A Comparative Study on the Characteristics of Seeds and Phytomass of New High-Potential Fodder and Energy Crops
Abstract
:1. Introduction
2. Materials and Methods
- (a)
- Asteraceae (sunflower Helianthus annuus L. local variety “Ana”—control crop; cup plant Silphium perfoliatum L. local variety “Vital”; artichoke thistle Cynara cardunculus L. introduced taxa);
- (b)
- Fabaceae (soybean Glycine max L. Merr. local variety ‘Clavera’; and alfalfa Medicago sativa L. variety “Cezara”—control traditional crops; fodder galega Galega orientalis Lam. local variety “Sofia”; sand sainfoin Onobrychis arenaria (Kit.) DC local ecotype);
- (c)
- Hydrophylaceae (phacelia Phacelia tanacetifolia Benth local variety ‘Melifera’);
- (d)
- Malvaceae (curly mallow Malva crispa L. introduced taxa; Virginia mallow Sida hermaphrodita (L.) Rusby losal local variety ‘Energo’);
- (e)
- Poaceae (oat Avena sativa L., variety “Sorin”, common wheat Triticum aestivium L., local variety “Moldova 614”—control crops; the perennial sorghum Sorghum almum Parodi, local variety “Argentina”; pearl millet Pennisetum glaucum [L.] R.Br. introduced taxa).
2.1. Measurement of Physical Properties of Seeds
- -
- geometric mean diameterDg = (LWT)1/3, [mm],
- -
- sphericityS = (Dg/L) × 100, [%],
2.2. Evaluation of Biochemical Composition and Fodder Value, and Biochemical Biomethane Potential of Fresh Mass from Studied Plant Species
3. Results and Discussion
3.1. Physical Properties of Traditional and New Crops Seeds
- (a)
- Helianthus annuus seeds, the angle of repose α = 32.9° (general method) and α = 33.2° (local method); angle of static friction on steel α1 = 29.3°, on wood—α1 = 31.3°, on enamelled surface α1 = 25.2°;
- (b)
- Cynara cardunculus seeds, the angle of repose α = 28.2° (general method) and α = 29.0° (local method); angle of static friction on steel α1 = 27.7°, on wood α1 = 30.6°, on enamelled surface α1 = 26.3°;
- (c)
- Silphium perfoliatum seeds, the angle of repose α = 29.4° (general method) and α = 31.1° (local method); angle of static friction on steel α1 = 27.8°, on wood—α1 = 29.1°, on enamelled surface α1 = 26.3°. The higher values of the α angle in Helianthus annuus seeds are due to the micro-coarseness of the capsule surface, which increases the coefficient of friction between the seeds on the one hand and between the seeds and the inclined surface material on the other hand. Therefore, Helianthus annuus seeds showed values of the angle of repose α higher by 4.2–4.7° compared to Cynara cordunculus seeds, which have a smooth coat. The angle of static friction α1 is also higher in Helianthus annuus seeds (Table 2). Silphium perfoliatum seeds with a smooth coat have a friability between Cynara cardunculus and Helianthus annuus seeds.
3.2. Biochemical Composition and Fodder Value of Fresh Mass, and Biochemical Biomethane Potential of Fresh Mass Substrates from Studied Plant Species
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Strategy the European Environment Agency EEA–Eionet 2021–2030; Publications Office of the European Union: Luxembourg, 2021; Available online: https://www.eea.europa.eu/ro/publications/strategia-aem2013eionet-202120132030 (accessed on 22 March 2023).
- Plant Genetic Resources Strategy for Europe. European Cooperative Programme for Plant Genetic Resources; Plant Genetic Resources Strategy for Europe: Rome, Italy, 2021; Available online: https://www.ecpgr.cgiar.org/resources/ecpgrpublications/publication/plant-genetic-resourcesstrategy-for-europe-2021 (accessed on 15 January 2023).
- The EU Protein Deficit: What Solution for a Long-Standing Problem? European Parliament Resolution of 8 March on the EU Protein Deficit. 2011. Available online: https://op.europa.eu/en/publication-detail/-/publication/146f1b4a-c767-11e1-b84a-01aa75ed71a1/language-en (accessed on 15 January 2023).
- European Parliament resolution of 17 April on a European Strategy for the Promotion of Protein Crops, 2018; Encouraging the Production of protein And Leguminous Plants in the European Agriculture Sector. 2018. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52018IP0095 (accessed on 15 January 2023).
- Scholz, V.; Kern, J.; Kaulfuß, P. Environmental Effects of Energy Crop Cultivation—Results of a Long-term Field Trial. Agr. Res. 2010, 8, 445–452. [Google Scholar]
- Cajarville, C.; González, J.; Repetto, J.L.; Rodríguez, C.A.; Martinez, A.A. Nutritive Value of Green Forage and Crop By-Products of Cynara cardunculus. Ann. Zootech. 1999, 48, 353–365. [Google Scholar] [CrossRef]
- Timofeev, N.P. Vegetable Protein Regulation its Level. 2003. Available online: https://leuzea.ru/sciens/181-timofeev_vegetable_protein_regulation_its_level.pdf (accessed on 15 January 2023). (In Russian).
- Avetisyan, A.T. Adaptability of the Non- Traditional, Rare Forage Crops in the Krasnoyarsk Region Agricultural Part. Bull. KrasGAU 2011, 3, 54–58. [Google Scholar]
- Żarczyński, P.; Sienkiewicz, S.; Wierzbowska, J.; Krzebietke, S. Fodder Galega—A Versatile Plant. Agronomy 2021, 11, 1797. [Google Scholar] [CrossRef]
- Haag, N.L.; Nägele, H.J.; Reiss, K.; Biertümpfel, A.; Oechsner, H. Methane Formation Potential of Cup Plant (Silphium perfoliatum). Biomass Bioenergy 2015, 75, 126–133. [Google Scholar] [CrossRef]
- Frölich, W.; Brodmann, R.; Metzler, T. The Cup Plant (Silphium perfoliatum L.)—A Story of Success from Agricultural Practice. J. Kult. 2016, 68, 351–355. [Google Scholar] [CrossRef]
- Krička, T.; Matin, A.; Bilandžija, N.; Jurišić, V.; Antonović, A.; Voća, N.; Grubor, M. Biomass Valorisation of Arundo donax L., Miscanthus giganteus and Sida hermaphrodita for Biofuel Production. Int. Agrophys. 2017, 31, 575–581. [Google Scholar] [CrossRef]
- Emmerling, C. Soil Quality through the Cultivation of Perennial Bioenergy Crops by Example of Silphium perfoliatum—An Innovative Agroecosystem in Future. J. Kult. 2016, 68, 399–406. [Google Scholar] [CrossRef]
- Prelac, M.; Bilandžija, N.; Zgorelec, Ž. The Phytoremediation Potential of Heavy Metals from Soil Using Poaceae Energy Crops: A review. J. Cent. Eur. Agric. 2016, 17, 901–916. [Google Scholar] [CrossRef]
- Nabel, M.; Schrey, S.D.; Poorter, H.; Koller, R.; Jablonowski, N.D. Effects of Digestate Fertilization on Sida hermaphrodita: Boosting Biomass Yields on Marginal Soils by Increasing Soil Fertility. Biomass Bioenergy 2017, 107, 207–213. [Google Scholar] [CrossRef]
- Mueller, A.L.; Biertümpfel, A.; Friedritz, L.; Power, E.F.; Wright, G.A.; Dauber, J. Floral Resources Provided by the New Energy Crop, Silphium perfoliatum L. (Asteraceae). J. Apic. Res. 2020, 59, 232–245. [Google Scholar] [CrossRef]
- Sliz, M.; Wilk, M. A Comprehensive Investigation of Hydrothermal Carbonization: Energy Potential of Hydrochar Derived from Virginia mallow. Renew. Energy 2020, 156, 942–950. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). The State of Food and Agriculture: Climate Change, Agriculture and Food Security Food and Agriculture Organization of the United Nations (FAO); FAO: Rome, Italy, 2016; p. 194. Available online: http://www.fao.org/3/a-i6030e.pdf (accessed on 20 January 2023).
