Development of a Cereal–Legume Intercrop Model for DSSAT Version 4.8
Abstract
:1. Introduction
2. Materials and Methods
2.1. MPI_Maize–Legume Intercrop Development
2.1.1. Description of the Intercrop Model
2.1.2. MPI_Maize–Cowpea Intercrop Design Approach
2.2. Changes Implemented in the DSSAT to Simulate Maize–Cowpea Intercrop
Fraction of Radiation Intercepted
2.3. MPI_DSSAT Application to Maize–Legume Intercrop Modeling
Modeling Workflow
2.4. MPI_DSSAT Model Scenario Setting Assessment
2.5. Capturing the Light Competition Performance in the Model
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Treatment | Mean (Obs.) | Mean (Sim.) | Mean (Obs.) | Mean (Sim.) |
---|---|---|---|---|
Grain yield (kg ha−1) | Dry matter yield (kg ha−1) | |||
Maize–Cowpea | 3991 | 2905 | 10,476 | 7451 |
Sole Maize | 5285 | 5608 | 11,145 | 14,555 |
References
- Addo-Quaye, A.A.; Darkwa, A.A.; Ocloo, G.K. Yield and productivity of component crops in a maize-soybean intercropping system as affected by time of planting and spatial arrangement. J. Agric. Biol. Sci. 2011, 6, 50–57. [Google Scholar]
- Akande, M.O.; Oluwatoyinbo, F.I.; Kayode, C.O.; Olowokere, F.A. Response of Maize (Zea mays) and Okra (Abelmoschus esculentus) Intercrop Relayed with Cowpea (Vigna unguiculata) to Different Levels of Cow Dung Amended Phosphate Rock. World J. Agric. Sci. 2006, 2, 119–122. [Google Scholar]
- Ball, D.; Shaffer, M.J. Simulating resource competition in multispecies agricultural plant communities. Weed Res. 1993, 33, 299–310. [Google Scholar] [CrossRef]
- Baumann, D.; Bastiaans, L.; Goudriaan, J.; van Laar, H.; Kropff, M. Analysing crop yield and plant quality in an intercropping system using an eco-physiological model for interplant competition. Agric. Syst. 2002, 73, 173–203. [Google Scholar] [CrossRef]
- Berghuijs, H.N.C.; Wang, Z.; Stomph, T.J.; Weih, M.; Van Der Werf, W.; Vico, G. Identification of species traits enhancing yield in wheat-faba bean intercropping: Development and sensitivity analysis of a minimalist mixture model. Plant Soil 2020, 455, 203–226. [Google Scholar] [CrossRef]
- Berntsen, J.; Hauggard-Nielsen, H.; Olesen, J.; Petersen, B.; Jensen, E.; Thomsen, A. Modelling dry matter production and resource use in intercrops of pea and barley. Field Crop. Res. 2004, 88, 69–83. [Google Scholar] [CrossRef]
- Biedrzycki, M.L.; Jilany, T.A.; Dudley, S.A.; Bais, H.P. Root exudates mediate kin recognition in plants. Commun. Integr. Biol. 2010, 3, 28–35. [Google Scholar] [CrossRef] [Green Version]
- Boote, K.; Pickering, N. Modeling Photosynthesis of Row Crop Canopies. Hortscience 1994, 29, 1423–1434. [Google Scholar] [CrossRef] [Green Version]
- Brooker, R.W.; Bennett, A.E.; Cong, W.-F.; Daniell, T.J.; George, T.S.; Hallett, P.D.; Hawes, C.; Iannetta, P.P.M.; Jones, H.G.; Karley, A.J.; et al. Improving intercropping: A synthesis of research in agronomy, plant physiology and ecology. New Phytol. 2015, 206, 107–117. [Google Scholar] [CrossRef]
- Caldwell, R.M. Simulation Models for Intercropping Systems; Sinoquet, H., Cruz, P., Eds.; INRA editions; Ecophysiology of tropical intercropping, Institut National de la Recherche Agronomique: Paris, France, 1995; pp. 353–368. [Google Scholar]
- Chamkhi, I.; Cheto, S.; Geistlinger, J.; Zeroual, Y.; Kouisni, L.; Bargaz, A.; Ghoulam, C. Legume-based intercropping systems promote beneficial rhizobacterial community and crop yield under stressing conditions. Ind. Crop. Prod. 2022, 183, 114958. [Google Scholar] [CrossRef]
