Western China: Villager resettlement and integration in Xi’an. Land Use Policy 2017, 68, 152–159. [Google Scholar]
- Liu, S.; Zhang, P.; Lo, K. Urbanization in remote areas: A case study of the Heilongjiang Reclamation Area, Northeast China. Habitat Int. 2014, 42, 103–110. [Google Scholar]
- Wilmsen, B.; Webber, M.; Duan, Y. Development for whom? Rural to urban resettlement at the Three Gorges Dam, China. Asian Stud. Rev. 2011, 35, 21–42. [Google Scholar] [CrossRef]
- Fan, M.; Li, Y.; Li, W. Solving one problem by creating a bigger one: The consequences of ecological resettlement for grassland restoration and poverty alleviation in Northwestern China. Land Use Policy 2015, 42, 124–130. [Google Scholar]
- Tilt, B.; Gerkey, D. Dams and population displacement on China’s Upper Mekong River: Implications for social capital and social–ecological resilience. Glob. Environ. Chang. 2016, 36, 153–162. [Google Scholar]
- Liu, W.; Li, J.; Ren, L.; Xu, J.; Li, C.; Li, S. Exploring livelihood resilience and its impact on livelihood strategy in rural China. Soc. Indic. Res. 2020, 150, 977–998. [Google Scholar]
- Xu, J.; Liu, W.; Li, J.; Li, C.; Marcus, F. Disaster Resettlement and Adaptive Capacity among Rural Households in China. Soc. Nat. Resour. 2022, 35, 245–259. [Google Scholar] [CrossRef]
- Liu, W.; Li, J.; Xu, J. Effects of disaster-related resettlement on the livelihood resilience of rural households in China. Int. J. Disaster Risk Reduct. 2020, 49, 101649. [Google Scholar]
- Zhang, Q.; Xue, H.; Zhao, X.; Tang, H. Linking livelihood assets of smallholder households to risk management strategies: An empirical study in China. Environ. Hazards 2019, 18, 191–211. [Google Scholar] [CrossRef]
- Defe, R.; Matsa, M. The contribution of climate smart interventions to enhance sustainable livelihoods in Chiredzi District. Clim. Risk Manag. 2021, 33, 100338. [Google Scholar] [CrossRef]
- Zhou, W.; Ma, Z.; Guo, S.; Deng, X.; Xu, D. Livelihood capital, evacuation and relocation willingness of residents in earthquake-stricken areas of rural China. Saf. Sci. 2021, 141, 105350. [Google Scholar]
- Singto, C.; De Vries, M.; Hofstede, G.J.; Fleskens, L. Ex ante impact assessment of reservoir construction projects for different stakeholders using agent-based modeling. Water Resour. Manag. 2021, 35, 1047–1064. [Google Scholar]
- Adger, W.N. Vulnerability. Glob. Environ. Chang. 2006, 16, 268–281. [Google Scholar]
- Peng, Y.; Welden, N.; Renaud, F.G. A framework for integrating ecosystem services indicators into vulnerability and risk assessments of deltaic social-ecological systems. J. Environ. Manag. 2023, 326, 116682. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Gang, L.; Biao, M. Vulnerability analysis of land ecosystem considering ecological cost and value: A complex network approach. Ecol. Indic. 2023, 147, 109941. [Google Scholar]
- IPCC. Summary for policymakers. In Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, O.F., Canziani, J.P., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 7–22. [Google Scholar]
- Uddin, M.N.; Islam, A.K.M.S.; Bala, S.K.; Islam, G.M.T.; Adhikary, S.; Saha, D.; Haque, S.; Fahad, M.G.R.; Akter, R. Mapping of climate vulnerability of the coastal region of Bangladesh using principal component analysis. Appl. Geogr. 2019, 102, 47–57. [Google Scholar] [CrossRef]
- Ahmed, B.; Kelman, I. Measuring community vulnerability to environmental hazards: A method for combining quantitative and qualitative data. Nat. Hazards Rev. 2018, 19, 04018008. [Google Scholar] [CrossRef] [Green Version]