- Ene, T.A.; Mocanu, V. Production, Conditioning and Storage of Seeds of Perennial Grassland Grasses and Legumes—Technologies, Equipment and Facilities; ©Editura Ion Ionescu de la Brad: Iaşi/Brașov, Romania, 2016; p. 116. Available online: http://www.madr.ro/attachments/article/224/ADER-1112-ghid.pdf (accessed on 20 January 2023). (In Romanian)
- Jasinskas, A.; Šarauskis, E.; Domeika, R. Technological Evaluation of Non-Traditional Energy Plant Cultivation and Utilization for Energy Purposes in Lithuania. In Proceedings of the International Conference of Agricultural Engineering (AgEng), Zurich, Switzerland, 6–10 July 2014. [Google Scholar]
- Von Gehren, P.; Gansberger, M.; Mayr, J.; Liebhard, P. The Effect of Sowing Date and Seed Pretreatments on Establishment of the Energy Plant Silphium perfoliatum by Sowing. Seed Sci. Technol. 2016, 44, 1–10. [Google Scholar] [CrossRef]
- Altuntas, E.; Karadag, Y. Some Physical and Mechanical Properties of Sainfoin (Onobrychis sativa Lam.), Grasspea (Lathyrus sativus L.) and Bitter Vetch (Vicia ervilia (L.) Willd.) seeds. J. Appl. Sci. 2006, 6, 1373–1379. [Google Scholar] [CrossRef]
- Schäfer, A.; Damerow, L.; Schulze Lammers, P. Determination of the seed geometry of cup plant as requirement for precision seeding. Landtechnik 2017, 72, 122–128. [Google Scholar]
- Kaliniewicz, Z.; Markowski, P.; Anders, A.; Jadwisienczak, K. Frictional Properties of Selected Seeds. Tech. Sci. 2015, 18, 85–101. [Google Scholar]
- Krzaczek, P.; Szyszlak, J.; Zarajczyk, J. Assessment of the influence of selected operating parameters of S071/B KRUK seeder on seeding Sida hermaphrodita Rusby seeds. Int. Agrophys. 2006, 20, 297–300. [Google Scholar]
- Kowalczuk, J.; Zarajczyk, J.; Leszczyński, N.; Węgrzyn, A.; Niedziółka, I.; Szymanek, M.; Markowski, P. Comparison of the Quality of Seeding the Virginia Fanpetals Seeds by S071 Kruk Seeder in Laboratory and Field Conditions. TEKA-Comm. Mot. Energetics Agric. 2014, 14, 47–50. [Google Scholar]
- Jain, R.K.; Bal, S. Properties of Pearl Millet. J. Agric. Eng. Res. 1997, 66, 85–91. [Google Scholar] [CrossRef]
- Cumplido-Marin, L.; Graves, A.R.; Burgess, P.J.; Morhart, C.; Paris, P.; Jablonowski, N.D.; Facciotto, G.; Bury, M.; Martens, R.; Nahm, M. Two Novel Energy Crops: Sida hermaphrodita (L.) Rusby and Silphium perfoliatum L.—State of Knowledge. Agronomy 2020, 10, 67. [Google Scholar] [CrossRef]
- Peni, D.; Stolarski, M.J.; Bordiean, A.; Krzyżaniak, M.; Dębowski, M. Silphium perfoliatum—A Herbaceous Crop with Increased Interest in Recent Years for Multi-Purpose Use. Agriculture 2020, 10, 640. [Google Scholar] [CrossRef]
- Puia, I.; Szabo, A.T. Culture experimentale d’une nouvelle espece fourragere- Silphium perfoliatum- dans le Jardin agrobotanquie de Cluj-Napoca. Notulae Botanicae Horti Agrobotanici 1985, 15, 15–20. [Google Scholar]
- Rakhmetov, D.B. Genetic resources of plant species for energy use introduced in Ukraine. Plant Introd. 2007, 34, 3–9. [Google Scholar]
- Bolohan, C.; Marin, D.I.; Mihalache, M.; Ilie, L.; Oprea, A.C. Research on Cynara cardunculus L. species under the condition of Southeastern Romania area. Sci. Pap. Ser. A Agron. 2013, 56, 429–432. [Google Scholar]
- Roman, G.V.; Ion, V.; Epure, L.I.; Băşa, A.G. Biomass Alternative Energy Source; Biomasa Sursă Alternativă de Energie Universitară Publishing House: București, Romania, 2016; p. 432. (In Romanian) [Google Scholar]
- Kurylo, V.L.; Rakhmetov, D.B.; Kulyk, M.I. Biological features and potential of yield of energy crops of the thin-skinned family in the conditions of Ukraine. Bull. Poltava State Agrar. Acad. 2018, 1, 11–17. [Google Scholar]
- Rakhmetov, D.B.; Vergun, O.M.; Stadnichuk, N.O.; Shymanska, O.V.; Rakhmetova, S.O.; Fishchenko, V.V. Biochemical study of plant raw material of Silphium L. spp. in M.M. Gryshko National Botanical Garden of the NAS of Ukraine. Plant Introd. 2019, 83, 80–86. [Google Scholar] [CrossRef]
- Rakhmetov, D.B.; Shymanska, O.V.; Bondarchuk, O.P.; Vergun, O.M.; Korablova, O.A.; Rakhmetova, S.O.; Fishchenko, V.V. Productivity of plant varieties of species of the genus Galega L. in the Right-Bank Forest-Steppe of Ukraine. Plant Var. Stud. Prot. 2021, 17, 274–281. [Google Scholar] [CrossRef]
- The Official Bulletin of Intellectual Property (BOPI) Republic of Moldova. September 2016. Available online: http://agepi.gov.md/ro/bopi/9-2016 (accessed on 20 January 2023).
