The Journey of 1000 Leagues towards the Decontamination of the Soil from Heavy Metals and the Impact on the Soil–Plant–Animal–Human Chain Begins with the First Step: Phytostabilization/Phytoextraction
Abstract
:1. Introduction
1.1. Major Causes of Soil Pollution
1.2. Natural Sources of Soil Pollution
1.3. Anthropogenic Sources of Soil Pollution
2. The Influence of Heavy Metal on Plants and the Human Body
2.1. Phytotoxicity of Heavy Metals and Impact on Plants
2.2. The Negative Impact of Heavy Metals on Human Health
2.3. Food Safety Possibly Threatened by the Consumption of Edible Plant Products and Mushrooms as Source of Vegetable Protein
2.4. The Potential Risk of Contamination of the Food Chain with Products of Animal Origin and Bee Honey
3. The Green Miracle, Plants and Phytoremediation
3.1. Phytoremediation and Soil Decontamination Mechanisms
3.2. Plants and the Main Mechanisms of Contaminant Uptake
3.3. Pro-Phytoremediation Arguments
3.4. Limitations of Phytoremediation
3.5. Relation: Soil—Heavy Metals
4. Phytoremediation Phytoextraction/Phytostabilisation
4.1. Common Requirements for Plants Used in Phytoextraction/Phytostabilization
4.2. Plants and Phytoextraction
4.2.1. Induced Phytoextraction and the Effect of Chelators in Soil Decontamination
4.2.2. Limitations/Precautions in the Phytoextraction Mechanism
4.3. Plants and Phytostabilization
4.3.1. The Amendments and the Their Role in Phytostabilization Mechanism
Organic Amendments
Other Amendments Used in the Phytostabilization Mechanism
Phytostabilization Assisted by Mineral Sorbents
Precautions and Limitations in Phytostabilization
5. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Adriano, D.C. Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability, and Risks of Metals, 2nd ed.; Springer: New York, NY, USA, 2001; p. 867. [Google Scholar] [CrossRef]
- Scott, S.B.; Sivakoff, F.S.; Gardiner, M.M. Exposure to urban heavy metal contamination diminishes bumble bee colony growth. Urban Ecosyst. 2022, 25, 989–999. [Google Scholar] [CrossRef]
- González Henao, S.; Ghneim-Herrera, T. Heavy metals in soils and the remediation potential of bacteria associated with the plant microbiome. Front. Environ. Sci. 2021, 9, 1–17. [Google Scholar] [CrossRef]
- Hancock, T.; Spady, D.; Soskolne, C.L. Global Change and Public Health: Addressing the Ecological Determinants of Health; Canadian Public Health Association: Ottawa, ON, Canada, 2015; Available online: https://www.cpha.ca/uploads/policy/edh-brief.pdf (accessed on 12 February 2021).
- Chen, R.; Han, L.; Liu, Z.; Zhao, Y.; Li, R.; Xia, L.; Fan, Y. Assessment of soil-heavy metal pollution and the health risks in a mining area from Southern Shaanxi Province, China. Toxics 2022, 10, 385. [Google Scholar] [CrossRef] [PubMed]
- Kong, Z.; Glick, B.R. The role of plant growth-promoting bacteria in metal phytoremediation. Adv. Microb. Physiol. 2017, 71, 97–132. [Google Scholar] [CrossRef] [PubMed]
- Babula, P.; Adam, V.; Opatrilova, R.; Zehnalek, J.; Havel, L.; Kizek, R. Uncommon heavy metals, metalloids and their plant toxicity: A Review. In Organic Farming, Pest Control and Remediation of Soil Pollutants; Lichtfouse, E., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 1, pp. 275–317. [Google Scholar] [CrossRef]
- Ati-Hellal, M.E.; Hellal, F. Heavy metals in the environment and health impact. In Environmental Health; Otsuki, T., Ed.; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Lajayer, B.A.; Moghadam, N.K.; Maghsoodi, M.R.; Ghorbanpour, M.; Kariman, K. Phytoextraction of heavy metals from contaminated soil, water and atmosphere using ornamental plants: Mechanisms and efficiency improvement strategies. Environ. Sci. Pollut. Res. 2019, 26, 8468–8484. [Google Scholar] [CrossRef] [PubMed]
- Greipsson, S. Phytoremediation. Nat. Educ. Knowl. 2011, 3, 7. Available online: https://www.nature.com/scitable/knowledge/library/phytoremediation-17359669/ (accessed on 14 August 2022).
