Development of SSR Molecular Markers and Genetic Diversity Analysis of TPS Gene Family in Chimonanthus praecox
Abstract
:1. Introduction
2. Materials and Method
2.1. Plant Materials
2.2. Phylogeny Analysis of CpTPS Proteins
2.3. SSR Mining and Primer Design of CpTPS Genes
2.4. Amplification Verification and Evaluation of CpTPS SSR
2.5. Clustering and Genetic Structure Analysis
3. Result
3.1. Phylogenetic Analysis of CpTPS Proteins
3.2. Identification and Characteristic Analysis of SSR Loci of CpTPS Family
3.3. Chromosome Location of SSR Loci
3.4. Development of CpTPSMS Primers
3.5. Structural and Genetic Clustering Analysis
3.6. Analysis Principal Component and Molecular Variance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tholl, D. Biosynthesis and biological functions of terpenoids in plants. In Biotechnology of Isoprenoids; Springer International: Cham, Switzerland, 2015; pp. 63–106. [Google Scholar]
- Christianson, D.W. Structural and chemical biology of terpenoid cyclases. Chem. Rev. 2017, 117, 11570–11648. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Kuzuyama, T.; Komatsu, M.; Shin-Ya, K.; Omura, S.; Cane, D.E.; Ikeda, H. Terpene synthases are widely distributed in bacteria. Proc. Natl. Acad. Sci. USA 2015, 112, 857–862. [Google Scholar] [CrossRef] [PubMed]
- Gershenzon, J.; Dudareva, N. The function of terpene natural products in the natural world. Nat. Chem. Biol. 2007, 3, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Keeling, C.I.; Bohlmann, J. Diterpene resin acids in conifers. Phytochemistry 2006, 67, 2415–2423. [Google Scholar] [CrossRef] [PubMed]
- Schmelz, E.A.; Huffaker, A.; Sims, J.W.; Christensen, S.A.; Lu, X.; Okada, K.; Peters, R.J. Biosynthesis, elicitation and roles of monocot terpenoid phytoalexins. Plant J. 2014, 79, 659–678. [Google Scholar] [CrossRef]
- Vaughan, M.M.; Wang, Q.; Webster, F.X.; Kiemle, D.; Hong, Y.J.; Tantillo, D.J.; Coates, R.M.; Wray, A.T.; Askew, W.; O’donnell, C. Formation of the unusual semivolatile diterpene rhizathalene by the Arabidopsis class I terpene synthase TPS08 in the root stele is involved in defense against belowground herbivory. Plant Cell 2013, 25, 1108–1125. [Google Scholar] [CrossRef] [PubMed]
- Kato-Noguchi, H.; Peters, R.J. The role of momilactones in rice allelopathy. J. Chem. Ecol. 2013, 39, 175–185. [Google Scholar] [CrossRef]
- López, M.L.; Bonzani, N.E.; Zygadlo, J.A. Allelopathic potential of Tagetes minuta terpenes by a chemical, anatomical and phytotoxic approach. Biochem. Sys. Ecol. 2008, 36, 882–890. [Google Scholar] [CrossRef]
- Vaughan, M.M.; Christensen, S.; Schmelz, E.A.; Huffaker, A.; Mcauslane, H.J.; Alborn, H.T.; Romero, M.; Allen, L.H.; Teal, P.E. Accumulation of terpenoid phytoalexins in maize roots is associated with drought tolerance. Plant Cell Environ. 2015, 38, 2195–2207. [Google Scholar] [CrossRef]
- Agrawal, A.A.; Heil, M. Synthesizing specificity: Multiple approaches to understanding the attack and defense of plants. Trends Plant Sci. 2012, 17, 239–242. [Google Scholar] [CrossRef]
- Dudareva, N.; Pichersky, E. Biochemical and molecular genetic aspects of floral scents. Plant Physiol. 2000, 122, 627–634. [Google Scholar] [CrossRef] [PubMed]