- Younus, A.F. An assessment of vulnerability and adaptation to cyclones through impact assessment guidelines: A bottom-up case study from Bangladesh coast. Nat. Hazards 2017, 89, 1437–1459. [Google Scholar] [CrossRef]
- Jamshed, A.; Birkmann, J.; Rana, I.A.; Feldmeyer, D. The effect of spatial proximity to cities on rural vulnerability against flooding: An indicator based approach. Ecol. Indic. 2020, 118, 106704. [Google Scholar] [CrossRef]
- Abson, D.J.; Dougill, A.J.; Stringer, L.C. Using principal component analysis for information-rich socio-ecological vulnerability mapping in Southern Africa. Appl. Geogr. 2012, 35, 515–524. [Google Scholar] [CrossRef]
- Li, L.; Cao, R.; Wei, K.; Wang, W.; Chen, L. Adapting climate change challenge: A new vulnerability assessment framework from the global perspective. J. Clean. Prod. 2019, 217, 216–224. [Google Scholar] [CrossRef]
- Ducusin, R.J.C.; Espaldon, M.V.O.; Rebancos, C.M.; Guzman, L.E.P. Vulnerability assessment of climate change impacts on a globally important agricultural heritage system (GIAHS) in the Philippines: The case of batad rice terraces, banaue, ifugao, Philippines. Clim. Chang. 2019, 153, 395–421. [Google Scholar] [CrossRef]
- Giri, M.; Bista, G.; Singh, P.K.; Rajiv, P. Climate change vulnerability assessment of urban informal settlers in Nepal, a least developed country. J. Clean. Prod. 2021, 307, 127213. [Google Scholar] [CrossRef]
- Sekhri, S.; Kumar, P.; Fürst, C.; Pandey, R. Mountain specific multi-hazard risk management framework (MSMRMF): Assessment and mitigation of multi-hazard and climate change risk in the Indian Himalayan Region. Ecol. Indic. 2020, 118, 106700. [Google Scholar] [CrossRef]
- Dorward, P.; Osbahr, H.; Sutcliffe, C.; Robert, M. Supporting climate change adaptation using historical climate analysis. Clim. Dev. 2020, 12, 469–480. [Google Scholar] [CrossRef] [Green Version]
- Piya, L.; Joshi, N.P.; Maharjan, K.L. Vulnerability of Chepang households to climate change and extremes in the Mid-Hills of Nepal. Clim. Chang. 2016, 135, 521–537. [Google Scholar] [CrossRef]
- Swami, D.; Parthasarathy, D. Dynamics of exposure, sensitivity, adaptive capacity and agricultural vulnerability at district scale for Maharashtra, India. Ecol. Indic. 2021, 121, 107206. [Google Scholar] [CrossRef]
- Omerkhil, N.; Chand, T.; Valente, D.; Alatalo, J.M.; Pandey, R. Climate change vulnerability and adaptation strategies for smallholder farmers in Yangi Qala District, Takhar, Afghanistan. Ecol. Indic. 2020, 110, 105863. [Google Scholar] [CrossRef]
- Nguyen, C.V.; Horne, R.; Fien, J.; Cheong, F. Assessment of social vulnerability to climate change at the local scale: Development and application of a Social Vulnerability Index. Clim. Chang. 2017, 143, 355–370. [Google Scholar] [CrossRef]
- Khan, M.A.; Hasan, K.; Kabir, K.H. Determinants of households’ livelihood vulnerability due to climate induced disaster in southwest coastal region of Bangladesh. Prog. Disaster Sci. 2022, 15, 100243. [Google Scholar] [CrossRef]
- Rieger, K. Multi-hazards, displaced people’s vulnerability and resettlement: Post-earthquake experiences from Rasuwa district in Nepal and their connections to policy loopholes and reconstruction practices. Prog. Disaster Sci. 2021, 11, 100187. [Google Scholar]
- Lan, H.; Tian, N.; Li, L.; Liu, H.; Peng, J.; Cui, P.; Zhou, C.; Renato, M.; Clague J., J. Poverty control policy may affect the transition of geological disaster risk in China. Hum. Soc. Sci. Commun. 2022, 9, 80. [Google Scholar] [CrossRef]