- El-Kady, A.A.; Abdel-Wahhab, M.A. Occurrence of trace metals in foodstuffs and their health impact. Trends Food. Sci. Technol. 2018, 75, 36–45. [Google Scholar] [CrossRef]
- Gillespie, C.J.; Antonangelo, J.A.; Zhang, H. The Response of soil pH and exchangeable Al to alum and lime amendments. Agriculture 2021, 11, 547. [Google Scholar] [CrossRef]
- Jyothi, N.R. Heavy metal sources and their effects on human health. In Heavy Metals—Their Environmental Impacts and Mitigation; Nazal, M., Ed.; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Azeh Engwa, G.; Udoka Ferdinand, P.; Nweke Nwalo, F.; Unachukwu, M. Mechanism and health effects of heavy metal toxicity in humans. In Poisoning in the Modern World—New Tricks for an Old Dog? Karcioglu, O., Arslan, B., Eds.; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Ali, H.; Khan, E.; Sajad, M.A. Phytoremediation of Heavy Metals—Concepts and Applications. Chemosphere 2013, 91, 869–881. [Google Scholar] [CrossRef]
- Fernandes Azevedo, B.; Barros Furieri, L.; Peçanha, F.M.; Wiggers, G.A.; Frizera Vassallo, P.; Ronacher Simões, M. Toxic effects of mercury on the cardiovascular and central nervous systems. J. Biomed. Biotechnol. 2012, 2012, 949048. [Google Scholar] [CrossRef] [Green Version]
- Vangronsveld, J.; Herzig, R.; Weyens, N.; Boulet, J.; Adriaensen, K.; Ruttens, A.; Thewys, T.; Vassilev, A.; Meers, E.; Nehnevajova, E.; et al. Phytoremediation of contaminated soils and groundwater: Lessons from the Field. Environ. Sci. Pollut. Res. 2009, 16, 765–794. [Google Scholar] [CrossRef]
- Rusu, T.; Bejan, M. Waste and the environment. In Waste Source of Income; Mediamira: Cluj-Napoca, Romania, 2006; pp. 1–14. [Google Scholar]
- Das, S.; Dash, H.R. Microbial bioremediation: A potential tool for restoration of contaminated areas. In Microbial Biodegradation and Bioremediation, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1–21. [Google Scholar]
- Karimian, S.; Shekoohiyan, S.; Moussavi, G. Health and ecological risk assessment and simulation of heavy metal-contaminated soil of Tehran landfill. RSC Adv. 2021, 11, 8080–8095. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; Li, S.; Wang, L. Assessment of soil heavy metals for eco-environment and human health in a rapidly urbanization area of the upper Yangtze Basin. Sci. Rep. 2018, 8, 3256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, G.; Chen, F.; Zhang, H.; Wang, Z. Pollution and health risk assessment of heavy metals in soils of Guizhou, China. Ecosyst. Health Sust. 2021, 7, 1859948. [Google Scholar] [CrossRef]
- Kumar, P.B.; Dushenkov, V.; Motto, H.; Raskin, I. Phytoextraction: The use of plants to remove heavy metals from soils. Environ. Sci. Technol. 1995, 29, 1232–1238. [Google Scholar] [CrossRef]
- Ghasemidehkordi, B.; Malekirad, A.A.; Nazem, H.; Fazilati, M.; Salavati, H.; Shariatifar, N.; Rezaei, M.; Fakhri, Y.; Khaneghah, A.M. Concentration of lead and mercury in collected vegetables and herbs from Markazi Province, Iran: A non-carcinogenic risk assessment. Food Chem. Toxicol. 2018, 113, 204–210. [Google Scholar] [CrossRef]
- Thürmer, K.; Williams, E.; Reutt-Robey, J. Autocatalytic oxidation of lead crystallite surfaces. Science 2002, 297, 2033–2035. [Google Scholar] [CrossRef] [Green Version]
- Onofrei, A.G.; Munteanu, F.; Zdremtan, M.; Anghel, A.; Lucaci, A. Fitointercession study of soils contaminated with some heavy metals. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca. Hortic. 2007, 64, 598–601. [Google Scholar]
- An Assessment Report on Issues of Concern: Chemicals and Waste Issues Posing Risks to Human Health and the Environment. 2020. Available online: https://wedocs.unep.org/bitstream/handle/20.500.11822/33807/ARIC.pdf?sequence=1&isAllowed=y (accessed on 28 March 2022).