- Heil, M.; Ton, J. Long-distance signalling in plant defence. Trends Plant Sci. 2008, 13, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Pichersky, E.; Gershenzon, J. The formation and function of plant volatiles: Perfumes for pollinator attraction and defense. Curr. Opin. Plant Biol. 2002, 5, 237–243. [Google Scholar] [CrossRef]
- Banerjee, A.; Hamberger, B. P450s controlling metabolic bifurcations in plant terpene specialized metabolism. Phytochem. Rev. 2018, 17, 81–111. [Google Scholar] [CrossRef]
- Bathe, U.; Tissier, A. Cytochrome P450 enzymes: A driving force of plant diterpene diversity. Phytochemistry 2019, 161, 149–162. [Google Scholar] [CrossRef]
- Karunanithi, P.S.; Zerbe, P. Terpene synthases as metabolic gatekeepers in the evolution of plant terpenoid chemical diversity. Front. Plant Sci. 2019, 10, 1166. [Google Scholar] [CrossRef] [PubMed]
- Peters, R.J. Two rings in them all: The labdane-related diterpenoids. Nat. Prod. Rep. 2010, 27, 1521–1530. [Google Scholar] [CrossRef] [PubMed]
- Zerbe, P.; Bohlmann, J. Plant diterpene synthases: Exploring modularity and metabolic diversity for bioengineering. Trends Biotechnol. 2015, 33, 419–428. [Google Scholar] [CrossRef]
- Trapp, S.C.; Croteau, R.B. Genomic organization of plant terpene synthases and molecular evolutionary implications. Genetics 2001, 158, 811–832. [Google Scholar] [CrossRef]
- Du, Y.Q.; Tian, X.L.; Gan, J.Z.; Pan, C.; Zhang, W.Q.; Xia, W. Essential oils extracted from different varieties of wintersweet (Chimonanthus praecox). J. Beijing For. Univ. 2013, 35, 81–85. [Google Scholar]
- Zhou, M.Q.; Xiang, L.; Chen, L.Q. Preliminary studies on the components of volatile floral flavor and flower pigments of Chimonanthus praecox. J. Beijing For. Univ. 2007, 29, 22–25. [Google Scholar]
- Tian, J.; Ma, Z.; Zhao, K.; Zhang, J.; Xiang, L.; Chen, L. Transcriptomic and proteomic approaches to explore the differences in monoterpene and benzenoid biosynthesis between scented and unscented genotypes of wintersweet. Physiol. Plant. 2019, 166, 478–493. [Google Scholar] [CrossRef] [PubMed]
- Shang, J.; Tian, J.; Cheng, H.; Yan, Q.; Li, L.; Jamal, A.; Xu, Z.; Xiang, L.; Saski, C.A.; Jin, S.; et al. The chromosome-level wintersweet (Chimonanthus praecox) genome provides insights into floral scent biosynthesis and flowering in winter. Genome Biol. 2020, 21, 200. [Google Scholar] [CrossRef] [PubMed]
- Tian, J. Analysis of Floral Volatile Biosynthetic Pathways and Functional Characterization of Mono-TPSs Genes from Chimonanthus praecox. Ph.D. Thesis, Huazhong Agricultural University, Wuhan, China, 2019. [Google Scholar]
- Varshney, R.K.; Chabane, K.; Hendre, P.S.; Aggarwal, R.K.; Graner, A. Comparative assessment of EST-SSR, EST-SNP and AFLP markers for evaluation of genetic diversity and conservation of genetic resources using wild, cultivated and elite barleys. Plant Sci. 2007, 173, 638–649. [Google Scholar] [CrossRef]
- Russell, J.; Fuller, J.; Macaulay, M.; Hatz, B.; Jahoor, A.; Powell, W.; Waugh, R. Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs. Theor. Appl. Genet. 1997, 95, 714–722. [Google Scholar] [CrossRef]
- Li, X.; Zhou, M.Q.; Zhao, K.G.; Chen, L.Q. Genetic diversity and differentiation of Chimonanthus nitens complex populations. J. Beijing For. Univ. 2012, 136, 111–117. [Google Scholar]