- Man, K. Differential vulnerability and resilience of earthquake: A case of displaced Tamangs of Tiru and Gogane villages of Central Nepal. Prog. Disaster Sci. 2021, 12, 100205. [Google Scholar]
- Ehsan, S.; Begum, R.A.; Maulud, K.N.A. Household external vulnerability due to climate change in Selangor coast of Malaysia. Clim. Risk Manag. 2022, 35, 100408. [Google Scholar] [CrossRef]
- Fahad, S.; Hossain, M.S.; Huong, N.T.L.; Nassani, A.A.; Haffar, M.; Naeem, M.R. An assessment of rural household vulnerability and resilience in natural hazards: Evidence from flood prone areas. Environ. Dev. Sustain. 2022, 25, 5561–5577. [Google Scholar]
- Jia, C.; Sha, Y.; Gebhardt, H.; Yang, X. Farmers’ livelihood adaptation to environmental change in an arid region: A case study of the Minqin Oasis, northwestern China. Ecol. Indic. 2018, 93, 411–423. [Google Scholar]
- Schaafsma, M.; Ferrini, S.; Turner, R.K. Assessing smallholder preferences for incentivised climate-smart agriculture using a discrete choice experiment. Land Use Policy 2019, 88, 104153. [Google Scholar] [CrossRef]
- Teklewold, H.; Gebrehiwot, T.; Bezabih, M. Climate smart agricultural practices and gender differentiated nutrition outcome: An empirical evidence from Ethiopia. World Dev. 2019, 122, 38–53. [Google Scholar]
- Peng, L.; Xu, D.; Wang, X. Vulnerability of rural household livelihood to climate variability and adaptive strategies in landslide-threatened western mountainous regions of the Three Gorges Reservoir Area, China. Clim. Dev. 2018, 11, 469–484. [Google Scholar] [CrossRef]
- Pagnani, T.; Gotor, E.; Caracciolo, F. Adaptive strategies enhance smallholders’ livelihood resilience in Bihar, India. Food Secur. 2021, 13, 419–437. [Google Scholar] [CrossRef]
- Zhou, W.; Guo, S.; Deng, X.; Xu, D. Livelihood resilience and strategies of rural residents of earthquake-threatened areas in Sichuan Province, China. Nat. Hazards 2021, 106, 255–275. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q. Land use and adaptive governance under climate change: Analysis of four cases in pastoral areas of China. Front. Environ. Sci. 2023, 11, 922417. [Google Scholar] [CrossRef]
- Savari, M.; Amghani, M.S. SWOT-FAHP-TOWS analysis for adaptation strategies development among small-scale farmers in drought conditions. Int. J. Disaster Risk Reduct. 2022, 67, 102695. [Google Scholar] [CrossRef]
- Mutabazi, K.D.; Amjath-Babu, T.S.; Sieber, S. Influence of livelihood resources on adaptive strategies to enhance climatic resilience of farm households in Morogoro, Tanzania: An indicator-based analysis. Reg. Environ. Chang. 2015, 15, 1259–1268. [Google Scholar]
- Yin, S.; Yang, X.; Chen, J. Adaptive behavior of farmers’ livelihoods in the context of human-environment system changes. Habitat Int. 2020, 100, 102185. [Google Scholar] [CrossRef]
- Das, U.; Ansari, M.A.; Ghosh, S. Measures of livelihoods and their effect on vulnerability of farmers to climate change: Evidence from coastal and non-coastal regions in India. Environ. Dev. Sustain. 2023. [Google Scholar] [CrossRef]
- Kuang, F.; Jin, J.; He, R.; Ning, J.; Wan, X. Farmers’ livelihood risks, livelihood assets and adaptation strategies in Rugao City, China. J. Environ. Manage. 2020, 264, 110463. [Google Scholar] [CrossRef]
- Wu, B.; Liu, L. Social capital for rural revitalization in China: A critical evaluation on the government’s new countryside programme in Chengdu. Land Use Policy 2019, 91, 104268. [Google Scholar] [CrossRef]