- The Official Bulletin of Intellectual Property (BOPI) Republic of Moldova. June 2019. Available online: http://www.agepi.md/ro/bopi/6-2019 (accessed on 20 January 2023).
- The Official Bulletin of Intellectual Property Republic of Moldova (BOPI). August, 2022. Available online: https://www.agepi.gov.md/sites/default/files/bopi/BOPI_8_2022.pdf#page=79 (accessed on 20 January 2023).
- Catalog of Plant Varieties for Year 2023 Republic of Moldova. Available online: https://cstsp.md/uploads/files/Registrul_2023_Tipar_Gray.pdf (accessed on 20 January 2023).
- Teleuţă, A.; Ţîţei, V. Mobilization, acclimatization and use of fodder and energy crops. J. Bot. 2016, 1, 112–120. [Google Scholar]
- Ţîţei, V.; Roşca, I. Good Practices for the Use of Degraded Lands in the Cultivation of Crops with ENERGY Biomass Potential; Unitatea Consolidată pentru Implementarea Programelor IFAD: Chişinău, Moldavia, 2021; p. 80. Available online: https://www.ucipifad.md/wpcontent/uploads/2018/12/Bunele-practici-de-utilizare-aterenurilor-degradate-%C3%AEn-cultivarea-culturilorcu-poten%C5%A3ial-de-biomas%C4%83-energetic%C4%83.pdf (accessed on 20 January 2023).
- Ţîţei, V. The mobilization of energy crop resources in Moldova. Rom. Agric. Res. 2023, 40, 1–10. [Google Scholar]
- Mohsenin, N.N. Physical Properties of Plant and Animal Materials; Gordon and Breach Press: New York, NY, USA, 1986. [Google Scholar]
- Mohsenin, N.N. Physical Properties of Plant and Animal Materials: Structure, Physical Characteristics and Mechanical Properties; (e-Book); New York Imprint Routledge: New York, NY, USA, 2020; p. 758. [Google Scholar] [CrossRef]
- Gheorghiev, N.; Starodub, V. Seed Study of Field Crops; Print-Caro: Chișinău, Moldavia, 2010; p. 168. (In Romanian) [Google Scholar]
- Cerempei, V.; Țîței, V.; Guțu, A.; Cârlig, N.; Gadibadi, M. Some Physical and Technological Properties of Seeds of Non-traditional Plant Species in the Republic of Moldova. Sci. Papers. Ser. A Agron. 2022, 65, 643–654. [Google Scholar]
- Badger, C.M.; Bogue, M.J.; Stewart, D.J. Biogas Production from Crops and Organic Wastes. N. Z. J. Sci. 1979, 22, 11–20. [Google Scholar]
- Dandikas, V.; Heuwinkel, H.; Lichti, F.; Drewes, J.E.; Koch, K. Correlation Between Biogas Yield and Chemical Composition of Grassland Plant Species. Energy Fuels 2015, 29, 7221–7229. [Google Scholar] [CrossRef]
- Duca, M.; Glijin, A. The Broomrape Effect on some physical and Mechanical Properties of Sunflower Seeds. Sci. Ann. Alexandru Ioan Cuza Univ. Iași Sect. II Veg. Biol. 2013, 59, 75–83. [Google Scholar]
- Babić, L.J.; Radojčin, M.; Pavkov, I.; Babić, M. The Physical and Compressive Load Properties of Sunflower (Helianthus annuus L.). Fruit Helia 2012, 35, 95–112. [Google Scholar] [CrossRef]
- Höller, M.G. Phenotypic Analysis of Different Silphium perfoliatum L. Accessions and Evaluation as a Renewable Resource for Material Use. Master’s Thesis, Bonn University, Bonn, Germany, 2022; p. 131. Available online: https://bonndoc.ulb.uni-bonn.de/xmlui/bitstream/handle/20.500.11811/10441/6868.pdf?sequence=2&isAllowed=y (accessed on 20 January 2023).
- Chhabra, N.; Kaur, A. Studies on Physical and Engineering Characteristics of Maize, Pearl Millet and Soybean. J. Pharma Phytoche. 2017, 6, 1–5. [Google Scholar]
- Kibar, H.; Öztürk, T. Physical and Mechanical Properties of Soybean. Int. Agrophys. 2008, 22, 239–244. [Google Scholar]
- Togo, J.M.; Wang, D.; Ma, W.; He, C. Effects of Moisture Content on Selected Physical and Mechanical Properties of Alfalfa Seeds. J. Biol. Agric. Healthc. 2018, 8, 8–18. [Google Scholar]
- Kenghe, R.N.; Jadhav, M.S.; Nimbalkar, C.A. Physical Properties of Sorghum (Sorghum bicolor) Grains as a Function of Moisture Content. IJESRT Int. J. Eng. Sci. Res. Technol. 2015, 4, 496–504. [Google Scholar]
- Prakash, O.; Jha, S.K.; Kar, A.; Sinha, J.P.; Satyavathi, C.T.; Iquebal, M.A. Physical Properties of Pearl Millet Grain Pantnagar. J. Res. 2019, 17, 129–137. [Google Scholar]
- Ojediran, J.O.; Adamu, M.A.; Jim-George, D.L. Some Physical Properties of Pearl millet (Pennisetum glaucum) Seeds as a Function of Moisture Content. Afr. J. Gen. Agric. 2010, 6, 39–46. [Google Scholar]
- Heuzé, V.; Tran, G.; Hassoun, P.; Lebas, F.; Feedipedia. Sunflower Forage and Crop Residues. 2015. Available online: https://www.feedipedia.org/node/143 (accessed on 20 January 2023).
