Essential Oils as a Dietary Additive for Laying Hens: Performance, Egg Quality, Antioxidant Status, and Intestinal Morphology: A Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search
2.2. Inclusion Criteria
2.3. Data Extraction
2.4. Calculations and Statistical Analysis
2.5. Heterogeneity and Publication Bias
2.6. Meta-Regression and Subgroup Analysis
3. Results
3.1. Study Attributes
3.2. Performance
3.3. Egg Quality
3.4. Antioxidant Status
3.5. Intestinal Morphology
3.6. Meta-Regression and Publication Bias
3.7. Subgroup Analysis
4. Discussion
4.1. Performance
4.2. Egg Quality
4.3. Antioxidant Status
4.4. Intestinal Morphology
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiao, G.; Zheng, L.; Yan, X.; Gong, L.; Yang, Y.; Qi, Q.; Zhang, X.; Zhang, H. Effects of dietary essential oils supplementation on egg quality, biochemical parameters, and gut microbiota of late-laying hens. Animals 2022, 12, 2561. [Google Scholar] [CrossRef] [PubMed]
- Rodjan, P.; Wattanasit, S.; Thongprajukaew, K.; Faroongsarng, D. Effect of dietary coated granules containing garlic oil diallyl disulphide and diallyl trisulphide on performance, in vitro digestibility and gastrointestinal functionality in laying hens. J. Anim. Physiol. Anim. Nutr. 2022, 106, 118–131. [Google Scholar] [CrossRef] [PubMed]
- Surai, P.F.; Kochish, I.I.; Fisinin, V.I.; Kidd, M.T. Antioxidant defence systems and oxidative stress in poultry biology: An update. Antioxidants 2019, 8, 235. [Google Scholar] [CrossRef] [Green Version]
- Surai, P.F. Antioxidants in poultry nutrition and reproduction: An update. Antioxidants 2020, 9, 105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puppel, K.; Kapusta, A.; Kuczyńska, B. The etiology of oxidative stress in the various species of animals, a review. J. Sci. Food Agric. 2015, 95, 2179–2184. [Google Scholar] [CrossRef]
- Surai, P.F.; Earle-Payne, K. Antioxidant Defences and redox homeostasis in animals. Antioxidants 2022, 11, 1012. [Google Scholar] [CrossRef]
- Mishra, B.; Jha, R. Oxidative stress in the poultry gut: Potential challenges and interventions. Front. Vet. Sci. 2019, 6, 60. [Google Scholar] [CrossRef] [Green Version]
- Abd El-Hack, M.E.; Alagawany, M.; Ragab Farag, M.; Tiwari, R.; Karthik, K.; Dhama, K.; Zorriehzahra, J.; Adel, M. Beneficial impacts of thymol essential oil on health and production of animals, fish and poultry: A review. J. Essent. Oil Res. 2016, 28, 365–382. [Google Scholar] [CrossRef]
- Nehme, R.; Andrés, S.; Pereira, R.B.; Ben Jemaa, M.; Bouhallab, S.; Ceciliani, F.; López, S.; Rahali, F.Z.; Ksouri, R.; Pereira, D.M.; et al. Essential oils in livestock: From health to food quality. Antioxidants 2021, 10, 330. [Google Scholar] [CrossRef]
- Cheng, H.; Chen, J.F.; Tang, S.G.; Guo, S.C.; He, C.Q.; Qu, X.Y. Effects of essential oil/palygorskite composite on performance, egg quality, plasma biochemistry, oxidation status, immune response and intestinal morphology of laying hens. Poult. Sci. 2022, 101, 101632. [Google Scholar] [CrossRef]
- Dorantes-Iturbide, G.; Orzuna-Orzuna, J.F.; Lara-Bueno, A.; Mendoza-Martínez, G.D.; Miranda-Romero, L.A.; Lee-Rangel, H.A. Essential oils as a dietary additive for small ruminants: A meta-analysis on performance, rumen parameters, serum metabolites, and product quality. Vet. Sci. 2022, 9, 475. [Google Scholar] [CrossRef] [PubMed]
- Mucha, W.; Witkowska, D. The applicability of essential oils in different stages of production of animal-based foods. Molecules 2021, 26, 3798. [Google Scholar] [CrossRef] [PubMed]
