Analysis of the Available Straw Nutrient Resources and Substitution of Chemical Fertilizers with Straw Returned Directly to the Field in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Evaluation Method
2.4. Data Processing
3. Results
3.1. Directly Returning Main Crop Straws to the Field
3.2. Nutrient Resources of Major Crop Straws Returned to the Field
3.3. The Amount of in-Season Effective Nutrient Resources from Direct Straw Return
3.4. Substitute Potential of in-Season Effective Nutrients for Chemical Fertilizers
4. Discussions
4.1. The Role of Straw in Nutrient Cycling and Soil Improvement
4.2. Standardization of Direct Straw-Return Technology
4.3. Enhancing the Amount of Nutrient Resources from Straw Directly Returned to the Field
4.4. Increasing the Effective Nutrient Resources of Straw in Season
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmed, W.; Qaswar, M.; Huang, J.; Dong, W.; Sun, G.; Liu, K.; Meng, Y.; Tang, A.; Sun, M.; Li, C.; et al. Tillage practices improve rice yield and soil phosphorus fractions in two typical paddy soils. J. Soils Sed. 2020, 20, 850–861. [Google Scholar] [CrossRef]
- Bai, Y.; Wang, L.; Lu, Y.; Yang, L.; Zhou, L.; Ni, L.; Cheng, M. Effects of long-term full straw return on yield and potassium response in wheat-maize rotation. J. Integr. Agric. 2015, 14, 2467–2476. [Google Scholar] [CrossRef]
- Ma, E.D.; Zhang, G.B.; Ma, J.; Xu, H.; Cai, Z.C.; Yagi, K. Effects of rice straw returning methods on N2O emission during wheat-growing season. Nutr. Cycl. Agroecosyst. 2010, 88, 463–469. [Google Scholar] [CrossRef]
- Guan, X.-K.; Wei, L.; Turner, N.C.; Ma, S.-C.; Yang, M.-D.; Wang, T.-C. Improved straw management practices promote in situ straw decomposition and nutrient release, and increase crop production. J. Clean. Prod. 2020, 250, 119514. [Google Scholar] [CrossRef]
- Zhu, H.Y.; Gao, M.; Long, Y.; Xu, G.X.; Wang, F.H.; Wang, Z.F. Effects of Fertilizer Reduction and Application of Organic Fertilizer on Soil Nitrogen and Phosphorus Nutrients and Crop Yield in a Purple Soil Sloping Field. Environ. Sci. 2020, 41, 1921–1929. [Google Scholar]
- Huang, R.; Gao, M.; Wan, Y.-l.; Tian, D.; Tao, R.; Wang, F.-l. Effects of Straw in Combination with Reducing Fertilization Rate on Soil Nutrients and Enzyme Activity in the Paddy-Vegetable Rotation Soils. Environ. Sci. 2016, 37, 4446–4456. [Google Scholar]
- Wang, J.; Li, T.; Huang, L.; Song, H. Effects of Straw Returning Instead of Fertilizer on Wheat Yield andWater and Fertilizer Utilization in Loess Dryland. J. Soil Water Conserv. 2022, 36, 236–243+251. [Google Scholar]
- Zhang, H.; Lv, J.; Li, J.; Xu, M.; Liu, H. Research progress in soil potassium chemistry under long -term fertilization condition. J. Northwest Sci.-Tech. Univ. Agric. For. 2007, 35, 155–160. [Google Scholar]
- Choudhury, A.; Kennedy, I.R. Prospects and potentials for systems of biological nitrogen fixation in sustainable rice production. Biol. Fertil. Soils 2004, 39, 219–227. [Google Scholar] [CrossRef]
- Zeng, Y.H.; Fan, C.G.; Wu, J.F.; Zeng, Y.J.; Zhou, C.H.; Tan, X.M.; Pan, X.H.; Shi, Q.H. Replacement ratio of nitrogen and potassium fertilizer by straw incorporation in early rice under the same nitrogeny phosphorus and potassium input. J. Plant Nutr. Fertiliz. 2017, 23, 658–668. [Google Scholar]
- Jin, Y.; Liu, Y.; Hu, H.; Mu, J.; Gao, M.; Li, X.; Xue, Z.; Gong, J. Effects of Continuous Straw Returning with Chemical Fertilizer on Annual Runoff Loss of Nitrogen and Phosphorus in Rice-Rape Rotation. Sci. Agric. Sin. 2021, 54, 1937–1951. [Google Scholar]