- Cvitanovic, C.; Hobday, A.J.; van Kerkhoff, L.; Wilson, S.K.; Dobbs, K.; Marshall, N.A. Improving knowledge exchange among scientists and decision-makers to facilitate the adaptive governance of marine resources: A review of knowledge and research needs. Ocean Coast. Manag. 2015, 112, 25–35. [Google Scholar] [CrossRef] [Green Version]
- Feike, T.; Pfenning, J.; Graeff-Hönninger, S.; Chen, Q.; Claupein, W. Adaptation of CROPGRO to Chinese cabbage I. Estimation of cardinal temperatures. In Grasping the Complexity of Intercropping—Developing and Testing an Integrated Decision Support System for Vegetable Production in the North China Plain; University of Hohenheim: Stuttgart, Germany, 2010. [Google Scholar]
- Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Shelia, V.; Wilkens, P.W.; Singh, U.; White, J.W.; Asseng, S.; Lizaso, J.I.; Moreno, L.P.; et al. The DSSAT crop modeling ecosystem. In Advances in Crop Modeling for a Sustainable Agriculture; Boote, K.J., Ed.; Burleigh Dodds Science Publishing: Cambridge, UK, 2019; pp. 173–216. [Google Scholar] [CrossRef]
- Gao, Y.; Duan, A.; Qiu, X.; Sun, J.; Zhang, J.; Liu, H.; Wang, H. Distribution and Use Efficiency of Photosynthetically Active Radiation in Strip Intercropping of Maize and Soybean. Agron. J. 2010, 102, 1149–1157. [Google Scholar] [CrossRef]
- Gao, Y.; Duan, A.; Qiu, X.; Liu, Z.; Sun, J.; Zhang, J.; Wang, H. Distribution of roots and root length density in a maize/soybean strip intercropping system. Agric. Water Manag. 2010, 98, 199–212. [Google Scholar] [CrossRef]
- Gou, F. On Yield Gains and Yield Gaps in Wheat-Maize Intercropping: Opportunities for Sustainable Increases in Grain Production. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Goudriaan, J. Crop Micrometeorology: A Simulation Study. In Simulation Monographs; Pudoc: Wageningen, The Netherlands, 1977. [Google Scholar]
- Gruntman, M.; Groß, D.; Májeková, M.; Tielbörger, K. Decision-making in plants under competition. Nat. Commun. 2017, 8, 2235. [Google Scholar] [CrossRef] [Green Version]
- Hoogenboom, G.; Porter, C.H.; Shelia, V.; Boote, K.J.; Singh, U.; White, J.W.; Hunt, L.A.; Ogoshi, R.; Lizaso, J.I.; Koo, J.; et al. Decision Support System for Agrotechnology Transfer (DSSAT), Version 4.7; DSSAT Foundation: Gainesville, FL, USA, 2019; Available online: www.DSSAT.net (accessed on 26 October 2021).
- Hoogenboom, G.; Jones, J.W.; Traore, P.C.S.; Boote, K.J. Experiments and data for model evaluation and application. In Improving Soil Fertility Recommendations in Africa Using the Decision Support System for Agrotechnology Transfers (DSSAT); Kihara, J., Fatondji, D., Jones, J.W., Hoogenboom, G., Tabo, R., Bationo, A., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 9–18. [Google Scholar]
- Jensen, E.S.; Carlsson, G.; Hauggaard-Nielsen, H. Intercropping of grain legumes and cereals improves the use of soil N resources and reduces the requirement for synthetic fertilizer N: A global-scale analysis. Agron. Sustain. Dev. 2020, 40, 5. [Google Scholar] [CrossRef] [Green Version]
- Jones, C.A.; Kiniry, J.R. CERES-Maize: A Simulation Model of Maize Growth and Development; Texas A&M Univ. Press: College Station, TX, USA, 1986. [Google Scholar]