- Chen, D.W.; Chen, L.Q. The first intraspecific genetic linkage maps of wintersweet [Chimonanthus praecox (L.) Link] based on AFLP and ISSR markers. Sci. Hortic. 2010, 124, 88–94. [Google Scholar] [CrossRef]
- Li, X.; Yang, N.; Zhao, K.G.; Chen, Y.X.; Tang, R.J.; Chen, L.Q. Development and primer selection of EST-SSR molecular markers based on transcriptome sequencing of Chimonanthus praecox. J. Beijing For. Univ. 2013, 35, 25–32. [Google Scholar]
- Zhao, K.G.; Zhou, M.Q.; Chen, L.Q.; Zhang, D.; Robert, G.W. Genetic diversity and discrimination of Chimonanthus praecox (L.) link germplasm using ISSR and RAPD markers. HortScience 2007, 42, 1144–1148. [Google Scholar] [CrossRef]
- Zhou, M.Q.; Chen, L.Q.; Ruan, R. Genetic diversity of Chimonanthus nitens Oliv. complex revealed using inter-simple sequence repeat markers. Sci. Hortic. 2012, 136, 38–42. [Google Scholar] [CrossRef]
- Ali, M.; Hussain, R.M.; Rehman, N.U.; She, G.; Li, P.; Wan, X.; Guo, L.; Zhao, J. De novo transcriptome sequencing and metabolite profiling analyses reveal the complex metabolic genes involved in the terpenoid biosynthesis in Blue Anise Sage (Salvia guaranitica L.). DNA Res. 2018, 25, 597–617. [Google Scholar] [CrossRef] [PubMed]
- Espley, R.V.; Brendolise, C.; Chagne, D.; Kutty-Amma, S.; Green, S.; Volz, R.; Putterill, J.; Schouten, H.J.; Gardiner, S.E.; Hellens, R.P. Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples. Plant Cell 2009, 21, 168–183. [Google Scholar] [CrossRef] [PubMed]
- Sharma, H.; Bhandawat, A.; Kumar, P.; Rahim, M.S.; Parveen, A.; Kumar, P.; Madhawan, A.; Rishi, V.; Roy, J. Development and characterization of bZIP transcription factor based SSRs in wheat. Gene 2020, 756, 144912. [Google Scholar] [CrossRef] [PubMed]
- Yang, N. Functional Characterization of Anthocyanin Synthase CpANS1 and Transcription Factor CpMYB2 in Chimonanthus praecox Tepals. Ph.D. Thesis, Huazhong Agricultural University, Wuhan, China, 2019. [Google Scholar]
- Lebedev, V.G.; Subbotina, N.M.; Maluchenko, O.P.; Lebedeva, T.N.; Krutovsky, K.V.; Shestibratov, K.A.G. Transferability and polymorphism of SSR markers located in flavonoid pathway genes in Fragaria and Rubus species. Genes 2019, 11, 11. [Google Scholar] [CrossRef] [PubMed]
- Doyle, J.J.; Doyle, J.L. Isolation of Plant DNA from Fresh Tissue; Focus: San Francisco, CA, USA, 1990; Volume12, pp. 13–15. [Google Scholar]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef]
- Beier, S.; Thiel, T.; Münch, T.; Scholz, U.; Mascher, M. MISA-web: A web server for microsatellite prediction. Bioinformatics 2017, 33, 2583–2585. [Google Scholar] [CrossRef]
- Yeh, F.C. POPGENE, version 1.3.1. Microsoft Window-Bases Freeware for Population Genetic Analysis. University of Alberta: Edmonton, AB, Canada, 1999.
- Hubisz, M.J.; Falush, D.; Stephens, M.; Pritchard, J.K. Inferring weak population structure with the assistance of sample group information. Mol. Ecol. Resour. 2009, 9, 1322–1332. [Google Scholar] [CrossRef]
- Earl, D.A.; Vonholdt, B.M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [PubMed]
- Rohlf, F. NTSYSpc: Numerical Taxonomy System, version 2.1; Exeter Publishing, Ltd.: Setauket, NY, USA, 2002.
- Smouse RP, P.; Peakall, R. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar]