- Li, H.; Dai, M.; Dai, S.; Dong, X. Current status and environment impact of direct straw return in China’s cropland—A review. Ecotoxicol. Environ. Saf. 2018, 159, 293–300. [Google Scholar] [CrossRef]
- Berhane, M.; Xu, M.; Liang, Z.; Shi, J.; Wei, G.; Tian, X. Effects of long-term straw return on soil organic carbon storage and sequestration rate in North China upland crops: A meta-analysis. Glob. Chang. Biol. 2020, 26, 2686–2701. [Google Scholar] [CrossRef]
- Han, X.; Zou, W.; Yang, F. Main Achievements, Challenges, and Recommendations of Black Soil Conservation and Utilization in China. Bull. Chin. Acad. Sci. 2021, 36, 1194–1202. [Google Scholar]
- Zou, W.X.; Qiu, C.; Han, X.; Hao, X.; Liu, X.; Lu, X.; Yan, J.; Chen, X. Effects of long term manure application on black soil fertility and maize yield. Soils Crops 2020, 9, 407–418. [Google Scholar]
- Zou, W.; Han, X.; Lu, X.; Chen, X.; Hao, X.; Yan, J.; You, M. Responses of soil organic matter and nutrients contents to corn stalk incorporated into different soil depths. Soils Crops 2018, 7, 139–147. [Google Scholar]
- Chai, R.; Cheng, Q.; Chen, X.; Luo, L.; Ma, C.; Zhang, L.; Zhang, L.; Li, J.; Gao, H. Spatio-temporal variations of wheat, rice and maize straw in major grain-producing counties of Anhui Province and utilization potential of straw nutrient returning to field. Trans. Chin. Soc. Agric. Eng. 2021, 37, 234–247. [Google Scholar]
- Cui, Z.; Qiuzhu, L.; Yubin, Z.; Enping, Z.; Chen, J.; Hongyu, W.; Jinhu, C. Effects of different strength of compaction and sowing depth on emergence rate of maize under the condition of entire returning of maize straw after smashed. J. Northeast. Agric. Sci. 2018, 43, 16–19. [Google Scholar]
- Song, J.; Zeng, X.; Wang, Y.; Bai, L. A review on crop straw returning to field:Effects, problems and countermeasures. Chin. J. Ecol. 2020, 39, 1715–1722. [Google Scholar]
- Wang, Z.; Wang, X. Current status and management strategies for corn pests and diseases in China. Plant Protect. 2019, 45, 1–11. [Google Scholar]
- Song, D.; Hou, S.; Wang, X.; Liang, G.; Zhou, W. Nutrient resource quantity of crop straw and its potential of substituting. J. Plant Nutr. Fertiliz. 2018, 24, 1–21. [Google Scholar]
- Cheng, W.; Han, S.; Li, M.; Wang, H.; Bu, R.; Cao, Z.; Tang, S.; Wu, J. Current situation of the main crop straw nutrient resources and the substitute potential of crop straw for chemical fertilizer:A case study of Anhui Province. Chin. J. Eco-Agric. 2020, 28, 1789–1798. [Google Scholar]
- Liu, X. Study on Nutrients Balance and Requirement in Agricultural Production in China. Ph.D. Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2018. [Google Scholar]
- Liu, X.; Li, S. Temporal and spatial distribution characteristics of crop straw nutrient resources and returning to farmland in China. Trans. Chin. Soc. Agric. Eng. 2017, 33, 1–19. [Google Scholar]
- Li, Y.; Wang, Q. Study on potential of straw resource nutrient return to field and application technology in China. Soil Fertiliz. Sci. China 2020, 1, 119–126. [Google Scholar]
- Wang, Y.; Wang, H.; Gao, C.; Wang, L.; Bi, Y. Quantitative estimation method and its application to rice, wheat and corn straw residues left in field. Trans. Chin. Soc. Agric. Eng. 2015, 31, 244–250. [Google Scholar]
- Bi, Y.Y. Study on Straw Resources Evaluation and Utilization in China. PhD Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2010. [Google Scholar]
- Ministry of Agriculture. National Crop Straw Resources Survey and Evaluation Report. Available online: https://www.moa.gov.cn/xw/zwdt/201012/t20101216_1792891.htm (accessed on 2 January 2023).