- Seiler, G.J.; Carr, M.E.; Bagby, M.O. Renewable Resources from Wild Sunflowers (Helianthus spp., Asteraceae). Econ. Bot. 1991, 45, 4–15. [Google Scholar] [CrossRef]
- Mello, R.; Nörnberg, J.; Restle, J.; Neumann, M.; Queiroz, A.; Costa, P.; Magalhães, A.; David, D. Sowing Dates Effects on the Phenology, Yield and Qualitative Traits of Sunflower Hybrids for Silage Making. Rev. Brasileira Zoot. 2006, 35, 672–682. [Google Scholar] [CrossRef]
- Trots, V.B.; Trots, N.M. Chemical Composition and Phytomass Food Value of Mixed Seeding of Silo Crops. Sel’skokhozyaistvennaya Biol. (Agric. Biol.) 2010, 6, 76–81. [Google Scholar]
- Kerckhoffs, L.H.; Shaw, S.; Trolove, S.N.; Astill, M.S.; Heubeck, S.; Renquist, R. Trials for Producing Biogas Feedstock Crops on Marginal Land in New Zealand. Agron. N. Z. 2011, 41, 109–124. [Google Scholar]
- Ferndndez, J.; Hidalgo, M.; del Monte, J.P.; Curt, M.D. Aprovechamiento del cardo (Cynara cardunculus L.) para la produccion de biomasa lignocelulosica, aceite y forraje verde. Inf. Tec. Econ. Agrar. Suppl. 1996, 17, 49–56. [Google Scholar]
- Romero, M.J.; Otal, J.; Lorenzo, I.; Pdrer, J.I. Utilizacion del cardo (Cynara cardunculus) como forraje de invierno en ganado ovino. Composicion quimica y digcstibilidad in vivo. Resultados preliminares. Inf. Tec. Econ. Agrar. Suppl. 1997, 18, 46–48. [Google Scholar]
- Han, K.; Albrecht, K.; Mertens, D.; Kim, D. Comparison of In Vitro Digestion Kinetics of Cup-Plant and Alfalfa. Anim. Biosci. 2000, 13, 641–644. [Google Scholar] [CrossRef]
- Ţiţei, V.; Cîrlig, N.; Guţu, A. Some Biological Peculiarities and Economic Value of the Cultivation of Cup Plant, Silphium perfoliatum L. Stud. Univ. Mold. (Real Nat. Sci. Ser.) 2020, 6, 79–82. [Google Scholar] [CrossRef]
- Gryazeva, T.V. Breeding of Alfalfa and Sainfoin in the Conditions of the Rostov Region. Ph.D. Thesis, Agricultural Sciences, Rostov, Russia, 2005. Available online: https://www.dissercat.com/content/selektsiya-lyutserny-i-espartseta-v-usloviyakh-rostovskoi-oblasti (accessed on 22 March 2023). (In Russian).
- Stavarache, M.; Samuil, C.; Popovici, C.; Tarcau, D.; Vintu, V. The Productivity and Quality of Alfalfa (Medicago sativa L.) in Romanian Forest Steppe. Not. Bot. Horti Agrobot. Cluj-Napoca 2015, 43, 179–185. [Google Scholar] [CrossRef]
- Heuzé, V.; Tran, G.; Boval, M.; Noblet, J.; Renaudeau, D.; Lessire, M.; Lebas, F. Alfalfa (Medicago sativa). Feedipedia. 2016. Available online: https://www.feedipedia.org/node/275 (accessed on 22 March 2023).
- Teleuţă, A.; Ţîţei, V. Economic Value of Some Leguminous Plant Species of the Collections from the Botanical Garden (Institute) of the Academy of Sciences of Moldova. J. Plant Dev. 2016, 23, 27–35. [Google Scholar]
- Coşman, S.; Ciopată, A.C.; Coşman, V.; Bahcivanji, M.; Ţîţei, V. Study on the Chemical Composition and Nutritional Value of the Galega orientalis Lam. and the Prospects of its Valorification in the Republic of Moldova. Sci. Pap. Ser. D Anim. Sci. 2017, 60, 75–80. Available online: http://animalsciencejournal.usamv.ro/pdf/2017/Art12.pdf (accessed on 22 March 2023).
- Meripõld, H.; Tamm, U.; Tamm, S.; Võsa, T.; Edesi, L. Fodder Galega (Galega orientalis Lam.) Grass Potential as a Forage and Bioenergy Crop. Agr. Research. 2017, 15, 1693–1699. [Google Scholar] [CrossRef]
- Undersander, D.; Jarek, K.; Anderson, T.; Schneider, N.; Milligan, L. A Guide to Making Soybean Silage. Online. Forage Grazinglands 2007, 5, 1–3. [Google Scholar] [CrossRef]
- Blount, A.R.; Wright, D.L.; Sprenkel, R.K.; Hewitt, T.D.; Myer, R.O. Forage Soybeans for Grazing, Hay, and Silage; University of Florida: Gainesville, FL, USA, 2013; Available online: https://edis.ifas.ufl.edu/publication/AG184 (accessed on 20 January 2023).
- Heuzé, V.; Tran, G.; Hassoun, P.; Lebas, F. Soybean Forage. Feedipedia 2016. Available online: https://www.feedipedia.org/node/294 (accessed on 20 January 2023).
- Peiretti, P.G.; Meineri, G.; Longato, E.; Tassone, S. Nutritive Value and Fatty Acid Content of Soybean Plant [Glycine max (L.) Merr.] during its Growth Cycle. Ital. J. Anim. Sci. 2018, 17, 347–352. [Google Scholar] [CrossRef]
- Tabacco, E.; Comino, L.; Revello-Chion, A.; Borreani, G. Fermentative Profile, Microbial and Chemical Characteristics and Aerobic Stability of Whole Crop Soybean Silage Affected by the Stage of Growth and Inoculation with Lactic Acid Bacteria. In Proceedings of the XVIII International Silage Conference, Bonn, Germany, 24–26 July 2018; pp. 180–181. [Google Scholar]
- Islam, I.; Adam, Z.; Islam, S. Soybean (Glycine max): Alternative Sources of Human Nutrition and Bioenergy for the 21st Century. Am. J. Food Sci. Technol. 2019, 7, 1–6. [Google Scholar] [CrossRef]
- Zanine, A.; Sene, O.; Ferreira, D.; Parente, H.; Parente, M.; Pinho, R.; Santos, E.; Nascimento, T.; Lima, A.G.; Perazzo, A.; et al. Fermentative Profile, Losses and Chemical Composition of Silage Soybean Genotypes Amended with Sugarcane Levels. Sci. Rep. 2020, 10, 21064. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Hussain, I.; Hamid, A.; Ahmad, B.; Ishaq, S.; Sabagh, A.E.; Barutçular, C.; Khan, R.D.; Imran, M. Soybean Herbage Yield, Nutritional Value and Profitability under Integrated Manures Management. Ann. Braz. Acad. Sci. 2021, 93, e20181384. [Google Scholar] [CrossRef] [PubMed]
- Ignatiev, S.A.; Gryazeva, T.V.; Ignatieva, N.G.; Chesnokov, I.M. Evaluation of Productivity and Fodder Value of Sainfoin New Varieties. Don Agrar. Sci. Bull. 2010, 4, 69–72. (In Russian) [Google Scholar]
- Pankov, D.M. Efficiency of Cultivation of Sainfoin Sandy in the Conditions of Forest-Steppe of the Altai. Forage Prod. 2012, 10, 34–36. (In Russian) [Google Scholar]
- Voloshin, V.A. Preliminary Results of Studies into Hungarian Sainfoin in Perm Territory. Sib. Her. Agric. Sci. 2015, 1, 49–55. (In Russian) [Google Scholar]
- Demydas, G.I.; Lykhosherst, E.S.; Burko, L.M. Content of Organic and Mineral Substances in Feed from Different Types of Sainfoin Depending on Fertilizing. Bull. Um. Natl. Univ. Hortic. 2019, 1, 54–58. (In Ukrainian) [Google Scholar] [CrossRef]
- Ţîţei, V. Some Agrobiological Peculiarities and Potential Uses of Glycyrrhiza glabra L. and Onobrychis arenaria (KIT.) DC. in the Republic of Moldova. Sci. Papers. Ser. Manag. Econ. Eng. Agr. Rural. Dev. 2021, 21, 593–598. Available online: http://managementjournal.usamv.ro/pdf/vol.21_4/volume_21_4_2021.pdf (accessed on 22 March 2023).
