Mid-Infrared Sheep Segmentation in Highland Pastures Using Multi-Level Region Fusion OTSU Algorithm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Data Accumulation
2.2. Algorithm Flow Design and Key Techniques
2.2.1. Proposed Computational Flow Chart
2.2.2. MA-OTSU Algorithm
2.2.3. BHPF-MA-OTSU Threshold Segmentation Algorithm
2.2.4. Image Fusion after Initial Segmentations
3. Results and Discussions
3.1. Evaluation of MA-OTSU Algorithm
3.2. Evaluation of BHPF-MA-OTSU Threshold Segmentation Algorithm
3.3. Evaluation of Multi-Level Region Fusion OTSU Algorithm
3.4. Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Tzanidakis, C.; Tzamaloukas, O.; Simitzis, P.; Panagakis, P. Precision livestock farming applications (PLF) for grazing animals. Agriculture 2023, 13, 288. [Google Scholar] [CrossRef]
- Bonneau, M.; Vayssade, J.A.; Troupe, W.; Arquet, R. Outdoor animal tracking combining neural network and time-lapse cameras. Comput. Electron. Agric. 2020, 168, 105150. [Google Scholar] [CrossRef]
- Riego del Castillo, V.; Sánchez-González, L.; Campazas-Vega, A.; Strisciuglio, N. Vision-based module for herding with a sheepdog robot. Sensors 2022, 22, 5321. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Qiao, Y.; Mao, R.; Li, M.; Wang, M. Enhanced LiteHRNet based sheep weight estimation using RGB-D images. Comput. Electron. Agric. 2023, 206, 107667. [Google Scholar] [CrossRef]
- Xu, J.; Wu, Q.; Zhang, J.; Tait, A. Automatic sheep behaviour analysis using mask r-cnn. In Proceedings of the 2021 Digital Image Computing: Techniques and Applications, Gold Coast, Australia, 29 November–1 December 2021; pp. 1–6. [Google Scholar]
- Sant’Ana, D.A.; Pache, M.C.B.; Martins, J.; Astolfi, G.; Soares, W.P.; de Melo, S.L.N.; da Silva Heimbach, N.; de Moraes Weber, V.A.; Mateus, R.G.; Pistori, H. Computer vision system for superpixel classification and segmentation of sheep. Ecol. Inform. 2022, 68, 101551. [Google Scholar] [CrossRef]
- Sant’Ana, D.A.; Pache, M.C.B.; Martins, J.; Soares, W.P.; de Melo, S.L.N.; Garcia, V.; de Moraes Weber, V.A.; da Silva Heimbach, N.; Mateus, R.G.; Pistori, H. Weighing live sheep using computer vision techniques and regression machine learning. Mach. Learn. Appl. 2021, 5, 100076. [Google Scholar] [CrossRef]
- Gade, R.; Moeslund, T.B. Thermal cameras and applications: A survey. Mach. Vision. Appl. 2014, 25, 245–262. [Google Scholar] [CrossRef] [Green Version]
- Štumper, M.; Kraus, J.; Capousek, L. Thermal imaging in aviation. MAD-Mag. Aviat. Dev. 2015, 3, 13–16. [Google Scholar] [CrossRef] [Green Version]
- Bagavathiappan, S.; Lahiri, B.B.; Saravanan, T.; Jayakumar, T. Infrared thermography for condition monitoring—A review. Infrared Phys. Technol. 2013, 60, 35–55. [Google Scholar] [CrossRef]
- Lahiri, B.B.; Bagavathiappan, S.; Jayakumar, T.; Philip, J. Medical applications of infrared thermography: A review. Infrared Phys. Technol. 2012, 55, 221–235. [Google Scholar] [CrossRef] [PubMed]
- Shada, A.L.; Dengel, L.T.; Petroni, G.R.; Smolkin, M.E.; Acton, S.; Slingluff, C.L., Jr. Infrared thermography of cutaneous melanoma metastases. J. Surg. Res. 2013, 182, e9–e14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashish, V. Review on thermal image processing techniques for machine condition monitoring. Int. J. Wirel. Commun. Netw. Technol. 2014, 3, 49–53. [Google Scholar]
- Dutta, T.; Sil, J.; Chottopadhyay, P. Condition monitoring of electrical equipment using thermal image processing. In Proceedings of the 2016 IEEE First International Vonference on Control, Measurement and Instrumentation, Kolkata, India, 8–10 January 2016; pp. 311–315. [Google Scholar]