- Po, M.; Pannell, D.J.; Walker, I.; Dempster, F.; Tapsuwan, S.; Mendham, D.S.; Hardiyanto, E.B.; Wibisono, G.; Oktalina, S.N. Influence of intrinsic and extrinsic factors on farmer decisions to adopt acacia best management practices in Gunungkidul, Indonesia. Agroforest. Syst. 2022, 96, 1103–1119. [Google Scholar] [CrossRef]
- Birkmann, J.; Welle, T. The World Risk Index 2016: Reveals the necessity for regional cooperation in vulnerability reduction. J. Extrem. Events 2016, 3, 1650005. [Google Scholar] [CrossRef] [Green Version]
- Maldonado, J.H.; del Pilar Moreno-Sánchez, R. Estimating the adaptive capacity of local communities at marine protected areas in Latin American: A practice approach. Ecol. Soc. 2014, 19, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Azad, M.J.; Pritchard, B. Financial capital as a shaper of households’ adaptive capabilities to flood risk in northern Bangladesh. Ecol. Econ. 2022, 195, 107381. [Google Scholar] [CrossRef]
- Xu, D.; Deng, X.; Guo, S.; Liu, S. Sensitivity of livelihood strategy to livelihood capital: An empirical investigation using nationally representative survey data from rural China. Soc. Indic. Res. 2019, 144, 113–131. [Google Scholar] [CrossRef]
- Choden, K.; Keenan, R.J.; Nitschke, C.R. An approach for assessing adaptive capacity to climate change in resource dependent communities in the Nikachu watershed, Bhutan. Ecol. Indic. 2020, 114, 106293. [Google Scholar] [CrossRef]
- Morzaria-Luna, H.N.; Turk-Boyer, P.; Moreno-Baez, M. Social indicators of vulnerability for fishing communities in the Northern Gulf of California, Mexico: Implication for climate change. Mar. Policy 2014, 45, 182–193. [Google Scholar] [CrossRef]
- Gupta, A.K.; Negi, M.; Nandy, S.; Kumar, M.; Singh, V.; Valente, D.; Petrosillo, I.; Pandey, R. Mapping socio-environmental vulnerability to climate change in different altitude zones in the Indian Himalayas. Ecol. Indic. 2020, 109, 105787. [Google Scholar] [CrossRef]
- Han, X.; Wang, P.; Wang, J.; Qiao, M.; Zhao, X. Evaluation of human-environment system vulnerability for sustainable development in the Liupan mountainous region of Ningxia, China. Environ. Dev. 2020, 34, 100525. [Google Scholar] [CrossRef]
- Zeng, X.; Guo, S.; Deng, X.; Zhou, W.; Xu, D. Livelihood risk and adaptation strategies of farmers in earthquake hazard threatened areas: Evidence from sichuan province, China. Int. J. Disaster Risk Reduct. 2021, 53, 101971. [Google Scholar] [CrossRef]
- Poudel, S.; Funakawa, S.; Shinjo, H.; Mishra, B. Understanding households’ livelihood vulnerability to climate change in the Lamjung district of Nepal. Environ. Dev. Sustain. 2020, 22, 8159–8182. [Google Scholar] [CrossRef]
- Sam, A.S.; Padmaja, S.S.; Kächele, H.; Kumar, R.; Müller, K. Climate change, drought and rural communities: Understanding people’s perceptions and adaptations in rural eastern India. Int. J. Disaster Risk Reduct. 2020, 44, 101436. [Google Scholar] [CrossRef]
- Zia, A.; Rana, I.A.; Arshad, H.S.H.; Khalid, Z.; Nawaz, A. Monsoon flood risks in urban areas of Pakistan: A way forward for risk reduction and adaptation planning. J. Environ. Manag. 2023, 336, 117652. [Google Scholar] [CrossRef]
- Ajibade, I.; Sullivan, M.; Lower, C.; Yarina, L.; Reilly, A. Are managed retreat programs successful and just? A global mapping of success typologies, justice dimensions, and trade-offs. Glob. Environ. Chang. 2022, 76, 102576. [Google Scholar] [CrossRef]