- Ates, E.; Coskuntuna, L.; Tekeli, A.S. Plant Growth Stage Effects on the Yield, Feeding Value and some Morphological Characters of the Fiddleneck (Phacelia tanacetifolia Benth.). Cuban J. Agric. Sci. 2010, 44, 425–428. [Google Scholar]
- Fuksa, P.; Hakl, J.; Brant, V. Energy Balance of Catch Crops Production. Zemdirb.-Agric. 2013, 100, 355–362. [Google Scholar] [CrossRef]
- Ates, E.; Tekeli, A.S.; Boynukara, B. Performance of Fodder Pea (Pisum arvense L.)—Fiddleneck (Phacelia tanacetifolia Benth.) Mixture under Different Nitrogen Doses. Romanian Agr. Res. 2014, 31, 213–218. Available online: https://www.incda-fundulea.ro/rar/nr31/rar31.26.pdf (accessed on 22 March 2023).
- Kalber, T.; Kreuzer, M.; Leiber, F. Milk Fatty Acid Composition of Dairy Cows Fed Green Whole-Plant Buckwheat, Phacelia or Chicory in Their Vegetative and Reproductive Stage. Anim. Feed. Sci. Technol. 2014, 193, 71–83. [Google Scholar] [CrossRef]
- Herrmann, C.; Idler, C.; Heiermann, M. Biogas Crops Grown in Energy Crop Rotations: Linking Chemical Composition and Methane Production Characteristics. Bioresour. Technol. 2016, 206, 23–35. [Google Scholar] [CrossRef]
- Mazăre, V.; Ţîţei, V.; Mazăre, R. The Productivity and Quality of the Biomass of Phacelia tanacetifolia and its Potential Application. In Proceedings of the International Conference on Life Sciences, Timisoara, Romania, 24–25 May 2018; Filodiritto Editore: Bologna, Italy; pp. 624–632. [Google Scholar]
- Yıldız, N. Herbal Characteristics and Yield Parameters of Organically Grown Phacelia tanacetifolia Bentham. Int. J. Agric. Nat. Sci. 2022, 15, 42–48. [Google Scholar]
- Rakhmetov, D.B. Biological Foundations of Introduction and Cultivation of New Sorts of Annual and Perennial Species of Malvaceae Family in Forest Steppe of Ukraine. Ph.D. Thesis, Ukrainian Agricultural Academy Kiev, Kyiv, Ukraine, 2001; p. 44. (In Ukrainian). [Google Scholar]
- Rakhmetov, D.; Rakhmetova, S. Annual Mallows- much more Protein and Green Mass than Clover or Soybeans. 2011. Available online: http://www.zerno-ua.com/journals/2011/aprel-2011-god/malvy-odnoletnie-belka-i-zelenoy-massy-gorazdo-bolshe-chem-u-klevera-ili-soi (accessed on 22 March 2023). (In Russian).
- Kazarin, V.F.; Kazarina, A.V.; Frolova, L.F.; Gutsalyuk, M.I.; Agliulina, L.K.; Abramenko, I.S.; Kinel. Recommendations for Cultivation of Mallva for Forage and Seeds in the Forest-Steppe of the Middle Volga Region. Volga Research Institute of Selection and Seed Production named after P.N. Konstantinov. 2009; 30p. Available online: http://www.pniiss.ru (accessed on 20 January 2023). (In Russian).
- Ţîţei, V.; Teleuţă, A. Introduction and Economical Value of Some Species of the Malvaceae Family in the Republic of Moldova. Agric. Life Agric. Conf. Proc. 2018, 1, 126–133. [Google Scholar] [CrossRef]
- Tarkowski, A.J.; Truchliński, A..J. Nutritional Value of Virginia Fanpetals (Sida hermaphrodita Rusby) Protein in Evaluation of Nitrogen Fertilization Effect on Environment. New Med. 2011, 15, 8–11. [Google Scholar]
- Fijalkowska, M.; Przemieniecki, S.W.; Kurowski, T.; Lipiński, K.; Nogalski, Z.; Purwin, C. Ensiling Suitability and Microbiological Quality of Virginia Fanpetals Biomass. Can. J. Anim. Sci. 2017, 97, 541–544. [Google Scholar] [CrossRef]
- Gadibadi, M.; Ţîţei, V.; Cerempei, V.; Guţu, A.; Doroftei, V.; Covalciuc, D.; Lîsîi, R.; Mazăre, V.; Armaş, A. Some Agro-Biological Features and Potential Uses of Virginia Mallow, Sida hermaphrodita in Moldova. Sci. Papers. Ser. A Agron. 2021, 64, 687–694. [Google Scholar]
- Heuzé, V.; Tran, G.; Boudon, A.; Lebas, F.; Feedipedia. Oat Forage. 2016. Available online: https://www.feedipedia.org/node/500 (accessed on 20 January 2023).
- Jat, H.; Kaushik, M.K.; Choudhary, J.L. Agronomic Evaluation of Oat (Avena sativa L.) for Growth, Yield and Quality with Varying Levels of Irrigation and Nitrogen. Ann. Plant Soil Res. 2017, 19, 385–388. [Google Scholar]
- Heuzé, V.; Tran, G.; Baumont, R.; Feedipedia. Wheat Forage. 2015. Available online: https://feedipedia.org/node/363 (accessed on 20 January 2023).
- Askel, E.J.; Neumann, M.; Horst, E.H.; Vigne, G.L.D.; Pontarolo, G.B.; Amaral, B.H.C.; Costa, L.; Sandini, I.E. Chemical Composition of Forage and Haylage of Winter Cereals in Guarapuava-PR. 2017. Available online: http://www.isfqcbrazil.com.br/proceedings/2017/chemical-evaluation-offorages-and-haylage-of-different-winter-cultivars-193.pdf (accessed on 20 January 2023).
- Teixeira, C.; Fontaneli, R. Chemical Bromatological Evaluation of Biomass for Silage of the Winter Cereals. J. Chem. Chem. Eng. 2017, 11. [Google Scholar] [CrossRef]
- Amador, A.; Boschini, C. Calidad nutricional de la planta de sorgo negro forrajero (Sorghum almun) para alimentación animal. Agron. Mesoam. 2000, 11, 79–84. [Google Scholar] [CrossRef]
- Lanyasunya, T.P.; Rong Wang, H.; Mukisira, E.A.; Abdulrazak, S.A.; Ayako, W.O. Influence of Manure and Inorganic Fertilizer on Yield and Quality of Vicia villosa Intercropped with Sorghum almum in Ol-joro-orok, Kenya. Livestock Research for Rural Development. 2006. Available online: http://www.lrrd.org/lrrd18/10/lany18141.htm (accessed on 20 January 2023).