- Orzuna-Orzuna, J.F.; Dorantes-Iturbide, G.; Lara-Bueno, A.; Miranda-Romero, L.A.; Mendoza-Martínez, G.D.; Santiago-Figueroa, I. A Meta-analysis of essential oils use for beef cattle feed: Rumen fermentation, blood metabolites, meat quality, performance and, environmental and economic impact. Fermentation 2022, 8, 254. [Google Scholar] [CrossRef]
- Belanche, A.; Newbold, C.J.; Morgavi, D.P.; Bach, A.; Zweifel, B.; Yáñez-Ruiz, D.R. A Meta-analysis describing the effects of the essential oils blend Agolin ruminant on performance, rumen fermentation and methane emissions in dairy cows. Animals 2020, 10, 620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irawan, A.; Hidayat, C.; Jayanegara, A.; Ratriyanto, A. Essential oils as growth-promoting additives on performance, nutrient digestibility, cecal microbes, and serum metabolites of broiler chickens: A meta-analysis. Anim. Biosci. 2021, 34, 1499–1513. [Google Scholar] [CrossRef]
- Puvača, N.; Tufarelli, V.; Giannenas, I. Essential oils in broiler chicken production, immunity and meat quality: Review of Thymus vulgaris, Origanum vulgare, and Rosmarinus officinalis. Agriculture 2022, 12, 874. [Google Scholar] [CrossRef]
- Zhai, H.; Liu, H.; Wang, S.; Wu, J.; Kluenter, A.M. Potential of essential oils for poultry and pigs. Anim. Nutr. 2018, 4, 179–186. [Google Scholar] [CrossRef]
- Abdel-Wareth, A.A.A.; Lohakare, J.D. Productive performance, egg quality, nutrients digestibility, and physiological response of Bovans Brown hens fed various dietary inclusion levels of peppermint oil. Anim. Feed. Sci. Technol. 2020, 267, 114554. [Google Scholar] [CrossRef]
- Abo Ghanima, M.M.; Elsadek, M.F.; Taha, A.E.; Abd El-Hack, M.E.; Alagawany, M.; Ahmed, B.M.; Elshafie, M.M.; El-Sabrout, K. Effect of housing system and rosemary and cinnamon essential oils on layers performance, egg quality, haematological traits, blood chemistry, immunity, and antioxidant. Animals 2020, 10, 245. [Google Scholar] [CrossRef] [Green Version]
- Abo Ghanima, M.M.; Alagawany, M.; Abd El-Hack, M.E.; Taha, A.; Elnesr, S.S.; Ajarem, J.; Allam, A.A.; Mahmoud, A.M. Consequences of various housing systems and dietary supplementation of thymol, carvacrol, and eugenol on performance, egg quality, blood chemistry, and antioxidant parameters. Poult. Sci. 2020, 99, 4384–4397. [Google Scholar] [CrossRef]
- Bozkurt, M.; Kucukvilmaz, K.; Catli, A.U.; Cinar, M.; Bintas, E.; Coven, F. Performance, egg quality, and immune response of laying hens fed diets supplemented with manna-oligosaccharide or an essential oil mixture under moderate and hot environmental conditions. Poult. Sci. 2012, 91, 1379–1386. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Wei, J.; Yang, C.; Yang, Z.; Yang, W.; Jiang, S. Effects of star anise (Illicium verum Hook. f.) essential oil on laying performance and antioxidant status of laying hens. Poult. Sci. 2018, 97, 3957–3966. [Google Scholar] [CrossRef] [PubMed]
- Arslan, C.; Pirinç, A.; Eker, N.; Sur, E.; Ündag, I.; Kusat, T. Dietary encapsulated essential oil mixture influence on apparent nutrient digestibility, serum metabolic profile, lymphocyte histochemistry and intestinal morphology of laying hens. Anim. Biosci. 2022, 35, 740–751. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Lu, M.; Wang, J.; Zhang, H.; Qiu, K.; Qi, G.; Wu, S. Dietary oregano essential oil supplementation improves intestinal functions and alters gut microbiota in late-phase laying hens. J. Anim. Sci. Biotechnol. 2021, 12, 72. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, R.F.; Machado, D.S.; Viana, A.F.P.; Teixeira, J.S.; Milani, L. Comparison of the effects of slow-release urea vs conventional urea supplementation on some finishing cattle parameters: A meta-analysis. Livest. Sci. 2021, 250, 104549. [Google Scholar] [CrossRef]