- Jones, J.W.; Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Batchelor, W.D.; Hunt, L.A.; Wilkens, P.W.; Singh, U.; Gijsman, A.J.; Ritchie, J.T. The DSSAT cropping system model. Eur. J. Agron. 2003, 18, 235–265. [Google Scholar] [CrossRef]
- Keating, B.; Carberry, P. Resource capture and use in intercropping: Solar radiation. Field Crop. Res. 1993, 34, 273–301. [Google Scholar] [CrossRef]
- Keating, B.A.; Carberry, P.S.; Hammer, G.L.; Probert, M.E.; Robertson, M.J.; Holzworth, D.; Huth, N.I.; Hargreaves, J.N.; Meinke, H.; Hochman, Z.; et al. An overview of APSIM, a model designed for farming systems simulation. Eur. J. Agron. 2003, 18, 267–288. [Google Scholar] [CrossRef] [Green Version]
- Knörzer, H.; Grae-Hönninger, S.; Müller, B.U.; Piepho, H.-P.; Claupein, W. A modeling approach to simulate effects of intercropping and interspecific competition in arable crops. Int. J. Inf. Syst. Soc. Change 2010, 1, 44–65. [Google Scholar] [CrossRef]
- Kropff, M.J.; Vossen, F.J.H.; Spitters, C.J.T.; De Groot, W. Competition between a maize crop and a natural population of Echinochloa crus-galli (L.) PB Neth. J. Agric. Sci. 1984, 32, 324–327. [Google Scholar]
- Kropff, M.J.; van Laar, H.H. Modelling Crop-Weed Interactions; CAB International: Wallingford, UK; International Rice Research Institute: Los Baños, Philippines, 1993. [Google Scholar]
- Lantinga, E.A.; Nassiri, M.; Kropff, M.J. Modelling and measuring vertical light absorption within grass–clover mixtures. Agric. For. Meteorol. 1999, 96, 71–83. [Google Scholar] [CrossRef]
- Li, L.; Sun, J.; Zhang, F.; Guo, T.; Bao, X.; Smith, F.A.; Smith, S.E. Root distribution and interactions between intercropped species. Oecologia 2005, 147, 280–290. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Rahman, T.; Yang, F.; Song, C.; Yong, T.; Liu, J.; Zhang, C.; Yang, W. PAR Interception and Utilization in Different Maize and Soybean Intercropping Patterns. PLoS ONE 2017, 12, e0169218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lizaso, J.I.; Boote, K.J.; Jones, J.W.; Porter, C.H.; Echarte, L.; Westgate, M.E.; Sonohat, G. CSM-IXIM: A New Maize Simulation Model for DSSAT Version 4.5. Agron. J. 2011, 103, 766–779. [Google Scholar] [CrossRef]
- Loomis, R.S.; Williams, W.M. Maximum crop productivity: An estimate. Crop Sci. 1963, 3, 67–72. [Google Scholar] [CrossRef]
- Lulie, B. Intercropping Practice as an Alternative Pathway for Sustainable Agriculture: A Review. Acad. Res. J. Agric. Sci. Res. 2017, 5, 440–452. [Google Scholar] [CrossRef]
- Mahallati, M.N.; Koocheki, A.; Mondani, F.; Feizi, H.; Amirmoradi, S. Determination of optimal strip width in strip intercropping of maize (Zea mays L.) and bean (Phaseolus vulgaris L.) in Northeast Iran. J. Clean. Prod. 2015, 106, 343–350. [Google Scholar] [CrossRef]
- McErlich, A.F.; Boydston, R.A. Current State of Weed Management in Organic and Conventional Cropping Systems. In Automation: The Future of Weed Control in Cropping Systems; Springer: Dordrecht, The Netherlands, 2014; pp. 11–32. Available online: https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=2392&context=usdaarsfacpub (accessed on 26 October 2021).
- Monteith, J.L. Climate and the efficiency of crop production in Britain. Philos. Trans. R. Soc. B 1977, 281, 277–294. [Google Scholar] [CrossRef]
- NASA. NASA-Agroclimatology Methodology. 2012. Available online: https://power.larc.nasa.gov/data-access-viewer/ (accessed on 24 April 2022).