- Gumel, I.A.; Baba, M.; Abdurrahaman, S.L.; Ibrahim, A.A.; Babangida, L.; Kiri, I.Z.; Adamu, A.U.; Babandi, B.; Usman, I. Effect of Plant Spacing on Dry Matter Yield and Proximate Composition of Irrigated Columbus Grass (Sorghum almum). Nigerian J. Animal Sci. Tech. 2020, 3, 53–59. [Google Scholar]
- Sheta, B.T.; Kalyanasundaram, N.K.; Patel, K.C. Quality Parameters and Plant Nutrient Ratios of Forage Pearl Millet as Influences by Nitrogen, Potassium and Sulphur Levels in Loamy Sand Soils of Anand. Asian J. Soil Sci. 2010, 5, 116–121. [Google Scholar]
- Babiker, S.; Khair, M.A.M.; Tahir, I.S.A.; Elhag, F.M.A. Forage Quality Variations among some Sudan Pearl Millet [Pennisetum glaucum (L.) R. Br] Collection. Annu. Res. Rev. Biol. 2015, 5, 293–298. [Google Scholar] [CrossRef]
- Costa, R.R.G.F.; Costa, K.A.P.; Souza, W.F.; Epifanio, P.S.; Santos, C.B.; Silva, J.T.; Oliveira, S.S. Production and Quality of Silages Pearl Millet and Paiaguas Palisadegrass in Monocropping and Intercropping in Different Forage Systems. Biosci. J. 2018, 34, 357–367. [Google Scholar] [CrossRef]
- Amon, T.; Amon, B.; Kryvoruchko, V.; Machmüller, A.; Hopfner-Sixt, K.; Bodiroza, V.; Hrbek, R.; Friedel., J.; Potsch, E.; Wagentristl, H.; et al. Methane Production through Anaerobic Digestion of Various Energy Crops Grown in Sustainable Crop Rotations. Biores. Tech. 2007, 98, 3204–3212. [Google Scholar] [CrossRef] [PubMed]
- Mursec, B.; Vindis, P.; Janzekovic, M.; Brus, M.; Cus, F. Analysis of Different Substrates for Processing into Biogas. J. Achiev. Mat. Manuf. Eng. 2009, 37, 652–659. [Google Scholar]
- Sternberg, K.; Erdmann, G.; Kirchmeyr, F.; Collins, D.; Hofmann, F.; Pieroni, C.; Schlienger, M.; Verney, M.; Kovacs, A.; Scholwin, F. Report on Current and Future Sustainable Biomass Supply for Biomethane Production. 2015. Available online: http://www.aebig.org/wp-content/uploads/2015/01/BIOSURF-D4.2.pdf (accessed on 20 January 2023).
- Schmidt, A.; Lemaigre, S.; Delfosse, P.; von Francken-Welz, H.; Emmerling, C. Biochemical Methane Potential (BMP) of Six Perennial Energy Crops Cultivated at Three Different Locations in W-Germany. Biomass Convers. Biorefinery 2018, 8, 873–888. [Google Scholar] [CrossRef]
- Von Cossel, M.; Pereira, L.A.; Lewandowski, I. Deciphering Substrate-Specific Methane Yields of Perennial Herbaceous Wild Plant Species. Agronomy 2021, 11, 451. [Google Scholar] [CrossRef]
- Pesce, G.R.; Negri, M.; Bacenetti, J.; Mauromicale, G. The Biomethane, Silage and Biomass Yield Obtainable from Three Accessions of Cynara cardunculus. Ind. Crops Prod. 2017, 103, 233–239. [Google Scholar] [CrossRef]
- Ferrero, F.; Dinuccio, E.; Rollé, L.; Tabacco, E.; Borreani, G. Biogas Production from Thistle (Cynara cardunculus L.) Silages. In Proceedings of the 4th International Conference on Anaerobic Digestion, Turin, Italy, 4–7 June2018; p. 36. [Google Scholar]
- Lehtomäki, A. Biogas Production from Energy Crops and Crop Residues (No. 163); University of Jyväskylä: Jyväskylä, Finland, 2006; Available online: https://jyx.jyu.fi/handle/123456789/13152 (accessed on 20 January 2023).
- Dubrovskis, V.; Plume, I.; Adamovics, A.; Auzins, V.; Straume, I. Galega biomass for biogas production. In Proceedings of 7th International Scientific Conference Engineering for Rural Development, Jelgava, Latvia, 29–30 May 2008; pp. 1691–3043. [Google Scholar]
- Morozova, I.; Oechsner, H.; Roik, M.; Hulsemann, B.; Lemmer, A. Assessment of Areal Methane Yields from Energy Crops in Ukraine, Best Practices. Appl. Sci. 2020, 10, 4431. [Google Scholar] [CrossRef]
- Molinuevo-Salces, B.; Ahring, B.K.; Uellendahl, H. Catch Crops as an Alternative Biomass Feedstock for Biogas Plants. In Proceedings of the International Anaerobic Digestion Symposium on Dry Fermentation, Substrate Treatment and Digestate Treatment within the BioGasWorld 2013, Berlin, Germany, 23–25 April 2013; pp. 92–98. [Google Scholar]