- Viechtbauer, W. Conducting meta-analysis in R with the metaphor package. J. Stat. Softw. 2010, 36, 1–48. [Google Scholar] [CrossRef] [Green Version]
- Orzuna-Orzuna, J.F.; Dorantes-Iturbide, G.; Lara-Bueno, A.; Chay-Canul, A.J.; Miranda-Romero, L.A.; Mendoza-Martínez, G.D. Meta-analysis of flavonoids use into beef and dairy cattle diet: Performance, antioxidant status, ruminal fermentation, meat quality, and milk composition. Front. Vet. Sci. 2023, 10, 1134925. [Google Scholar] [CrossRef]
- Orzuna-Orzuna, J.F.; Lara-Bueno, A.; Mendoza-Martínez, G.D.; Miranda-Romero, L.A. Meta-analysis of hydroxycinnamic acids into finishing lambs’ diet: Growth performance, antioxidant status, and meat quality. Small Rumin. Res. 2023, 223, 106963. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Sierra-Galicia, M.I.; Rodríguez-de Lara, R.; Orzuna-Orzuna, J.F.; Lara-Bueno, A.; Ramírez-Valverde, R.; Fallas-López, M. Effects of supplementation with bee pollen and propolis on growth performance and serum metabolites of rabbits: A meta-analysis. Animals 2023, 13, 439. [Google Scholar] [CrossRef]
- Higgins, J.; Thomas, J. Cochrane Handbook for Systematic Reviews of Interventions, 2nd ed.; John Wiley and Sons, Ltd.: Chichester, UK, 2019; pp. 143–176. [Google Scholar]
- Akbari, M.; Torki, M.; Kaviani, K. Single and combined effects of peppermint and thyme essential oils on productive performance, egg quality traits, and blood parameters of laying hens reared under cold stress condition (6.8 ± 3 °C). Int. J. Biometeorol. 2016, 60, 447–454. [Google Scholar] [CrossRef]
- Bozkurt, M.; Tokuşoğlu, Ö.; Küçükyilmaz, K.; Akşit, H.; Çabuk, M.; Uğur Çatli, A.; Seyrek, K.; Çinar, M. Effects of dietary mannan oligosaccharide and herbal essential oil blend supplementation on performance and oxidative stability of eggs and liver in laying hens. Ital. J. Anim. Sci. 2012, 11, e41. [Google Scholar] [CrossRef]
- Bozkurt, M.; Küçükyllmaz, K.; Pamukçu, M.; Çabuk, M.; Alçiçek, A.; Çatli, A.U. Long-term effects of dietary supplementation with an essential oil mixture on the growth and laying performance of two layer strains. Ital. J. Anim. Sci. 2012, 11, 23–28. [Google Scholar] [CrossRef]
- Bozkurt, M.; Bintaş, E.; Kırkan, Ş.; Akşit, H.; Küçükyılmaz, K.; Erbaş, G.; Çabuk, M.; Akşit, D.; Parın, U.; Ege, G.; et al. Comparative evaluation of dietary supplementation with mannan oligosaccharide and oregano essential oil in forced molted and fully fed laying hens between 82 and 106 weeks of age. Poult. Sci. 2016, 95, 2576–2591. [Google Scholar] [CrossRef] [PubMed]
- Beyzi, S.B.; Konca, Y.; Kaliber, M.; Sarıözkan, S.; Güçlü, B.K.; Aktuğ, E.; Şentürk, M. Effects of thyme essential oil and A, C, and E vitamin combinations to diets on performance, egg quality, MDA, and 8-OHdG of laying hens under heat stress. J. Appl. Anim. Res. 2020, 48, 126–132. [Google Scholar] [CrossRef] [Green Version]
- Cufadar, Y. Effects of dietary oregano essential oil supplementation on performance and eggshell quality in laying hens. Selcuk. J. Agric. Food Sci. 2018, 32, 158–161. [Google Scholar] [CrossRef]
- Ding, X.; Yu, Y.; Su, Z.; Zhang, K. Effects of essential oils on performance, egg quality, nutrient digestibility and yolk fatty acid profile in laying hens. Anim. Nutr. 2017, 3, 127–131. [Google Scholar] [CrossRef]
- Gao, F.; Zhang, L.; Li, H.; Xia, F.; Bai, H.; Piao, X.; Sun, Z.; Cui, H.; Shi, L. Dietary oregano essential oil supplementation influences production performance and gut microbiota in late-phase laying hens fed wheat-based diets. Animals 2022, 12, 3007. [Google Scholar] [CrossRef]
- Ghanem, H.M.; Mahmoud, R.E.S.; Gadalla, H.E.S.; Ibrahim, S.S. Egg productive performance, serum lipid profile and economic efficiency of laying hen fed different levels of cinnamon oil supplemented diet. Adv. Anim. Vet. Sci. 2021, 9, 2014–2020. [Google Scholar] [CrossRef]