- Chen, F.; Tholl, D.; Bohlmann, J.; Pichersky, E. The family of terpene synthases in plants: A mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J. 2011, 66, 212–229. [Google Scholar] [CrossRef]
- Slatkin, M. Gene flow and the geographic structure of natural populations. Science 1987, 236, 787–792. [Google Scholar] [CrossRef]
- Li, J.J.; Hu, H.; Mao, J.; Yu, L.; Stoopen, G.; Wang, M.; Mumm, R.; De Ruijter, N.C.; Dicke, M.; Jongsma, M.A. Defense of pyrethrum flowers: Repelling herbivores and recruiting carnivores by producing aphid alarm pheromone. New Phytol. 2019, 223, 1607–1620. [Google Scholar] [CrossRef]
- Huang, M.; Sanchez-Moreiras, A.M.; Abel, C.; Sohrabi, R.; Lee, S.; Gershenzon, J.; Tholl, D. The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (E)-β-caryophyllene, is a defense against a bacterial pathogen. New Phytol. 2012, 193, 997–1008. [Google Scholar] [CrossRef]
- Huang, Y.H.; Zhang, C.; Zhou, L.H.; Zhao, H.B. Development and primer screening of SSR markers based on transcriptome sequences in Sinocalycanthus chinensis. J. Zhejiang Agric. For. Univ. 2017, 34, 589–596. [Google Scholar]
- Wu, J.; Huang, Y.H.; Dong, B.; Zhang, C.; Fu, J.X.; Zhou, L.H.; Zhao, H.B. Suitability test of SSR primer of Sinocalycanthus chinensis and its application in genetic diversity. J. Nanjing For. Univ. Nat. Sci. Ed. 2018, 42, 58–66. [Google Scholar]
- Bandelj, D.; Jakše, J.; Javornik, B. Assessment of genetic variability of olive varieties by microsatellite and AFLP markers. Euphytica 2004, 136, 93–102. [Google Scholar] [CrossRef]
- Jiang, Y.M.; Wang, J.F.; Liu, Y.X.; Zhang, Z.B.; Cao, G.P.; Lu, S.B.; Zhu, D. Genetic patterns investigation of wild Chimonanthus grammatus MC Liu by using SSR markers. Acta Ecol. Sin. 2015, 35, 203–209. [Google Scholar] [CrossRef]
Sampling Site | Sample Name | Quantity |
---|---|---|
Shanghai | SH-1, SH-2, SH-3, SH-4, SH-5, SH-6, SH-7, SH-8, SH-9, SH-10, SH-11, SH-12, SH-13, SH-14, SH-15, SH-16, SH-17, SH-18, SH-19, SH-20, SH-21, SH-22, SH-23, SH-24, SH-25, SH-26, SH-27, SH-28, SH-29, SH-30, SH-31, SH-32, SH-33, SH-34, SH-35, SH-36, SH-37, SH-38, SH-39, SH-40, HHT, JZ, WG, YZH | 44 |
Nanjing | ZSB, XRDY, QYJT, JLHZ | 4 |
Chengdu | XGCL, HQ, ZH, CTYX, BC, XY, SN, XFHX, JSYG, HTXD | 10 |
Kunming | HLT012, HLT015, HLT016, HLT040, HLT053, XL003 | 6 |
Wuhan | H29, H45, H64, H93, SW | 5 |
Mining Results of SSR in the CpTPS Genes | |
---|---|
Total number of checked sequences | 52 |
The total size of checked sequences | 977,634 |
Total number of identified SSRs | 146 |
Number of sequences with SSRs | 44 |
Number of sequences with more than one SSR | 35 |
Number of SSRs present in compound formation | 17 |
Number of designed SSR primers | 104 |
Number of wintersweet cultivars and genotypes used for genotyping | 69 |
Number of polymorphic primers found | 39 |
Number of Repetitions | Di | Tri | Penta | Total | Percentage (%) |
---|---|---|---|---|---|
5 | 0 | 35 | 0 | 35 | 23.97 |
6 | 31 | 6 | 1 | 38 | 26.03 |
7 | 24 | 0 | 0 | 24 | 16.44 |
8 | 5 | 2 | 0 | 7 | 4.79 |
9 | 5 | 4 | 0 | 9 | 6.16 |
10 | 4 | 0 | 0 | 4 | 2.74 |
11 | 2 | 0 | 0 | 2 | 1.37 |
12 | 6 | 0 | 0 | 6 | 4.11 |
14 | 1 | 0 | 0 | 1 | 0.68 |
15 | 3 | 0 | 0 | 3 | 2.05 |
>15 | 17 | 0 | 0 | 17 | 11.64 |
Total | 98 | 47 | 1 | 146 | |
Percentage (%) | 67.12 | 32.19 | 0.68 |