- Rahman, M.M.; Ali, M.R.; Oliver, M.M.H.; Hanif, M.A.; Uddin, M.Z.; Saha, K.K.; Islam, M.H.; Moniruzzaman, M. Farm mechanization in Bangladesh: A review of the status, roles, policy, and potentials. J. Agric. Food Res. 2021, 6, 100225. [Google Scholar] [CrossRef]
- Daum, T.; Birner, R. Agricultural mechanization in Africa: Myths, realities and an emerging research agenda. Glob. Food Secur. 2020, 26, 100393. [Google Scholar] [CrossRef]
- Belton, B.; Win, M.T.; Zhang, X.; Filipski, M. The rapid rise of agricultural mechanization in Myanmar. Food Pol. 2021, 101, 102095. [Google Scholar] [CrossRef]
- Ministry of Agriculture and Rural Affairs. Crop Straw Resources Desk Report (FY2020). Available online: https://www.gov.cn/zhengce/zhengceku/2019-10/28/content_5445951.htm (accessed on 5 January 2023).
- Gu, K.; Zhang, C.; Gu, D.; Zhang, S.; Shi, Z.; Xu, B.; Yang, S. Vertical distribution characteristics of rice straw nutrient and nutrient-returning amount of rice straw under different stubble height. Soil Fertiliz. Sci. China 2017, 99–104. [Google Scholar] [CrossRef]
- Yang, Z.; Zhu, Y.; Zhang, J.; Li, X.; Ma, P.; Sun, J.; Sun, Y.; Ma, J.; Li, N. Comparison of energy use between fully mechanized and semi-mechanized rice production in Southwest China. Energy 2022, 245, 123270. [Google Scholar] [CrossRef]
- National Bureau of Statistics. China Statistical Yearbook; Press, C.S., Ed.; National Bureau of Statistics: Beijing, China, 2021.
- National Agricultural Technology Extension Service Center. China Organic Fertilizer Nutrient Dataset; China Agricultural Press: Beijing, China, 1999. [Google Scholar]
- National Agricultural Technology Extension Service Center. China Organic Fertilizer Nutrient Chronicle; China Agricultural Press: Beijing, China, 1999. [Google Scholar]
- National Agricultural Technology Extension Service Center. Organic Fertilizer Resources in China; China Agricultural Press, China Science and Technology Press: Beijing, China, 1999. [Google Scholar]
- Li, S.; Jin, J. Characteristics of Nutrient Input/Output and Nutrient Balance in Different Regions of China. Sci. Agric. Sin. 2011, 44, 4207–4229. [Google Scholar]
- Zhou, J.; Qiu, J.; Song, Y.; Liang, T.; Liu, S.; Ren, C.; Song, X.; Cui, L.; Sun, Y. Pyroptosis and degenerative diseases of the elderly. Cell Death Dis. 2023, 14, 94. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.; Lam, S.K.; Wolf, B.; Kiese, R.; Chen, D.; Butterbach-Bahl, K. Trade-offs between soil carbon sequestration and reactive nitrogen losses under straw return in global agroecosystems. Glob. Chang. Biol. 2018, 24, 5919–5932. [Google Scholar] [CrossRef]
- Wang, S.; Huang, X.; Zhang, Y.; Yin, C.; Richel, A. The effect of corn straw return on corn production in Northeast China: An integrated regional evaluation with meta-analysis and system dynamics. Resour. Conserv. Recycl. 2021, 167, 105402. [Google Scholar] [CrossRef]
- Xing, L.; Zhang, Y.; Hu, C.; Dong, W.; Li, X.; Liu, X.; Zhang, L.; Wen, H. Effects of long-term nutrient recycling pathways on soil nutrient dynamics and fertility in farmland. Chin. J. Eco-Agric. 2022, 30, 937–951. [Google Scholar]
- Chen, D.; Yi, Z.; Zhou, W.; Tu, N. Effects of straw return on soil nutrients and microorganisms in late rice under different soil tillage systems. Acta Sci. Circum. 2010, 30, 1722–1728. [Google Scholar]
- Qian, F.; Huang, Y.; Dong, T.; Sun, J. Effect of crop residue incorporation on soil moisture and nutrient and maize growth and yield of arid farmland. Agric. Res. Arid Areas 2014, 32, 61–65. [Google Scholar]
- Han, X.; Zhu, L.; Yang, M.; Yu, Q.; Bian, X. Effects of different amount of wheat straw returning on rice growth, soil microbial biomass and enzyme activity. J. Agro-Environ. Sci. 2012, 31, 2192–2199. [Google Scholar]