- Nelson, W.; Hoffmann, M.; Vadez, V.; Roetter, R.; Whitbread, A. Testing pearl millet and cowpea intercropping systems under high temperatures. Field Crop. Res. 2018, 217, 150–166. [Google Scholar] [CrossRef] [Green Version]
- Ninkovic, V.; Rensing, M.; Dahlin, I.; Markovic, D. Who is my neighbor? Volatile cues in plant interactions. Plant Signal. Behav. 2019, 14, 1634993. [Google Scholar] [CrossRef] [Green Version]
- Ofori, F.; Stern, W.R. Cereal–legume intercropping systems. Adv. Agron. 1987, 41, 41–90. [Google Scholar]
- Pierre, J.F.; Latournerie-Moreno, L.; Garruña-Hernández, R.; Jacobsen, K.L.; Laboski, C.A.M.; Salazar-Barrientos, L.d.L.; Ruiz-Sánchez, E. Farmer Perceptions of Adopting Novel Legumes in Traditional Maize-Based Farming Systems in the Yucatan Peninsula. Sustainability 2021, 13, 11503. [Google Scholar] [CrossRef]
- Punyalue, A.; Jamjod, S.; Rerkasem, B. Intercropping maize with legumes for sustainable highland maize production. Mt. Res. Dev. 2018, 38, 35–44. Available online: https://bioone.org/journals/mountain-research-and-development/volume-38/issue-1/MRD-JOURNAL-D-17-00048.1/Intercropping-Maize-With-Legumes-for-Sustainable-Highland-Maize-Production/10.1659/MRD-JOURNAL-D-17-00048.1.full (accessed on 26 October 2021). [CrossRef]
- Rapholo, E.; Odhiambo, J.J.O.; Nelson, W.C.D.; Rötter, R.P.; Ayisi, K.; Koch, M.; Hoffmann, M.P. Maize–lablab intercropping is promising in supporting the sustainable intensification of smallholder cropping systems under high climate risk in Southern Africa. Exp. Agric. 2019, 56, 104–117. [Google Scholar] [CrossRef]
- Ritchie, J.T.; Otter, S. Description and performance of CERES-Wheat: A user-oriented wheat yield model. In ARS Wheat Yield Project; Willis, W.O., Ed.; ARS-38; National Technical Information Services: Springfield, VA, USA, 1985; pp. 159–175. [Google Scholar]
- BioRender.com. 2022. Available online: https://app.biorender.com/illustrations/621d6a79bfac11004c807d52 (accessed on 14 March 2022).
- Pronk, A.A.; Goudriaan, J.; Stilma, E.; Challa, H. A simple method to estimate radiation interception by nursery stock conifers: A case study of eastern white cedar. Neth. J. Agric. Sci. 2003, 51, 279–295. [Google Scholar] [CrossRef] [Green Version]
- Tsubo, M.; Walker, S.; Mukhala, E. Comparisons of radiation use efficiency of mono-/inter-cropping systems with different row orientations. Field Crops Res. 2001, 71, 17–29. [Google Scholar] [CrossRef]
- Tsubo, M.; Walker, S. A model of radiation interception and use by a maize–bean intercrop canopy. Agric. For. Meteorol. 2002, 110, 203–215. [Google Scholar] [CrossRef]
- Sinclair, T.R.; Gardner, F.P. Principles of Ecology in Plant Production; CAB International: Wallingford, UK, 1998. [Google Scholar]
- Chimonyo, V.G.P.; Modi, A.T.; Mabhaudhi, T. Simulating yield and water use of a sorghum–cowpea intercrop using APSIM. Agric. Water Manag. 2016, 177, 317–328. [Google Scholar] [CrossRef]
- Alderman, P.D. Parallel gridded simulation framework for DSSAT-CSM (version 4.7.5.21) using MPI and NetCDF. Geosci. Model Dev. 2021, 14, 6541–6569. [Google Scholar] [CrossRef]
- Fernandes, J.M.; Pavan, W.; Pequeno, D.; Wiest, R.; Holbig, C.A.; Oliveira, F.; Hoogenboom, G. Improving crop pest/disease modeling. In Advances in Crop Modeling for a Sustainable Agriculture; Boote, K.J., Ed.; Burleigh Dodds Science Publishing: Cambridge, UK. [CrossRef]
- Kang, S.; Wang, D.; Nichols, J.; Schuchart, J.; Kline, K.; Wei, Y.; Ricciuto, D.; Wullschleger, S.; Post, W.; Izaurralde, R. Development of mpi_EPIC model for global agroecosystem modeling. Comput. Electron. Agric. 2015, 111, 48–54. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pierre, J.F.; Singh, U.; Ruiz-Sánchez, E.; Pavan, W. Development of a Cereal–Legume Intercrop Model for DSSAT Version 4.8. Agriculture 2023, 13, 845. https://doi.org/10.3390/agriculture13040845
Pierre JF, Singh U, Ruiz-Sánchez E, Pavan W. Development of a Cereal–Legume Intercrop Model for DSSAT Version 4.8. Agriculture. 2023; 13(4):845. https://doi.org/10.3390/agriculture13040845
Chicago/Turabian StylePierre, Jacques Fils, Upendra Singh, Esaú Ruiz-Sánchez, and Willingthon Pavan. 2023. "Development of a Cereal–Legume Intercrop Model for DSSAT Version 4.8" Agriculture 13, no. 4: 845. https://doi.org/10.3390/agriculture13040845
APA StylePierre, J. F., Singh, U., Ruiz-Sánchez, E., & Pavan, W. (2023). Development of a Cereal–Legume Intercrop Model for DSSAT Version 4.8. Agriculture, 13(4), 845. https://doi.org/10.3390/agriculture13040845