- Gul, M.; Yilmaz, E.; Yildirim, B.A.; Sezmis, G.; Kaya, A.; Timurkaan, S.; Onel, S.E.; Tekce, E. Effects of oregano essential oil (Origanum syriacum L.) on performance, egg quality, intestinal morphology and oxidative stress in laying hens. Eur. Poult. Sci. 2019, 83, 1–15. [Google Scholar] [CrossRef]
- He, X.; Hao, D.; Liu, C.; Zhang, X.; Xu, D.; Xu, X.; Wang, J.; Wu, R. Effect of supplemental oregano essential oils in diets on production performance and relatively intestinal parameters of laying hens. Am. J. Mol. Biol. 2017, 7, 73. [Google Scholar] [CrossRef] [Green Version]
- Kavan, B.P.; Khosravinia, H.; Karimirad, R.; Tavakolinasab, F. Effects of dietary supplementation of milk thistle and nettle essential oils on performance, egg quality, and hematological parameters in layer hens. Poult. Sci. J. 2023, 11, 125–131. [Google Scholar] [CrossRef]
- Kaya, H.; Kaya, A.; Celebi, S.; Macit, M. Effects of dietary supplementation of essential oils and vitamin E on performance, egg quality and Escherichia coli count in excreta. Indian J. Anim. Res. 2013, 47, 515–520. [Google Scholar]
- Laptev, G.Y.; Yildirim, E.A.; Ilina, L.A.; Filippova, V.A.; Kochish, I.I.; Gorfunkel, E.P.; Dubrovin, A.V.; Brazhnik, E.A.; Narushin, V.G.; Novikova, N.I.; et al. Effects of essential oils-based supplement and Salmonella infection on gene expression, blood parameters, cecal microbiome, and egg production in laying hens. Animals 2021, 11, 360. [Google Scholar] [CrossRef] [PubMed]
- Marume, U.; Mokagane, J.M.; Shole, C.O.; Hugo, A. Citrullus lanatus essential oils inclusion in diets elicit nutraceutical effects on egg production, egg quality, and physiological characteristics in layer hens. Poult. Sci. 2020, 99, 3038–3046. [Google Scholar] [CrossRef]
- Migliorini, M.J.; Boiago, M.M.; Stefani, L.M.; Zampar, A.; Roza, L.F.; Barreta, M.; Arno, A.; Robazza, W.S.; Giuriatti, J.; Galvão, A.C.; et al. Oregano essential oil in the diet of laying hens in winter reduces lipid peroxidation in yolks and increases shelf life in eggs. J. Therm. Biol. 2019, 85, 102409. [Google Scholar] [CrossRef]
- Mousavi, A.; Mahdavi, A.H.; Riasi, A.; Soltani-Ghombavani, M. Synergetic effects of essential oils mixture improved egg quality traits, oxidative stability and liver health indices in laying hens fed fish oil. Anim. Feed Sci. Technol. 2017, 234, 162–172. [Google Scholar] [CrossRef]
- Mousavi, A.; Mahdavi, A.H.; Riasi, A.; Soltani-Ghombavani, M. Efficacy of essential oils combination on performance, ileal bacterial counts, intestinal histology and immunocompetence of laying hens fed alternative lipid sources. J. Anim. Phys. Anim. Nutri. 2018, 102, 1245–1256. [Google Scholar] [CrossRef]
- Olgun, O. The effect of dietary essential oil mixture supplementation on performance, egg quality and bone characteristics in laying hens. Ann. Anim. Sci. 2016, 16, 1115–1125. [Google Scholar] [CrossRef] [Green Version]
- Puvača, N.; Lika, E.; Cocoli, S.; Kika, T.S.; Bursić, V.; Vuković, G.; Simin, M.T.; Petrovic, A.; Cara, M. Use of tea tree essential oil (Melaleuca alternifolia) in laying hen’s nutrition on performance and egg fatty acid profile as a promising sustainable organic agricultural tool. Sustainability 2020, 12, 3420. [Google Scholar] [CrossRef] [Green Version]
- Ramirez, S.Y.; Peñuela-Sierra, L.M.; Ospina, M.A. Effects of oregano (Lippia origanoides) essential oil supplementation on the performance, egg quality, and intestinal morphometry of Isa Brown laying hens. Vet. World 2021, 14, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Reshadi, H.; Torki, M.; Mohammadi, H. Changes in performance, egg quality and blood parameters of laying hens fed selenium and oregano oil. Anim. Prod. Sci. 2020, 60, 1620–1629. [Google Scholar] [CrossRef]