- Mangalassery, S.; Kalaivanan, D.; Philip, P.S. Effect of inorganic fertilisers and organic amendments on soil aggregation and biochemical characteristics in a weathered tropical soil. Soil. Till. Res. 2019, 187, 144–151. [Google Scholar] [CrossRef]
- Sun, M.; Chen, B.; Wang, H.; Wang, N.; Ma, T.; Cui, Y.; Luan, T.; Chun, S.; Liu, C.; Wang, L. Microbial interactions and roles in soil fertility in seasonal freeze-thaw periods under different straw returning strategies. Agriculture 2021, 11, 779. [Google Scholar] [CrossRef]
- Fierer, N.; Lauber, C.L.; Ramirez, K.S.; Zaneveld, J.; Bradford, M.A.; Knight, R. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J. 2012, 6, 1007–1017. [Google Scholar] [CrossRef] [Green Version]
- Ramirez, K.S.; Craine, J.M.; Fierer, N. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Glob. Chang. Biol. 2012, 18, 1918–1927. [Google Scholar] [CrossRef]
- Bailey, K.L.; Lazarovits, G. Suppressing soil-borne diseases with residue management and organic amendments. Soil. Till. Res. 2003, 72, 169–180. [Google Scholar] [CrossRef]
- Wu, J.; Liu, J.; Liu, X.; Yang, h.; Wang, X.; Xu, M.; Wei, Y.; Bian, X. Effects of rice and wheat straw ditch-buried returns on the soil physical properties of wheat fields. Acta Ecol. Sin. 2016, 36, 2066–2075. [Google Scholar]
- Former Ministry of Agriculture and Rural Affairs; Ministry of Agriculture, National Development and Reform Commission, Ministry of Finance. Notice on Issuing the Outline of the Northeast Black Land Protection Plan (2017–2030). Available online: https://www.moa.gov.cn/nybgb/2017/dqq/201801/t20180103_6133926.htm (accessed on 15 January 2023).
- National Development and Reform Commission. Joint circular of the General Offices of the Ministry of Agriculture and Rural Affairs and the National Development and Reform Commission on Printing and Distributing the Catalogue of Technologies of Integrated Straw Use. Available online: https://www.ndrc.gov.cn/fggz/hjyzy/zyzhlyhxhjj/202110/t20211029_1314925.html (accessed on 25 December 2022).
- Li, T.; Wang, Y.; Wang, J.; Li, L.; Xie, J.; Li, L.; Huang, X.; Xie, Y. Nutrient Resource Quantity from Main Grain Crop Straw Incorporation and Its Enlightenment on Chemical Fertilizer Reduction in Wheat Production in China. Sci. Agric. Sin. 2020, 53, 4835–4854. [Google Scholar]
- Chai, R.; An, Z.; Ma, C.; Wang, Q.; Zhang, L.; Gao, H. Potassium resource quantity of main grain crop straw and potential for straw incorporation to substitute potassium fertilizer in China. J. Plant Nutr. Fertiliz. 2020, 26, 201–211. [Google Scholar]
- Huo, L.; Zhao, L.; Yao, Z.; Jia, J.; Zhao, Y.; Fu, G.; Cong, H. Difference of the ratio of maize stovers to grain and spatiotemporal variation characteristics of maize stovers in China. Trans. Chin. Soc. Agric. Eng. 2020, 36, 227–234. [Google Scholar]
- Department of Science; Technology and Education; Ministry of Agriculture and Rural Affairs. Notice on the Completion and Review of the 2021 Annual Crop Straw Resource Ledger Data. Available online: http://www.kjs.moa.gov.cn/hbny/202203/t20220301_6389876.htm (accessed on 29 December 2022).
- Wang, Y. The Temporal and Spatial Evolution of Crop Biomass in China Based on the Multi-Sources Data. Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, 2016. [Google Scholar]
- Office of the Ministry of Agriculture and Rural Affairs. Notice on the Comprehensive Utilization of Crop Straw in 2022 Agricultural Office Section [2022] No. 12. Available online: http://www.gov.cn/zhengce/zhengceku/2022-04/26/content_5687228.htm (accessed on 29 December 2022).