- Hazenbosch, M.; Sui, S.; Isua, B.; Milner-Gulland, E.J.; Morris, R.J.; Beauchamp, E. The times are changing: Understanding past, current and future resource use in rural Papua New Guinea using participatory photography. World Dev. 2022, 151, 105759. [Google Scholar]
- Ensor, J.; Tuhkanen, H.; Boyland, M.; Salamanca, A.; Johnson, K.; Thomalla, F.; Mangada, L.L. Redistributing resilience? Deliberate transformation and political capabilities in post-Haiyan Tacloban. World Dev. 2021, 140, 105360. [Google Scholar] [CrossRef]
- Azad, M.J.; Pritchard, B. Bonding, bridging, linking social capital as mutually reinforcing elements in adaptive capacity development to flood hazard: Insights from rural Bangladesh. Clim. Risk Manag. 2023, 40, 100498. [Google Scholar] [CrossRef]
- Xue, K.; Xu, D.; Liu, S. Social network influences on non-agricultural employment quality for part-time peasants: A case study of Sichuan province, China. Sustainability 2019, 11, 4134. [Google Scholar]
- Liu, J. Does participation in the sloping land conversion program reduce the sensitivity of Chinese farmers to climate change? Land Use Policy 2020, 99, 105021. [Google Scholar] [CrossRef]
- Lu, G.; Yin, R. Evaluating the Evaluated Socioeconomic Impacts of China’s Sloping Land Conversion Program. Ecol. Econ. 2020, 177, 106785. [Google Scholar] [CrossRef]
Relocated | Not Relocated | |||||
---|---|---|---|---|---|---|
Variables | Definition (Unit) | M or % | SD | M or % | SD | p Value |
Exposure | ||||||
Agriculture shock | Annual actual agricultural losses (CNY) | 21.36 | 239.70 | 186.82 | 1468.91 | 0.019 |
Property shock | Annual actual property losses (CNY) | 149.61 | 3033.93 | 589.65 | 7143.73 | 0.268 |
Livestock shock | Actual annual livestock loss (CNY) | 33.40 | 521.37 | 13.38 | 149.23 | 0.596 |
Loan availability | A value of 1 means very likely; 2 means possible; 3 is general; 4 means impossible; and 5 is highly unlikely | 3.55 | 1.32 | 3.15 | 1.33 | 0.000 |
Sensitivity | ||||||
Labor force shock | The proportion of medical expenditure in total family income <20% is 0.33; 20–50% is 0.67; and the ratio >50% is 1.00 | 0.33 | 0.33 | 0.39 | 0.36 | 0.041 |
Income dependence | The proportion of the combined income from agriculture, forestry, and animal husbandry in total household income | 13.1% | 0.21 | 25.2% | 0.31 | 0.000 |
Food dependence | The subsistence food income divided by the total annual household food expenditure | 0.8% | 0.06 | 3.6% | 0.11 | 0.000 |
Energy dependence | Collect firewood divided by the number of annual energy consumption spending | 9.7% | 0.23 | 36.3% | 0.30 | 0.000 |
Access to water | Whether the home has running water (0 means no and 1 means yes) | 0.03 | 0.16 | 0.13 | 0.34 | 0.000 |
Adaptive capacity | ||||||
Age | Age of household head | 50.72 | 11.79 | 50.93 | 11.64 | 0.830 |
Experience | The number of family members who were ever employed (number) | 0.48 | 0.85 | 0.54 | 0.83 | 0.393 |
Housing structure | A value of 0.33 for civil structure; 0.67 for brick-wood structure; and 1 for brick–concrete structure | 0.38 | 0.16 | 0.54 | 0.29 | 0.000 |
Farmland area | Per capita cultivated land area (mu) | 1.16 | 2.90 | 0.69 | 0.83 | 0.024 |
Distance to the main | Time spent walking to the nearest market (1 for more than 6 h; 2 for 4–6 h; 3 for 2–4 h; 4 for 1–2 h; and 5 for less than 1 h) | 0.98 | 0.12 | 0.96 | 0.16 | 0.095 |
Physical assets | Standardized values for the range of assets owned by farmers | 0.34 | 0.12 | 0.37 | 0.13 | 0.001 |