- Drazic, N.; Rakascan, N.; Radojevic, V.; Popovic, V.; Ignjatov, M.; Popovic, D.; Ikanovic, J.; Petkovic, Z. Cereals as Energy Sources in the Function of Circular Economy. Agric. For. 2021, 67, 7–18. [Google Scholar]
Name of the Species | Dimensional Parameters, mm | Geometric Parameters | Mass Parameters | |||||
---|---|---|---|---|---|---|---|---|
L | W | T | Criterion Kdp | Dg, mm | S, % | pv, kg m−3 | M1000, g | |
Asteraceae | ||||||||
Helianthus annuus | 9.20 ± 1.1 | 5.60 ± 0.3 | 4.20 ± 0.4 | 2.19/1.33/1 | 6.0 ± 0.51 | 65.2 | 445.0 ± 1.86 | 68.5 ± 1.10 |
Silphium perfoliatum | 11.05 ± 0.9 | 5.85 ± 0.4 | 1.30 ± 0.05 | 8.4/4.46/1 | 4.39 ± 0.26 | 39.8 | 230.1 ± 1.17 | 21.31 ± 0.06 |
Cynara cordunculus | 7.55 ± 0.9 | 3.45 ± 0.3 | 2.45 ± 0.18 | 3.11/1.42/1 | 3.99 ± 037 | 52.8 | 637.5 ± 1.43 | 48.89 ± 0.22 |
Fabaceae | ||||||||
Glycine max | 7.10 ± 0.25 | 5.40 ± 0.27 | 5.20 ± 0.25 | 1.36/1.04/1 | 5.83 ± 0.26 | 82.5 | 719.2 ± 2.44 | 147.2 ± 0.44 |
Medicago sativa | 2.15 ± 0.10 | 1.20 ± 0.06 | 1.05 ± 0.06 | 2.03/1.12/1 | 1.48 ± 0.07 | 68.2 | 818.7 ± 2.59 | 1.78 ± 0.03 |
Galega orientalis | 3.55 ± 0.4 | 1.90 ± 0.22 | 1.45 ± 0.07 | 2.47/1.31/1 | 2.13 ± 0.18 | 59.8 | 784.2 ± 3.77 | 6.27 ± 0.05 |
Onobrychis arenaria | 5.60 ± 0.3 | 3.95 ± 0.21 | 2.35 ± 0.15 | 2.41/1.7/1 | 3.73 ± 0.21 | 66.4 | 370.8 ± 2.76 | 14.63 ± 0.12 |
Hydrophylaceae | ||||||||
Phacelia tanacetifolia | 2.55 ± 0.21 | 1.50 ± 0.16 | 1.00 ± 0.13 | 2.51/1.45/1 | 1.57 ± 0.16 | 61.3 | 543.3 ± 2.93 | 1.53 ± 0.01 |
Malvaceae | ||||||||
Malva crispa | 2.10 ± 0.08 | 2.10 ± 0.08 | 1.45 ± 0.13 | 1.41/1.41/1 | 1.85 ± 0.09 | 88.9 | 428.9 ± 2.13 | 2.68 ± 0.09 |
Sida hermaphrodita | 2.20 ± 0.12 | 2.05 ± 0.08 | 1.45 ± 0.1 | 1.52/1.43/1 | 1.88 ± 0.1 | 85.1 | 704.6 ± 3.43 | 4.81 ± 0.12 |
Poaceae | ||||||||
Avena sativa | 9.60 ± 1.2 | 2.80 ± 0.4 | 2.00 ± 0.1 | 4.8/1.4/1 | 3.77 ± 0.36 | 39.3 | 381.0 ± 4.18 | 32.75 ± 1.48 |
Triticum aestivium | 6.40 ± 0.42 | 3.25 ± 0.3 | 3.00 ± 0.19 | 2.13/1.08/1 | 3.97 ± 0.29 | 62.0 | 772.2 ± 3.74 | 35.50 ± 1.63 |
Sorghum almum | 5.60 ± 0.15 | 2.80 ± 0.13 | 2.40 ± 0.09 | 2.33/1.16/1 | 3.34 ± 0.12 | 59.6 | 656.0 ± 3.89 | 6.99 ± 0.14 |
Pennisetum glaucum | 3.00 ± 0.12 | 2.25 ± 0.19 | 2.15 ± 0.16 | 1.39/1.05/1 | 2.43 ± 0.15 | 81.5 | 675.0 ± 1.89 | 5.47 ± 0.18 |
Name of the Species | The Angle of Repose α, Grade, Measurement Method | The Angle of Static Friction α1, | ||||
---|---|---|---|---|---|---|
General | Local | Average | Steel | Wood | Enamelled | |
Asteraceae | ||||||
Helianthus annuus | 32.9 ± 1.1 | 33.2 ± 1.8 | 33.1 | 29.3 ± 0.5 | 31.3 ± 0.6 | 25.2 ± 0.4 |
Silphium perfoliatum | 29.4 ± 1.5 | 31.1 ± 2.1 | 30.3 | 27.8 ± 0.3 | 29.1 ± 1.5 | 26.3 ± 0.8 |
Cynara cordunculus | 28.2 ± 1.3 | 29.0 ± 1.3 | 28.6 | 27.7 ± 0.8 | 30.6 ± 1.1 | 26.3 ± 0.8 |
Fabaceae | ||||||
Glycine max | 27 ± 0.6 | 25.5 ± 0.7 | 26.2 | 15.2 ± 1.1 | 16.3 ± 0.9 | 14.7 ± 0.3 |
Medicago sativa | 30.2 ± 0.3 | 31.5 ± 0.4 | 30.9 | 27.3 ± 0.4 | 33.6 ± 0.9 | 26.7 ± 0.2 |
Galega orientalis | 32.5 ± 0.9 | 33.4 ± 0.8 | 33.0 | 27.7 ± 0.3 | 29.8 ± 0.8 | 27.3 ± 0.4 |
Onobrychis arenaria | 28.4 ± 0.7 | 31.8 ± 1.3 | 30.1 | 23 ± 0.1 | 29 ± 0.7 | 22 ± 0.1 |
Hydrophylaceae | ||||||
Phacelia tanacetifolia | 37.5 ± 1.2 | 38.3 ± 1.5 | 37.9 | 37.5 ± 0.8 | 39.1 ± 1.1 | 36.9 ± 0.7 |
Malvaceae | ||||||
Malva crispa | 29.2 ± 0.4 | 31.9 ± 0.9 | 30.6 | 27.7 ± 0.4 | 34.7 ± 0.4 | 30.0 ± 0.5 |
Sida hermaphrodita | 30.7 ± 0.9 | 31.1 ± 0.9 | 30.9 | 26.6 ± 0.4 | 29.4 ± 0.8 | 25.7 ± 0.4 |
Poaceae | ||||||
Avena sativa | 29.2 ± 0.3 | 30.8 ± 0.6 | 30.0 | 25.2 ± 0.2 | 28.8 ± 1.2 | 23.7 ± 0.3 |
Triticum aestivium | 25 ± 0.2 | 27.7 ± 1.2 | 26.4 | 21.8 ± 0.4 | 22.7 ± 0.7 | 22.2 ± 0.4 |
Sorghum almum | 26.5 ± 0.9 | 27.2 ± 0.8 | 26.9 | 19.9 ± 0.3 | 24.2 ± 0.2 | 19.1 ± 0.3 |
Pennisetum glaucum | 26.9 ± 0.4 | 26.8 ± 0.7 | 26.9 | 18.7 ± 0.3 | 24.2 ± 0.7 | 21.0 ± 0.5 |
Variant | CP % | Ash % | CF % | ADF % | ADL % | NDF % | TSS % | Cel % | HC % | DDM % | RFV | DE MJ kg−1 | ME MJ kg−1 | NEl MJ kg−1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Helianthus annuus | 9.0 | 6.7 | 35.8 | 36.5 | 6.3 | 55.8 | 6.3 | 30.2 | 19.3 | 60.3 | 97 | 11.92 | 9.79 | 5.81 |