- Rodjan, P.; Wattanasit, S.; Faroongsarng, D.; Thongprajukaew, K.; Theapparat, Y. Garlic oil granules coated with enteric polymer: Effects on performance, egg quality, yolk antioxidants, yolk cholesterol, blood biochemistry and hepatic lipid metabolism in laying hens. Anim. Feed Sci. Technol. 2021, 274, 114854. [Google Scholar] [CrossRef]
- Saleh, A.A.; Kirrella, A.A.; Dawood, M.A.O.; Ebeid, T.A. Effect of dietary inclusion of cumin seed oil on the performance, egg quality, immune response and ovarian development in laying hens under high ambient temperature. J. Anim. Physiol. Anim. Nutr. 2019, 103, 1810–1817. [Google Scholar] [CrossRef] [PubMed]
- Torki, M.; Akbari, M.; Kaviani, K. Single and combined effects of zinc and cinnamon essential oil in diet on productive performance, egg quality traits, and blood parameters of laying hens reared under cold stress condition. Int. J. Biometeorol. 2015, 59, 1169–1177. [Google Scholar] [CrossRef] [PubMed]
- Torki, M.; Sedgh-Gooya, S.; Mohammadi, H. Effects of adding essential oils of rosemary, dill and chicory extract to diets on performance, egg quality and some blood parameters of laying hens subjected to heat stress. J. Appl. Anim. Res. 2018, 46, 1118–1126. [Google Scholar] [CrossRef] [Green Version]
- Torki, M.; Mohebbifar, A.; Mohammadi, H. Effects of supplementing hen diet with Lavandula angustifolia and/or Mentha spicata essential oils on production performance, egg quality and blood variables of laying hens. Vet. Med. Sci. 2021, 7, 184–193. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Su, C.; Wang, L.; Lv, X.; Cui, G.; Ji, L.; Huang, Y.; Zhang, H.; Chen, W. Dietary cinnamaldehyde with carvacrol or thymol improves the egg quality and intestinal health independent of gut microbiota in post-peak laying hens. Front. Vet. Sci. 2022, 9, 994089. [Google Scholar] [CrossRef]
- DerSimonian, R.; Laird, N. Meta-analysis in clinical trials. Control. Clin. Trials 1986, 7, 177–188. [Google Scholar] [CrossRef]
- Egger, M.; Smith, G.D.; Altman, D.G. Systematic Reviews in Health Care, 2nd ed.; MBJ Publishing Group: London, UK, 2001; pp. 109–121. [Google Scholar]
- Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analysis. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [Green Version]
- Egger, M.; Smith, G.D.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Begg, C.B.; Mazumdar, M. Operating characteristics of a rank correlation test for publication Bias. Biometrics 1994, 50, 1088–1101. [Google Scholar] [CrossRef] [PubMed]
- Littell, J.H.; Corcoran, J.; Pillai, V. Systematic Reviews and Meta-Analysis, 1st ed.; Oxford University Press: Oxford, UK, 2008; pp. 111–132. [Google Scholar]
- Malfatti, L.H.; Zampar, A.; Galvão, A.C.; da Silva Robazza, W.; Boiago, M.M. Evaluating and predicting egg quality indicators through principal component analysis and artificial neural networks. LWT 2021, 148, 111720. [Google Scholar] [CrossRef]
- Ketta, M.; Tumová, E. Relationship between eggshell thickness and other eggshell measurements in eggs from litter and cages. Ital. J. Anim. Sci. 2017, 17, 234–239. [Google Scholar] [CrossRef] [Green Version]
- Rath, P.K.; Mishra, P.K.; Mallick, B.K.; Behura, N.C. Evaluation of different egg quality traits and interpretation of their mode of inheritance in White Leghorns. Vet. World 2015, 8, 449–452. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.; Qiu, N.; Ma, M.H.; Jin, Y.G.; Yang, H.; Geng, F.; Sun, S.H. Estimation of egg freshness using S-ovalbumin as an indicator. Poult. Sci. 2012, 91, 739–743. [Google Scholar] [CrossRef]