- Tomita, K.; Chew, M.Y.L. A review of infrared thermography for delamination detection on infrastructures and buildings. Sensors 2022, 22, 423. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, G.K.; Yaw, C.T.; Koh, S.P.; Abedin, T.; Raj, A.A.; Tiong, S.K.; Chen, P.C. A review of infrared thermography for condition-based monitoring in electrical energy: Applications and recommendations. Energies 2022, 15, 6000. [Google Scholar] [CrossRef]
- Kluge, B.; Peters, A.; Krueger, J.; Wessolek, G. Detection of soil microbial activity by infrared thermography (IRT). Soil. Biol. Biochem. 2013, 57, 383–389. [Google Scholar] [CrossRef]
- Sarawade, A.A.; Charniya, N.N. Infrared thermography and its applications: A review. In Proceedings of the 2018 3rd International Conference on Communication and Electronics Systems, Coimbatore, India, 15–16 October 2018; pp. 280–285. [Google Scholar]
- Mohd Ali, M.; Hashim, N.; Abd Aziz, S.; Lasekan, O. Characterisation of pineapple cultivars under different storage conditions using infrared thermal imaging coupled with machine learning algorithms. Agriculture 2022, 12, 1013. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, S.; Wang, C.; Zhang, Y.; Zong, Z.; Wang, H.; Su, L.; Du, Y. A non-contact cow estrus monitoring method based on the thermal infrared images of cows. Agriculture 2023, 13, 385. [Google Scholar] [CrossRef]
- Branchitta, F.; Diani, M.; Corsini, G.; Porta, A. Dynamic-range compression and contrast enhancement in infrared imaging systems. Opt. Eng. 2008, 47, 076401. [Google Scholar] [CrossRef]
- Usamentiaga, R.; Venegas, P.; Guerediaga, J.; Vega, L.; Molleda, J.; Bulnes, F.G. Infrared thermography for temperature measurement and non-destructive testing. Sensors 2014, 14, 12305–12348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minaee, S.; Boykov, Y.; Porikli, F.; Plaza, A.; Kehtarnavaz, N.; Terzopoulos, D. Image segmentation using deep learning: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 3523–3542. [Google Scholar] [CrossRef] [PubMed]
- Ostu, N. A threshold selection method from gray-histogram. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar]
- Nock, R.; Nielsen, F. Statistical region merging. IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26, 1452–1458. [Google Scholar] [CrossRef]
- Najman, L.; Schmitt, M. Watershed of a continuous function. Signal. Process. 1994, 38, 99–112. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Li, W.; Ourselin, S.; Vercauteren, T. Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks. In Proceedings of the 3rd International Workshop on Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, Quebec City, QC, Canada, 14 September 2017; pp. 178–190. [Google Scholar]
- Li, Y.; Qi, H.; Dai, J.; Ji, X.; Wei, Y. Fully convolutional instance-aware semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2359–2367. [Google Scholar]