Locus Name | na | ne | Obs_Hom | Exp_Hom | Obs_Het | Exp_Het | PIC |
---|---|---|---|---|---|---|---|
CpTPSMS01-4 | 2 | 1.60 | 0.83 | 0.59 | 0.17 | 0.41 | 0.30 |
CpTPSMS01-5 | 3 | 2.94 | 0.80 | 0.27 | 0.20 | 0.73 | 0.59 |
CpTPSMS02-7 | 3 | 2.63 | 0.80 | 0.31 | 0.20 | 0.69 | 0.55 |
CpTPSMS03-1 | 3 | 1.67 | 0.83 | 0.56 | 0.17 | 0.44 | 0.36 |
CpTPSMS03-2 | 6 | 6.00 | 0.67 | 0.09 | 0.33 | 0.91 | 0.81 |
CpTPSMS03-4 | 3 | 2.67 | 1.00 | 0.29 | 0.00 | 0.71 | 0.55 |
CpTPSMS03-5 | 2 | 1.47 | 1.00 | 0.64 | 0.00 | 0.36 | 0.27 |
CpTPSMS03-6 | 3 | 2.32 | 0.50 | 0.38 | 0.50 | 0.62 | 0.50 |
CpTPSMS05-1 | 2 | 1.80 | 0.33 | 0.52 | 0.67 | 0.48 | 0.35 |
CpTPSMS05-2 | 2 | 1.60 | 0.83 | 0.59 | 0.17 | 0.41 | 0.30 |
CpTPSMS05-3 | 3 | 2.32 | 0.67 | 0.38 | 0.33 | 0.62 | 0.50 |
CpTPSMS06-1 | 2 | 1.60 | 0.83 | 0.59 | 0.17 | 0.41 | 0.30 |
CpTPSMS06-3 | 2 | 1.80 | 1.00 | 0.52 | 0.00 | 0.48 | 0.35 |
CpTPSMS06-4 | 3 | 2.57 | 1.00 | 0.33 | 0.00 | 0.67 | 0.54 |
CpTPSMS06-5 | 3 | 3.00 | 0.33 | 0.27 | 0.67 | 0.73 | 0.59 |
CpTPSMS10-2 | 5 | 4.50 | 1.00 | 0.15 | 0.00 | 0.85 | 0.74 |
CpTPSMS10-3 | 3 | 3.00 | 1.00 | 0.20 | 0.00 | 0.80 | 0.59 |
CpTPSMS11-1 | 2 | 1.60 | 0.83 | 0.59 | 0.17 | 0.41 | 0.30 |
CpTPSMS11-2 | 3 | 2.27 | 1.00 | 0.38 | 0.00 | 0.62 | 0.50 |
CpTPSMS12-1 | 4 | 3.57 | 1.00 | 0.20 | 0.00 | 0.80 | 0.67 |
CpTPSMS12-2 | 4 | 3.57 | 1.00 | 0.20 | 0.00 | 0.80 | 0.67 |
CpTPSMS13 | 3 | 2.00 | 1.00 | 0.45 | 0.00 | 0.55 | 0.45 |
CpTPSMS19-CDs | 2 | 2.00 | 0.80 | 0.44 | 0.20 | 0.56 | 0.38 |
CpTPSMS19 | 4 | 2.94 | 0.40 | 0.27 | 0.60 | 0.73 | 0.61 |
CpTPSMS23-6 | 3 | 1.67 | 0.50 | 0.56 | 0.50 | 0.44 | 0.36 |
CpTPSMS23-21 | 2 | 1.80 | 0.67 | 0.52 | 0.33 | 0.48 | 0.35 |
CpTPSMS26-4 | 3 | 1.41 | 0.83 | 0.68 | 0.17 | 0.32 | 0.27 |
CpTPSMS33-6 | 3 | 1.85 | 0.80 | 0.49 | 0.20 | 0.51 | 0.41 |
CpTPSMS38-2 | 2 | 1.80 | 0.67 | 0.52 | 0.33 | 0.48 | 0.35 |
CpTPSMS43-1 | 3 | 2.18 | 0.67 | 0.41 | 0.33 | 0.59 | 0.46 |
CpTPSMS47-1 | 3 | 1.67 | 0.83 | 0.56 | 0.17 | 0.44 | 0.36 |
CpTPSMS47-2 | 3 | 2.00 | 1.00 | 0.45 | 0.00 | 0.55 | 0.45 |
CpTPSMS52-1 | 2 | 1.95 | 0.83 | 0.47 | 0.17 | 0.53 | 0.37 |
Average | 2.91 | 2.36 | 0.80 | 0.42 | 0.20 | 0.58 | 0.46 |
Source | df | SS | MS | Est. Var. | Percentage Variation | Fst |
---|---|---|---|---|---|---|
Among Pops | 1 | 51.459 | 51.459 | 0.787 | 11% | 0.112 (p ≥ 0.001) |
Among Indiv | 67 | 542.281 | 8.094 | 1.869 | 27% | |
Within Indiv | 69 | 300.500 | 4.355 | 4.355 | 62% | |
Total | 137 | 894.239 | 7.012 | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, X.; Yang, N.; Du, Y.; Kamran, H.M.; Wang, H.; Chen, S.; Chen, L. Development of SSR Molecular Markers and Genetic Diversity Analysis of TPS Gene Family in Chimonanthus praecox. Agriculture 2023, 13, 893. https://doi.org/10.3390/agriculture13040893
Fu X, Yang N, Du Y, Kamran HM, Wang H, Chen S, Chen L. Development of SSR Molecular Markers and Genetic Diversity Analysis of TPS Gene Family in Chimonanthus praecox. Agriculture. 2023; 13(4):893. https://doi.org/10.3390/agriculture13040893
Chicago/Turabian StyleFu, Xuemei, Nan Yang, Yongqin Du, Hafiz Muhammad Kamran, Huabo Wang, Shaoyuan Chen, and Longqing Chen. 2023. "Development of SSR Molecular Markers and Genetic Diversity Analysis of TPS Gene Family in Chimonanthus praecox" Agriculture 13, no. 4: 893. https://doi.org/10.3390/agriculture13040893