Silphium perfoliatum | 16.4 | 9.0 | 31.7 | 35.4 | 4.8 | 55.6 | 5.6 | 30.6 | 20.2 | 61.3 | 103 | 12.11 | 9.94 | 5.96 |
Cynara cordunculus | 15.4 | 7.6 | 30.0 | 32.6 | 5.4 | 55.5 | 8.0 | 27.2 | 22.9 | 63.5 | 106 | 12.50 | 10.26 | 6.28 |
Medicago sativa | 17.2 | 9.1 | 33.1 | 34.7 | 5.8 | 51.0 | 8.3 | 28.9 | 16.3 | 61.9 | 113 | 12.50 | 10.26 | 6.04 |
Galega orientalis | 23.4 | 10.5 | 26.6 | 28.8 | 3.6 | 47.7 | 10.0 | 25.2 | 18.9 | 66.0 | 128 | 12.95 | 10.63 | 6.76 |
Glycine max | 17.8 | 9.4 | 28.6 | 31.0 | 4.9 | 48.4 | 14.2 | 26.1 | 17.4 | 64.8 | 124 | 12.73 | 10.45 | 6.46 |
Onobrychis arenaria | 15.6 | 9.3 | 27.5 | 30.0 | 4.5 | 47.2 | 18.4 | 25.5 | 17.2 | 65.5 | 129 | 12.86 | 10.56 | 6.58 |
Phacelia tanacetifolia | 17.0 | 10.4 | 32.4 | 35.9 | 5.6 | 53.8 | 2.6 | 30.3 | 16.9 | 60.9 | 105 | 12.05 | 9.89 | 5.90 |
Malva crispa | 11.9 | 7.1 | 35.0 | 36.0 | 5.7 | 53.1 | 11.2 | 30.3 | 17.1 | 60.9 | 107 | 12.03 | 9.88 | 5.89 |
Sida hermaphrodita | 14.4 | 6.0 | 37.9 | 37.7 | 6.2 | 54.6 | 4.6 | 31.5 | 16.9 | 59.5 | 101 | 11.79 | 9.68 | 5.70 |
Avena sativa | 9.5 | 6.5 | 35.6 | 37.4 | 4.6 | 62.7 | 16.7 | 32.8 | 25.8 | 59.8 | 89 | 11.84 | 9.72 | 5.73 |
Triticum aestivium | 10.1 | 7.9 | 39.9 | 42.2 | 4.0 | 69.7 | 7.9 | 38.2 | 27.5 | 56.0 | 74 | 11.16 | 9.16 | 5.18 |
Sorghum almum | 10.6 | 9.6 | 39.2 | 42.1 | 4.5 | 67.0 | 11.0 | 37.6 | 24.9 | 56.1 | 78 | 11.18 | 9.18 | 5.19 |
Pennisetum glaucum | 11.6 | 7.5 | 36.1 | 37.0 | 3.3 | 60.6 | 16.6 | 33.7 | 23.6 | 60.0 | 92 | 11.88 | 9.75 | 5.78 |
Variant | OM % | CP % | ADF % | ADL % | NDF % | Cel % | HC % | C % | N % | C/N | Methane l kg−1 vs |
---|---|---|---|---|---|---|---|---|---|---|---|
Helianthus annuus | 95.3 | 9.0 | 36.5 | 6.3 | 55.8 | 30.2 | 19.3 | 51.8 | 1.44 | 36 | 297 |
Silphium perfoliatum | 91.0 | 16.4 | 35.4 | 4.8 | 55.6 | 30.6 | 20.2 | 50.6 | 2.62 | 19 | 337 |
Cynara cordunculus | 92.4 | 15.4 | 32.6 | 5.4 | 55.5 | 27.2 | 22.9 | 51.3 | 2.46 | 21 | 327 |
Medicago sativa | 90.9 | 17.2 | 34.7 | 5.8 | 51.0 | 28.9 | 16.3 | 50.5 | 2.75 | 18 | 321 |
Galega orientalis | 89.5 | 23.4 | 28.8 | 3.6 | 47.7 | 25.2 | 18.9 | 49.7 | 3.74 | 13 | 371 |
Glycine max | 90.6 | 17.8 | 31.0 | 4.9 | 48.4 | 26.1 | 17.4 | 50.3 | 2.85 | 18 | 337 |
Onobrychis arenaria | 90.7 | 15.6 | 30.0 | 4.5 | 47.2 | 25.5 | 17.2 | 50.4 | 2.50 | 20 | 339 |
Phacelia tanacetifolia | 89.6 | 17.0 | 35.9 | 5.6 | 53.8 | 30.3 | 16.9 | 49.9 | 2.72 | 18 | 324 |
Malva crispa | 92.9 | 11.9 | 36.0 | 5.7 | 53.1 | 30.3 | 17.1 | 51.6 | 1.90 | 27 | 312 |
Sida hermaphrodita | 94.0 | 14.4 | 37.7 | 6.2 | 54.6 | 31.5 | 16.9 | 52.2 | 2.30 | 23 | 309 |
Avena sativa | 93.5 | 9.5 | 37.4 | 4.6 | 62.7 | 32.8 | 25.8 | 51.9 | 1.52 | 34 | 329 |
Triticum aestivium | 92.1 | 10.1 | 42.2 | 4.0 | 69.7 | 38.2 | 27.5 | 51.2 | 1.62 | 32 | 341 |
Sorghum almum | 90.4 | 10.6 | 42.1 | 4.5 | 67.0 | 37.6 | 24.9 | 50.2 | 1.70 | 30 | 332 |
Pennisetum glaucum | 92.5 | 11.6 | 37.0 | 3.3 | 60.6 | 33.7 | 23.6 | 51.4 | 1.86 | 28 | 353 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerempei, V.; Țiței, V.; Vlăduț, V.; Moiceanu, G. A Comparative Study on the Characteristics of Seeds and Phytomass of New High-Potential Fodder and Energy Crops. Agriculture 2023, 13, 1112. https://doi.org/10.3390/agriculture13061112
Cerempei V, Țiței V, Vlăduț V, Moiceanu G. A Comparative Study on the Characteristics of Seeds and Phytomass of New High-Potential Fodder and Energy Crops. Agriculture. 2023; 13(6):1112. https://doi.org/10.3390/agriculture13061112
Chicago/Turabian StyleCerempei, Valerian, Victor Țiței, Valentin Vlăduț, and Georgiana Moiceanu. 2023. "A Comparative Study on the Characteristics of Seeds and Phytomass of New High-Potential Fodder and Energy Crops" Agriculture 13, no. 6: 1112. https://doi.org/10.3390/agriculture13061112
APA StyleCerempei, V., Țiței, V., Vlăduț, V., & Moiceanu, G. (2023). A Comparative Study on the Characteristics of Seeds and Phytomass of New High-Potential Fodder and Energy Crops. Agriculture, 13(6), 1112. https://doi.org/10.3390/agriculture13061112