- Wang, Q.; Liu, F.; Chi, F.; Jiao, F.; Zhang, C.; Jiang, H.; Li, P.; Zhu, B. Effect of straw returning and nitrogen fertilizer regulation on nitrogen and rice yield in albic soil with different fertilities. Trans. Chin. Soc. Agric. Eng. 2019, 35, 105–111. [Google Scholar]
- Yang, C.; Liu, L.; Wang, W.; Ren, G.; Feng, Y.; Yang, G. Effects of the Application of Straw Returning and Nitrogen Fertilizer on Crop Yields, Water and Nitrogen Utilization Under Wheat-Maize Multiple Cropping System. Sci. Agric. Sin. 2018, 51, 1664–1680. [Google Scholar]
- Yan, S.; Song, J.; Fan, J.; Yan, C.; Dong, S.; Ma, C.; Gong, Z. Changes in soil organic carbon fractions and microbial community under rice straw return in Northeast China. Glob. Ecol. Conserv. 2020, 22, e00962. [Google Scholar] [CrossRef]
- Geisseler, D.; Scow, K.M. Long-term effects of mineral fertilizers on soil microorganisms–A review. Soil. Biol. Biochem. 2014, 75, 54–63. [Google Scholar] [CrossRef]
- Liu, C.; Lu, M.; Cui, J.; Li, B.; Fang, C. Effects of straw carbon input on carbon dynamics in agricultural soils: A meta-analysis. Glob. Change Biol. 2014, 20, 1366–1381. [Google Scholar] [CrossRef] [PubMed]
- Ren, C.; Sun, P.; Kang, D.; Zhao, F.; Feng, Y.; Ren, G.; Han, X.; Yang, G. Responsiveness of soil nitrogen fractions and bacterial communities to afforestation in the Loess Hilly Region (LHR) of China. Sci. Rep. 2016, 6, 28469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, W.; Gao, M.; Lan, M.; Huang, R.; Wang, J.; Wang, Z.; Han, X. Nutrient release patterns and decomposition characteristics of different crop straws in drylands and paddy fields. Chin. J. Eco-Agric. 2017, 25, 188–199. [Google Scholar]
- Dai, Z.; Lu, J.; Li, X.; Lu, X.; Yang, W.; Gao, X. Experiment on nutrient release characteristics of straw returned to the field by different crops. Trans. Chin. Soc. Agric. Eng. 2010, 26, 272–276. [Google Scholar]
- Chen, X.; Mao, A.; Zhang, Y.; Zhang, L.; Chang, J.; Gao, H.; Thompson, M.L. Carbon and nitrogen forms in soil organic matter influenced by incorporated wheat and corn residues. Soil Sci. Plant Nutr. 2017, 63, 377–387. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Wang, X.; Sun, B. Characteristics of Nutrient Release and Its Affecting Factors during Plant Residue Decomposition under Different Climate and Soil Conditions. Acta Pedol. Sin. 2017, 54, 1206–1217. [Google Scholar]
- Van Bruggen, A.H.C.; Gamliel, A.; Finckh, M.R. Plant disease management in organic farming systems. Pest Manag. Sci. 2016, 72, 30–44. [Google Scholar] [CrossRef]
- Chen, R.; Senbayram, M.; Blagodatsky, S.; Myachina, O.; Dittert, K.; Lin, X.; Blagodatskaya, E.; Kuzyakov, Y. Soil C and N availability determine the priming effect: Microbial N mining and stoichiometric decomposition theories. Glob. Chang. Biol. 2014, 20, 2356–2367. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, C.; Chen, X.; Chang, J.; Zhang, L.; Gao, H. Effects of wheat and rice straw returning on soil organic matter composition and content of different nitrogen forms in soil. J. Agro-Environ. Sci. 2015, 34, 2155–2161. [Google Scholar]
- Zhang, W.; Dai, Z.; Ren, T.; Zhou, X.; Wang, Z.; Li, X.; Cong, R. Effects of Nitrogen Fertilization Managements with Residues Incorporation on Crops Yield and Nutrients Uptake Under Different Paddy-Upland Rotation Systems. Sci. Agric. Sin. 2016, 49, 1254–1266. [Google Scholar]
- Zhang, L.; Zhang, W.; Lu, J.; Dai, Z.; Cong, R. Study of Optimum Potassium Reducing Rate of Rice, Wheat and Oilseed Rape Under Different Soil K Supply Levels with Straw Incorporation. Sci. Agric. Sin. 2017, 50, 3745–3756. [Google Scholar]