- Alig, B.N.; Malheiros, R.D.; Anderson, K.E. Evaluation of Physical Egg Quality Parameters of Commercial Brown Laying Hens Housed in Five Production Systems. Animals 2023, 13, 716. [Google Scholar] [CrossRef]
- Masyita, A.; Sari, R.M.; Astuti, A.D.; Yasir, B.; Rumata, N.R.; Emran, T.B.; Nainu, F.; Simal-Gandara, J. Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food Chem. X 2022, 13, 100217. [Google Scholar] [CrossRef]
- Vakili, R.; Majidzadeh Heravi, R. Performance and egg quality of laying hens fed diets supplemented with herbal extracts and flaxseed. Poult. Sci. J. 2016, 4, 107–116. [Google Scholar] [CrossRef]
- Jiang, Y.; Fu, D.; Ma, M. Egg freshness indexes correlations with ovomucin concentration during storage. J. Food Qual. 2022, 2022, 9562886. [Google Scholar] [CrossRef]
- Gholami-Ahangaran, M.; Ahmadi-Dastgerdi, A.; Azizi, S.; Basiratpour, A.; Zokaei, M.; Derakhshan, M. Thymol and carvacrol supplementation in poultry health and performance. Vet. Med. Sci. 2022, 8, 267–288. [Google Scholar] [CrossRef] [PubMed]
- Giannenas, I.; Bonos, E.; Christaki, E.; Florou-Paneri, P. Oregano: A feed additive with functional properties. In Therapeutic Food—Handbook of Food Engineerings; Holban, A.M., Grumezescu, A.M., Eds.; Elsevier Academic Press: London, UK, 2018; Volume 8, pp. 179–208. [Google Scholar]
- Song, B.-R.; Alam, M.B.; Lee, S.-H. Terpenoid-rich extract of Dillenia indica L. bark displays antidiabetic action in insulin-resistant C2C12 cells and STZ-induced diabetic mice by attenuation of oxidative stress. Antioxidants 2022, 11, 1227. [Google Scholar] [CrossRef] [PubMed]
- Ghiselli, A.; Serafini, M.; Natella, F.; Scaccini, C. Total antioxidant capacity as a tool to assess redox status: Critical view and experimental data. Free Radic. Biol. Med. 2000, 29, 1106–1114. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, F.; Mikkelsen, B.B.; Nielsen, J.B.; Andersen, H.R.; Grandjean, P. Plasma malondialdehyde as biomarker for oxidative stress: Reference interval and effects of life-style factors. Clin. Chem. 1997, 43, 1209–1214. [Google Scholar] [CrossRef] [Green Version]
- Surai, P.F. Silymarin as a Natural Antioxidant: An Overview of the Current Evidence and Perspectives. Antioxidants 2015, 4, 204–247. [Google Scholar] [CrossRef] [Green Version]
Reference | Hen’s Age, Weeks | Breed/Strain | Supplementation Period, Days | Dose (mg/kg Feed) | Primary Bioactive Compound |
---|---|---|---|---|---|
Abdel-Wareth and Lohakare [18] | 32–38 | Bovans Brown | 42–84 | 74–295 | Menthol |
Abo Ghanima et al. [19] | 28–76 | ISA Brown | 56–336 | 300 | Blend |
Abo Ghanima et al. [20] | 28–76 | ISA Brown | 56–336 | 300 | Thymol, carvacrol, eugenol |
Akbari et al. [32] | 42 | Lohmann White | 56 | 100–200 | Menthol, thymol, blend |
Arslan et al. [23] | 48 | Brown Nick H&N | 84 | 50–200 | Blend |
Bozkurt et al. [21] | 36–43 | Lohmann White | 56–112 | 24 | Blend |
Bozkurt et al. [33] | 52 | Lohmann White | 70 | 24 | Blend |
Bozkurt et al. [34] | 22 | Lohmann Brown | 252 | 24 | Blend |
Bozkurt et al. [35] | 82 | White Leghorn | 175 | 24 | Carvacrol |
Beyzi et al. [36] | 120 | White Leghorn | 70 | 300 | Carvacrol |
Cheng et al. [10] | 65 | Lohmann White | 56 | 75–150 | Blend |
Cufadar et al. [37] | 40 | Super Nick H&N | 84 | 50–250 | Blend |
Ding et al. [38] | 54–62 | Lohmann White | 28–84 | 50–150 | Blend |
Feng et al. [24] | 60–69 | Hy-Line Brown | 28–84 | 5–20 | Blend |
Gao et al. [39] | 58–62 | Not reported | 28–56 | 8–24 | Blend |
Ghanem et al. [40] | 24 | Lohmann Brown | 90 | 50–150 | Cinnamaldehyde |
Gul et al. [41] | 22 | Lohmann White | 56 | 200–600 | Blend |