Training | Whether family members have received training (0 means no and 1 means yes) | 0.18 | 0.38 | 0.37 | 0.48 | 0.000 |
Social relationships | Number of relatives and friends serving as village cadres (persons) | 0.37 | 1.10 | 0.79 | 2.00 | 0.001 |
Agriculture | Amount of annual agricultural income (CNY) | 817.62 | 4774.60 | 2394.85 | 16,297.06 | 0.059 |
House value | The building’s market value (1 is the value for <CNY 10; 11–20 is 2; 21–30 is 3; and 4 is the value for >CNY 30) | 2.74 | 0.98 | 2.41 | 1.15 | 0.000 |
Household size | Number of family members (number) | 4.51 | 1.59 | 4.46 | 1.65 | 0.702 |
Non-agriculture | Amount of non-farm income for the year (CNY) | 4189.10 | 6594.91 | 3979.56 | 6275.78 | 0.705 |
Monetary help | Number of rural households available for assistance (persons) | 3.82 | 4.88 | 4.33 | 6.01 | 0.247 |
N | 459 | 198 |
Principal Component | Factor Loading | Factor Loading | Factor Loading | Eigenvalue | Variance Proportion | Cumulative Proportion |
---|---|---|---|---|---|---|
1 | Access to loans (−0.520) | Physical assets (0.673) | House value (0.573) | 2.413 | 0.110 | 0.110 |
2 | Energy dependence (0.689) | Housing structure (0.608) | 2.170 | 0.099 | 0.208 | |
3 | Age (0.501) | Household size (0.527) | 1.494 | 0.068 | 0.276 | |
4 | Agriculture income (0.590) | 1.423 | 0.065 | 0.341 | ||
5 | Monetary help (−0.532) | 1.228 | 0.056 | 0.397 | ||
6 | Experience (0.507) | 1.042 | 0.047 | 0.494 | ||
7 | Agriculture loss (0.502) | 1.031 | 0.047 | 0.541 |
Relocated | Not Relocated | Difference | ||||
---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | T-Value | |
Exposure | 0.042 | 0.022 | 0.036 | 0.025 | 0.005 | −2.736 *** |
Sensitivity | 0.031 | 0.027 | 0.059 | 0.035 | −0.028 | 10.944 *** |
Adaptive Capacity | 0.116 | 0.023 | 0.127 | 0.027 | −0.011 | 5.592 *** |
Vulnerability | −0.043 | 0.040 | −0.032 | 0.055 | −0.011 | 2.870 *** |
Type of Household | Exposure | Sensitivity | Adaptive Capacity | Vulnerability | |
---|---|---|---|---|---|
Livelihood type | Pure farming type | 0.042 | 0.065 | 0.117 | −0.010 |
Non-farming type | 0.043 | 0.023 | 0.115 | −0.050 | |
Diversified livelihood type | 0.037 | 0.045 | 0.124 | −0.042 | |
Livelihood diversification | Single-livelihood households | 0.043 | 0.027 | 0.115 | −0.045 |
Double-livelihood households | 0.038 | 0.043 | 0.119 | −0.038 | |
Diversified-livelihood households | 0.036 | 0.054 | 0.129 | −0.039 | |
Resettlement reason | Ecological restoration | 0.038 | 0.019 | 0.114 | −0.056 |
Project-induced | 0.046 | 0.046 | 0.126 | −0.034 | |
Disaster-related | 0.044 | 0.027 | 0.115 | −0.044 | |
Poverty reduction | 0.039 | 0.032 | 0.112 | −0.041 | |
Other reasons | 0.034 | 0.039 | 0.119 | −0.046 | |
Type of resettlement | Centralized | 0.043 | 0.029 | 0.114 | −0.042 |
Scattered | 0.042 | 0.042 | 0.121 | −0.037 | |
Self-determined | 0.037 | 0.035 | 0.120 | −0.049 | |
Other resettlement | 0.024 | 0.039 | 0.120 | −0.057 | |
Resettlement time | Less than 3 years | 0.043 | 0.029 | 0.112 | −0.041 |
3–5 years | 0.040 | 0.028 | 0.120 | −0.052 | |
More than 5 years | 0.041 | 0.038 | 0.117 | −0.039 |
Variables | Relocated | Not Relocated | Total Sample | |||
---|---|---|---|---|---|---|
Model 1 (Non-Agricultural Adaptation Type) | Model 2 (Diversified Adaptation Type) | Model 3 (Non-Agricultural Adaptation Type) | Model 4 (Diversified Adaptation Type) | Model 5 (Non-Agricultural Adaptation Type) | Model 6 (Diversified Adaptation Type) | |
Exposure | −0.499 | −0.481 | 0.004 | 0.002 | −0.165 | −0.184 |