- Yuan, Y.; Chao, M.; Lo, Y.C. Automatic skin lesion segmentation using deep fully convolutional networks with jaccard distance. IEEE Trans. Med. Imaging 2017, 36, 1876–1886. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Li, H.; Zhang, M.; Liu, J.; Sun, Z.; Tan, T. Accurate iris segmentation in non-cooperative environments using fully convolutional networks. In Proceedings of the 2016 International Conference on Biometrics, Halmstad, Sweden, 13–16 June 2016; pp. 1–8. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the 18th International Conference on Medical Image Computing and Computer-assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Milletari, F.; Navab, N.; Ahmadi, S.A. V-net: Fully convolutional neural networks for volumetric medical image segmentation. In Proceedings of the 2016 4th International Conference on 3D Vision, Stanford, CA, USA, 25–28 October 2016; pp. 565–571. [Google Scholar]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Xu, X.; Yang, N.; Chen, X.; Du, F.; Ding, S.; Gao, W. R-Net: A novel fully convolutional network–based infrared image segmentation method for intelligent human behavior analysis. Infrared Phys. Technol. 2022, 123, 104164. [Google Scholar] [CrossRef]
- Yang, B.; Pan, H.; He, S.; Han, K.; Zhao, X. Forest fire thermal infrared image segmentation based on K-V model. In Proceedings of the International Conference on Computer Supported Cooperative Work in Design, Dalian, China, 5–7 May 2021; pp. 1275–1280. [Google Scholar]
- Guo, Z.; Song, Y.; Zhao, Y.; Yang, X.; Wang, F. An adaptive infrared image segmentation method based on fusion SPCNN. Signal. Process-Image 2020, 87, 115905. [Google Scholar] [CrossRef]
- Liu, J.; Li, W.; Tian, Y. Automatic thresholding of gray-level pictures using two-dimension Otsu method. In Proceedings of the 1991 International Conference on Circuits and Systems, Shenzhen, China, 16–17 June 1991; pp. 325–327. [Google Scholar]
- Zhu, N.; Wang, G.; Yang, G.; Dai, W. A fast 2d Otsu thresholding algorithm based on improved histogram. In Proceedings of the 2009 Chinese Conference on Pattern Recognition, Nanjing, China, 4–6 November 2009; pp. 1–5. [Google Scholar]
- Zhang, Z.; Zhou, N. A novel image segmentation method combined Otsu and improved PSO. In Proceedings of the 2012 IEEE 5th International Conference on Advanced Computational Intelligence, Nanjing, China, 18–20 October 2012; pp. 538–586. [Google Scholar]
- Raja, N.S.M.; Sukanya, S.A.; Nikita, Y. Improved PSO based multi-level thresholding for cancer infected breast thermal images using Otsu. Procedia Comput. Sci. 2015, 48, 524–529. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.C.; Chen, A.H.L.; Chyu, C.C. Application of a hybrid ant colony optimization for the multilevel thresholding in image processing. In Proceedings of the 13th International Conference on Neural Information Processing, Hong Kong, China, 3–6 October 2006; pp. 1183–1192. [Google Scholar]
- Gao, K.; Dong, M.; Zhu, L.; Gao, M. Image segmentation method based upon Otsu ACO algorithm. In Proceedings of the International Symposium on Information and Automation, Guangzhou, China, 10–11 November 2010; pp. 574–580. [Google Scholar]
- Shahabi, F.; Pourahangarian, F.; Edalatpanah, S.A.; Beheshti, H. A multilevel image thresholding approach based on crow search algorithm and Otsu method. J. Decis. Oper. Res. 2019, 4, 33–41. [Google Scholar] [CrossRef]
- Wang, X.; Cai, L.; Huang, J.; Gao, W.; Ju, Y. Infrared image segmentation based on improved Otsu algorithm. Fire Control Command Control 2014, S1, 77–78. [Google Scholar]
- Wang, Z. A new approach for segmentation and quantification of cells or nanoparticles. IEEE Trans. Ind. Inform. 2016, 12, 962–971. [Google Scholar] [CrossRef]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, T.Y.; Dollar, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 936–944. [Google Scholar]
- Zhao, H.; Mao, R.; Li, M.; Li, B.; Wang, M. SheepInst: A high-performance instance segmentation of sheep images based on deep learning. Animals 2023, 13, 1338. [Google Scholar] [CrossRef]