He et al. [42] | 30 | Hy-Line White | 49 | 50–150 | Carvacrol |
Kavan et al. [43] | 60 | Hy-Line White | 56 | 100–200 | Blend |
Kaya et al. [44] | 36 | Lohmann White | 56 | 150–300 | Carvacrol |
Laptev et al. [45] | 52 | Lohmann White | 27 | 90 | Blend |
Marume et al. [46] | 18 | White Leghorn | 56 | 1000, 2000 | Blend |
Migliorini et al. [47] | 59–67 | Not reported | 28–84 | 50–200 | Blend |
Mousavi et al. [48] | 40–45 | Hy-Line White | 35–70 | 100–200 | Menthol |
Mousavi et al. [49] | 40–45 | Hy-Line White | 35–70 | 100–200 | Menthol |
Olgun [50] | 21 | Super Nick H&N | 84 | 25–600 | Blend |
Puvaca et al. [51] | 55–59 | Lohmann Brown | 28–56 | 40–80 | Terpinen-4-ol |
Ramírez et al. [52] | 70 | ISA Brown | 56 | 80–150 | Thymol |
Reshadi et al. [53] | 66 | Lohmann White | 84 | 250 | Pulegone |
Rodjan et al. [54] | 36 | Hisex Brown | 28 | 9.6–77.3 | Diallyl trisulfide |
Rodjan et al. [2] | 36 | Hisex Brown | 28 | 9.6–77.3 | Diallyl trisulfide |
Saleh et al. [55] | 24 | Bovans Brown | 42 | 250–500 | Blend |
Torki et al. [56] | 42 | Lohmann White | 56 | 40 | Blend |
Torki et al. [57] | 30–41 | Lohmann White | 42–84 | 150–200 | Alpha-pinene, carvonene |
Torki et al. [58] | 42–52 | Lohmann White | 28–84 | 250–500 | Linalool, limonene, blend |
Wang et al. [59] | 52–55 | Hy-Line Brown | 21–42 | 100 | Blend |
Xiao et al. [1] | 55 | Golden Phoenix | 56 | 300 | Blend |
Yu et al. [22] | 26 | Hy-Line Brown | 28–56 | 200–600 | Trans-anethole |
Item | N (NC) | Heterogeneity | Egger Test 1 | Begg Test 2 | ||||
---|---|---|---|---|---|---|---|---|
Control Means (SD) | WMD (95% CI) | p-Value | p-Value | I2 (%) | p-Value | p-Value | ||
ADFI, g/d | 31 (132) | 2.235 (0.87) | −0.047 (−0.410; 0.316) | 0.798 | <0.001 | 89.69 | 0.110 | 0.062 |
Egg production (EP), % | 31 (132) | 83.82 (8.08) | 2.171 (1.570; 2.772) | <0.001 | <0.001 | 86.20 | 0.281 | 0.478 |
Egg weight (EW), g/d | 30 (115) | 59.48 (4.35) | 0.636 (0.470; 0.802) | <0.001 | <0.001 | 77.69 | 0.086 | 0.169 |
Egg mass (EM), g/d | 23 (95) | 50.28 (7.38) | 1.679 (1.118; 2.240) | <0.001 | 0.113 | 45.70 | 0.120 | 0.264 |
FCR, g/g | 32 (135) | 2.23 (0.27) | −0.074 (−0.094; −0.054) | <0.001 | <0.001 | 80.43 | 0.301 | 0.537 |
Item | N (NC) | Heterogeneity | Egger Test 1 | Begg Test 2 | ||||
---|---|---|---|---|---|---|---|---|
Control Means (SD) | WMD (95% CI) | p-Value | p-Value | I2 (%) | p-Value | p-Value | ||
Eggshell thickness (ET), mm | 30 (106) | 365.44 (68.85) | 14.262 (10.811; 17.712) | <0.001 | 0.110 | 44.17 | 0.135 | 0.083 |
Eggshell strength (ES), kg/cm2 | 16 (66) | 3.71 (1.04) | 0.080 (0.052; 0.109) | <0.001 | 0.177 | 13.80 | 0.363 | 0.458 |
Albumen height (AH), mm | 14 (44) | 6.96 (0.76) | 0.201 (0.115; 0.287) | <0.001 | 0.121 | 42.56 | 0.490 | 0.699 |
Haugh unit (HU) | 29 (105) | 76.85 (18.55) | 1.102 (0.774; 1.431) | <0.001 | 0.209 | 42.18 | 0.109 | 0.230 |
Yolk color (YC) | 21 (62) | 7.37 (1.66) | 0.071 (0.017; 0.124) | 0.010 | 0.144 | 48.80 | 0.776 | 0.697 |
Yolk index (YI) | 9 (32) | 0.42 (0.04) | 0.007 (0.001; 0.014) | 0.030 | <0.001 | 69.69 | 0.401 | 0.064 |
MDA in yolk, ng/g | 5 (16) | 2.11 (1.05) | −0.573 (−0.831; −0.315) | <0.001 | <0.001 | 98.34 | 0.179 | 0.302 |
Item | N (NC) | Heterogeneity | Egger Test 1 | Begg Test 2 | ||||
---|---|---|---|---|---|---|---|---|
Control Means (SD) | WMD (95% CI) | p-Value | p-Value | I2 (%) | p-Value | p-Value | ||
SOD, U/mL | 5 (17) | 64.74 (17.93) | 1.147 (0.041; 2.253) | 0.042 | <0.001 | 84.66 | 0.064 | 0.121 |
GPx, U/mL | 6 (20) | 4283.00 (3183.00) | 879.553 (506.015; 1253.091) | <0.001 | <0.001 | 88.49 | 0.136 | 0.714 |
TAC, U/mL | 4 (13) | 5.17 (2.00) | 1.163 (0.277; 2.049) | 0.010 | <0.001 | 87.71 | 0.639 | 0.418 |