- Liu, S.; Li, D.; Huang, J.; Ma, C.; Wang, H.; Yu, Z.; Qu, X.; Zhang, L.; Han, T.; Du, J.; et al. Temporal and spatial distribution characteristics of rice stalk resources and its potential of synthetic fertilizers substitution returning to farmland in China from 1988 to 2018. Trans. Chin. Soc. Agric. Eng. 2021, 37, 151–161. [Google Scholar]
- Damon, P.M.; Bowden, B.; Rose, T.; Rengel, Z. Crop residue contributions to phosphorus pools in agricultural soils: A review. Soil Biol. Biochem. 2014, 74, 127–137. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.; Wang, J.; Cheng, H.; Luo, K.; Zeng, Y.; Shi, Q.; Shang, Q. Effects of Straw Returning and Tillage System on Crop Yield and Soil Fertility Quality in Paddy Field under Double-Cropping-Rice System. Acta Pedol. Sin. 2018, 55, 247–257. [Google Scholar]
- Wang, K.; Liao, S.; Ren, T.; Li, X.; Cong, R.; Lu, J. Effect of Continuous Straw Returning on Soil Phosphorus Availability and Crop Phosphorus Utilization Efficiency of Oilseed Rape-Rice Rotation. Sci. Agric. Sin. 2020, 53, 94–104. [Google Scholar]
Crop | Nutrient Content of Straw (%) | ||
---|---|---|---|
N | P2O5 | K2O | |
Rice a | 0.83 | 0.27 | 2.06 |
Wheat a | 0.62 | 0.16 | 1.23 |
Maize a | 0.87 | 0.31 | 1.34 |
Soybean a | 1.63 | 0.39 | 1.27 |
Cotton b | 0.94 | 0.33 | 1.10 |
Peanut a | 1.66 | 0.34 | 1.19 |
Rapeseed a | 0.82 | 0.32 | 2.24 |
Crop | N | P2O5 | K2O |
---|---|---|---|
Rice | 47.19 | 66.69 | 84.91 |
Wheat | 50.11 | 62.01 | 89.05 |
Maize | 54.04 | 73.03 | 84.43 |
Soybean | 52.06 | 54.41 | 84.30 |
Cotton | 45.11 | 31.85 | 96.33 |
Peanut | 51.61 | 66.50 | 85.82 |
Rapeseed | 52.65 | 66.31 | 82.18 |
Crop | Sown Area (10 3 ha) | Optimal Nutrient Rate (kg ha−1) [21] | Optimal Fertilizer-Application Rate (Tg) | ||||
---|---|---|---|---|---|---|---|
N | P2O5 | K2O | N | P2O5 | K2O | ||
Rice | 30,492.89 | 180.2 | 67.9 | 109.9 | 5.49 | 2.07 | 3.35 |
Wheat | 23,379.99 | 162.9 | 79.4 | 86.5 | 3.81 | 1.86 | 2.02 |
Maize | 41,251.71 | 213.77 | 83 | 103.1 | 8.82 | 3.42 | 4.25 |
Soybean | 14,894.32 | 75.5 | 74 | 59.9 | 1.12 | 1.10 | 0.89 |
Cotton | 3101.31 | 243.3 | 93.8 | 103.5 | 0.75 | 0.29 | 0.32 |
Peanut | 4521.91 | 124.6 | 94.7 | 118.5 | 0.56 | 0.43 | 0.54 |
Rapeseed | 6541.09 | 175.4 | 88.7 | 98.2 | 1.15 | 0.58 | 0.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, J.; Gao, C.; Afi Seglah, P.; Xie, J.; Zhao, L.; Bi, Y.; Wang, Y. Analysis of the Available Straw Nutrient Resources and Substitution of Chemical Fertilizers with Straw Returned Directly to the Field in China. Agriculture 2023, 13, 1187. https://doi.org/10.3390/agriculture13061187
Shao J, Gao C, Afi Seglah P, Xie J, Zhao L, Bi Y, Wang Y. Analysis of the Available Straw Nutrient Resources and Substitution of Chemical Fertilizers with Straw Returned Directly to the Field in China. Agriculture. 2023; 13(6):1187. https://doi.org/10.3390/agriculture13061187
Chicago/Turabian StyleShao, Jingmiao, Chunyu Gao, Patience Afi Seglah, Jie Xie, Li Zhao, Yuyun Bi, and Yajing Wang. 2023. "Analysis of the Available Straw Nutrient Resources and Substitution of Chemical Fertilizers with Straw Returned Directly to the Field in China" Agriculture 13, no. 6: 1187. https://doi.org/10.3390/agriculture13061187
APA StyleShao, J., Gao, C., Afi Seglah, P., Xie, J., Zhao, L., Bi, Y., & Wang, Y. (2023). Analysis of the Available Straw Nutrient Resources and Substitution of Chemical Fertilizers with Straw Returned Directly to the Field in China. Agriculture, 13(6), 1187. https://doi.org/10.3390/agriculture13061187