- Zhou, Y.; Xue, H.; Jiang, X.; Gao, X.; Zhang, L.; Du, Y.; Wang, L. Sheep image segmentation and contour extraction of multi-scale watershed and fuzzy c-means based on graph cuts. Acta Technica 2017, 62, 145–156. [Google Scholar]
- Zhang, A.L.; Wu, B.P.; Wuyun, C.T.; Jiang, D.X.; Xuan, E.C.; Ma, F.Y. Algorithm of sheep body dimension measurement and its applications based on image analysis. Comput. Electron. Agric. 2018, 153, 33–45. [Google Scholar] [CrossRef]
Index | Parameter |
---|---|
Sensor | 1/1.8” Progressive Scan CMOS |
Main stream resolution and frame rate | 50 Hz: 25 fps (2560 × 1440, 1920 × 1080, 1280 × 960, 1280 × 720) 60 Hz: 24 fps (2560 × 1440, 1920 × 1080, 1280 × 960, 1280 × 720) |
Shutter | 1 to 1/100,000 s |
Wide dynamic range | 120 dB |
Power supply | AC 24 V ± 20%/DC 12 V ± 20%/PoE (802.3 af) |
Index | Figure 1a | Figure 1b | Figure 1c |
---|---|---|---|
Entropy | 7.4112 | 7.6693 | 7.4029 |
Mean | 92.8963 | 136.5736 | 105.6917 |
Standard Deviation | 49.1114 | 53.0251 | 45.1848 |
Image Names | Classic OTSU | Improved OTSU in [44] | Multi-Threshold OTSU | OTSU Based on Clustering | OTSU Based on Genetic Algorithm | Our Method |
---|---|---|---|---|---|---|
(d), (g), (j), (m), (p), and (s) | 109 | 156 | 109, 110 | 110 | 112 | 167 |
(e), (h), (k), (n), (q), and (t) | 138 | 165 | 137, 138 | 139 | 134 | 199 |
(f), (i), (l), (o), (r), and (u) | 136 | 163 | 106, 107 | 105 | 232 | 174 |
Image Names | Algorithms | RMSE | SSIM | PSNR |
---|---|---|---|---|
(g), (j), (m), (p), and (s) | FCM method | 0.46400 | 0.98659 | 23.09503 |
FTH method | 0.48308 | 0.97717 | 20.61665 | |
K-means method | 0.47197 | 0.98271 | 21.51156 | |
Wang’s method | 0.49238 | 0.97444 | 19.75355 | |
Our method | 0.43187 | 0.99526 | 29.16353 | |
(h), (k), (n), (q), and (t) | FCM method | 0.95681 | 0.92411 | 14.72805 |
FTH method | 0.90815 | 0.95559 | 17.33831 | |
K-means method | 0.95133 | 0.92475 | 14.85333 | |
Wang’s method | 0.93051 | 0.95384 | 17.69778 | |
Our method | 0.87472 | 0.98388 | 23.87430 | |
(i), (l), (o), (r), and (u) | FCM method | 0.78458 | 0.92496 | 15.67881 |
FTH method | 0.72166 | 0.95368 | 17.29876 | |
K-means method | 0.81873 | 0.90694 | 14.55417 | |
Wang’s method | 0.77015 | 0.92359 | 15.45486 | |
Our method | 0.65307 | 0.99437 | 30.33159 |
Algorithms | FCM Method | FTH Method | K-Means Method | Wang’s Method | MA-OTSU | BHPF-MA-OTSU | Our Method |
---|---|---|---|---|---|---|---|
Processing time | 2.71518 s | 0.67569 s | 0.37216 s | 0.28077 s | 0.50574 s | 1.20753 s | 2.68167 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Lv, M.; Liu, H.; Li, Q. Mid-Infrared Sheep Segmentation in Highland Pastures Using Multi-Level Region Fusion OTSU Algorithm. Agriculture 2023, 13, 1281. https://doi.org/10.3390/agriculture13071281
Wang M, Lv M, Liu H, Li Q. Mid-Infrared Sheep Segmentation in Highland Pastures Using Multi-Level Region Fusion OTSU Algorithm. Agriculture. 2023; 13(7):1281. https://doi.org/10.3390/agriculture13071281
Chicago/Turabian StyleWang, Mengmeng, Meng Lv, Haoting Liu, and Qing Li. 2023. "Mid-Infrared Sheep Segmentation in Highland Pastures Using Multi-Level Region Fusion OTSU Algorithm" Agriculture 13, no. 7: 1281. https://doi.org/10.3390/agriculture13071281
APA StyleWang, M., Lv, M., Liu, H., & Li, Q. (2023). Mid-Infrared Sheep Segmentation in Highland Pastures Using Multi-Level Region Fusion OTSU Algorithm. Agriculture, 13(7), 1281. https://doi.org/10.3390/agriculture13071281