MDA, nmol/mL | 7 (20) | 5.76 (2.689) | −0.324 (−0.523; −0.124) | 0.001 | 0.231 | 47.66 | 0.554 | 0.189 |
Item | N (NC) | Heterogeneity | Egger Test 1 | Begg Test 2 | ||||
---|---|---|---|---|---|---|---|---|
Control Mean (SD) | WMD (95% CI) | p-Value | p-Value | I2 (%) | p-Value | p-Value | ||
Duodenum | ||||||||
Villus height (VH), μm | 7 (20) | 856.20 (295.90) | 135.40 (62.57; 208.20) | <0.001 | <0.001 | 99.11 | 0.329 | 0.413 |
Crypt depth (CD), μm | 7 (20) | 149.5 (83.50) | −12.63 (−19.22 −6.04) | <0.001 | <0.001 | 97.69 | 0.428 | 0.330 |
Villus width (VW), μm | 5 (15) | 126.00 (56.90) | 6.91 (−0.84; 14.66) | 0.048 | <0.001 | 84.39 | 0.348 | 0.324 |
VH/CD ratio | 5 (14) | 6.66 (2.97) | 0.81 (0.56; 1.05) | <0.001 | 0.116 | 33.24 | 0.350 | 0.361 |
Jejunum | ||||||||
Villus height (VH), μm | 6 (17) | 656.30 (218.60) | 112.95 (20.13; 205.77) | 0.017 | <0.001 | 99.42 | 0.367 | 0.065 |
Crypt depth (CD), μm | 6 (17) | 11.40 (59.90) | −3.97 (−7.46; −0.48) | 0.026 | <0.001 | 74.53 | 0.101 | 0.283 |
Villus width (VW), μm | 4 (12) | 88.10 (37.20) | 11.48 (6.51; 16.45) | <0.001 | <0.001 | 81.33 | 0.749 | 0.802 |
VH/CD ratio | 5 (14) | 7.47 (3.84) | 1.72 (0.66; 2.78) | 0.002 | 0.129 | 42.88 | 0.877 | 0.998 |
Ileum | ||||||||
Villus height (VH), μm | 5 (15) | 476.60 (90.60) | 49.05 (21.27; 76.83) | <0.001 | <0.001 | 93.91 | 0.101 | 0.170 |
Crypt depth (CD), μm | 4 (12) | 136.60 (23.16) | −16.91 (−24.55; −9.26) | <0.001 | <0.001 | 68.83 | 0.727 | 0.073 |
Villus width (VW), μm | 4 (12) | 71.79 (18.01) | 13.68 (8.83; 18.52) | <0.001 | <0.001 | 76.95 | 0.100 | 0.431 |
VH/CD ratio | 4 (12) | 3.90 (1.07) | 0.96 (0.62; 1.31) | <0.001 | 0.175 | 28.35 | 0.273 | 0.284 |
Parameter | Hen’s Age | Breed/Strain | Supplementation Period | EOs Dose | Primary Bioactive Compound | |
---|---|---|---|---|---|---|
Average daily feed intake (ADFI) | QM | 0.006 | 41.842 | 0.614 | 1.422 | 9.509 |
Df | 1 | 7 | 1 | 1 | 9 | |
p-Value | 0.939 | <0.001 | 0.433 | 0.233 | 0.392 | |
R2 (%) | 7.84 | 50.26 | 0.85 | 3.73 | 7.05 | |
Egg production (EP) | QM | 0.146 | 24.678 | 4.777 | 0.076 | 88.696 |
Df | 1 | 8 | 1 | 1 | 10 | |
p-Value | 0.702 | 0.002 | 0.811 | 0.783 | <0.001 | |
R2 (%) | 0.00 | 12.95 | 7.05 | 0.00 | 37.99 | |
Egg weight (EW) | QM | 8.441 | 45.57 | 2.608 | 0.316 | 25.645 |
Df | 1 | 8 | 1 | 1 | 8 | |
p-Value | 0.074 | <0.001 | 0.106 | 0.574 | 0.001 | |
R2 (%) | 3.41 | 34.42 | 0.00 | 0.00 | 32.02 | |
Feed conversion ratio (FCR) | QM | 0.005 | 56.77 | 3.452 | 0.891 | 99.485 |
Df | 1 | 8 | 1 | 1 | 10 | |
p-Value | 0.943 | <0.001 | 0.244 | 0.345 | <0.001 | |
R2 (%) | 0.00 | 14.81 | 0.00 | 0.00 | 29.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orzuna-Orzuna, J.F.; Lara-Bueno, A. Essential Oils as a Dietary Additive for Laying Hens: Performance, Egg Quality, Antioxidant Status, and Intestinal Morphology: A Meta-Analysis. Agriculture 2023, 13, 1294. https://doi.org/10.3390/agriculture13071294
Orzuna-Orzuna JF, Lara-Bueno A. Essential Oils as a Dietary Additive for Laying Hens: Performance, Egg Quality, Antioxidant Status, and Intestinal Morphology: A Meta-Analysis. Agriculture. 2023; 13(7):1294. https://doi.org/10.3390/agriculture13071294
Chicago/Turabian StyleOrzuna-Orzuna, José Felipe, and Alejandro Lara-Bueno. 2023. "Essential Oils as a Dietary Additive for Laying Hens: Performance, Egg Quality, Antioxidant Status, and Intestinal Morphology: A Meta-Analysis" Agriculture 13, no. 7: 1294. https://doi.org/10.3390/agriculture13071294
APA StyleOrzuna-Orzuna, J. F., & Lara-Bueno, A. (2023). Essential Oils as a Dietary Additive for Laying Hens: Performance, Egg Quality, Antioxidant Status, and Intestinal Morphology: A Meta-Analysis. Agriculture, 13(7), 1294. https://doi.org/10.3390/agriculture13071294