Sensitivity | −1.160 *** | −0.977 *** | −1.622 *** | −1.413 *** | −1.397 *** | −1.217 *** |
Adaptive capacity | 0.678 | 1.321 | 0.135 | 2.144 * | 0.584 | 1.337 * |
Average education (in years) | 0.038 | −0.000 | 0.081 | 0.279 *** | 0.119 ** | 0.123 ** |
Whether participation was had in the sloping land conversion program | −1.309 *** | −0.569 | −2.418 *** | −1.492 ** | −1.542 *** | −0.825 ** |
Phone charge | 0.003 * | 0.002 | 0.002 | 0.001 | 0.002 ** | 0.002 |
Social support network | −0.005 * | 0.000 | −0.001 | −0.003 | −0.004 ** | −0.000 |
Frequency of participation in collective affairs | 0.377 *** | 0.128 | −0.021 | 0.151 | 0.278 *** | 0.086 |
Ningshan County | 1.574 * | 0.076 | 0.868 | −0.285 | 1.269 *** | −0.262 |
Ziyang County | 1.324 * | 0.074 | −0.797 | −1.188 * | 1.527 *** | −0.108 |
LR chi2 | 181.18 | 76.00 | 302.82 | |||
Prob > chi2 | 0.0000 | 0.0000 | 0.0000 | |||
Pseudo R2 | 0.2282 | 0.2174 | 0.2478 | |||
N | 459 | 198 | 657 |
Variables | Added Control Variables | |||||
---|---|---|---|---|---|---|
Model 7 (Non-Agricultural Adaptation Type) | Model 8 (Diversified Adaptation Type) | Model 9 (Non-Agricultural Adaptation Type) | Model 10 (Diversified Adaptation Type) | Model 11 (Non-Agricultural Adaptation Type) | Model 12 (Diversified Adaptation Type) | |
Exposure | −0.525 | −0.360 | −0.431 | −0.426 | −0.392 | −0.292 |
Sensitivity | −1.168 *** | −0.979 *** | −1.150 *** | −0.949 *** | −1.189 *** | −1.001 *** |
Adaptive capacity | 0.126 | 1.044 | 0.916 | 1.576 | 0.118 | 0.906 |
Average education (in years) | 0.038 | 0.005 | 0.047 | 0.007 | 0.046 | 0.004 |
Whether participation was had in the sloping land conversion program | −1.311 *** | −0.514 | −1.392 *** | −0.628 | −1.320 *** | −0.558 |
Phone charge | 0.003 ** | 0.002 | 0.003 * | 0.002 | 0.003 ** | 0.002 * |
Social support network | −0.006 ** | 0.000 | −0.005 * | 0.000 | −0.006 *** | −0.000 |
Frequency of participation in collective affairs | 0.327 ** | 0.070 | 0.389 *** | 0.128 | 0.349 *** | 0.077 |
Ningshan County | 1.406 * | 0.075 | 1.476 * | −0.182 | 1.334 * | 0.053 |
Ziyang County | 1.112 | −0.039 | 1.231 | −0.150 | 0.834 | −0.045 |
Control variables | Resettlement reason | Resettlement time | Type of resettlement | |||
N | 427 | 412 | 427 | |||
LR chi2 | 197.73 | 191.69 | 194.69 | |||
Prob > chi2 | 0.0000 | 0.0000 | 0.0000 | |||
Pseudo R2 | 0.2395 | 0.2419 | 0.2358 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Gao, J.; Xu, J.; Li, C. Estimating Livelihood Vulnerability and Its Impact on Adaptation Strategies in the Context of Disaster Avoidance Resettlement in Southern Shaanxi, China. Agriculture 2023, 13, 1497. https://doi.org/10.3390/agriculture13081497
Liu W, Gao J, Xu J, Li C. Estimating Livelihood Vulnerability and Its Impact on Adaptation Strategies in the Context of Disaster Avoidance Resettlement in Southern Shaanxi, China. Agriculture. 2023; 13(8):1497. https://doi.org/10.3390/agriculture13081497
Chicago/Turabian StyleLiu, Wei, Jing Gao, Jie Xu, and Cong Li. 2023. "Estimating Livelihood Vulnerability and Its Impact on Adaptation Strategies in the Context of Disaster Avoidance Resettlement in Southern Shaanxi, China" Agriculture 13, no. 8: 1497. https://doi.org/10.3390/agriculture13081497
APA StyleLiu, W., Gao, J., Xu, J., & Li, C. (2023). Estimating Livelihood Vulnerability and Its Impact on Adaptation Strategies in the Context of Disaster Avoidance Resettlement in Southern Shaanxi, China. Agriculture, 13(8), 1497. https://doi.org/10.3390/agriculture13081497