- Bare, J.C.; Norris, G.A.; Pennington, D.W.; McKone, T. TRACI—The Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts. J. Ind. Ecol. 2003, 6, 49–78. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Guidance of the Scientific Committee on Transparency in the Scientific Aspects of Risk Assessments carried out by EFSA. Part 2: General Principles. EFSA J. 2009, 7, 1051. [Google Scholar] [CrossRef] [Green Version]
- Al-Hamzawi, A.A.; Al-Gharabi, M.G. Heavy metals concentrations in selected soil samples of Al-Diwaniyah Governorate, southern Iraq. SN Appl. Sci. 2019, 1, 854. [Google Scholar] [CrossRef] [Green Version]
- Bandiera, M.; Dal Cortivo, C.; Barion, G.; Mosca, G.; Vamerali, T. Phytoremediation opportunities with alimurgic species in metal-contaminated environments. Sustainability 2016, 8, 357. [Google Scholar] [CrossRef] [Green Version]
- Tangahu, B.V.; Sheikh Abdullah, S.R.; Basri, H.; Idris, M.; Anuar, N.; Mukhlisin, M. A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int. J. Chem. Eng. 2011, 2011, 939161. [Google Scholar] [CrossRef]
- Busto, Y.; Cabrera, X.; Tack, F.M.G.; Verloo, M.G. Potential of thermal treatment for decontamination of mercury containing wastes from chlor-alkali industry. J. Hazard. Mater. 2011, 186, 114–118. [Google Scholar] [CrossRef] [PubMed]
- Rathore, M.; Singh, A.; Pant, V.A. The dental amalgam toxicity fear: A myth or actuality. Toxicol. Int. 2012, 19, 81–88. Available online: https://www.informaticsjournals.com/index.php/toxi/article/view/21346 (accessed on 14 November 2022). [PubMed] [Green Version]
- Agarwalla, H.; Senapati, R.N.; Das, T.B. Mercury emissions and partitioning from Indian coal-fired power plants. J. Environ. Sci. 2021, 100, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Mando, E. Mercury: A Threat to Environment and Public Health, ZiMining Magazine. 2019. Available online: https://zimining.co.zw/2019/08/28/mercury-a-threat-to-the-environment-public-health/ (accessed on 10 October 2021).
- Tofan, E. Caracteristicile geochimice ale unor metale grele (Zn, Cu, Pb și Ni) în solurile orașului Chișinău. Bul. Inst. Geol. Seismol. AȘM 2012, N 1, 1–11. [Google Scholar]
- Oliveira, H. Chromium as an environmental pollutant: Insights on induced plant toxicity. J. Bot. 2012, 2012, 375843. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.M.; Hossain, D.; Al-Imran, A.; Khan, M.S.; Begum, M.; Osman, M.H. Environmental pollution with heavy metals: A public health concern. In Heavy Metals—Their Environmental Impacts and Mitigation; Nazal, M.K., Zhao, H., Eds.; IntechOpen: London, UK, 2021; Available online: https://www.intechopen.com/chapters/76739 (accessed on 3 December 2022).
- Heavy Metal Emissions in Europe. 2021. Available online: https://www.eea.europa.eu/ims/heavy-metal-emissions-in-europe (accessed on 10 December 2022).
- Palansooriya, K.N.; Shaheen, S.M.; Chen, S.S.; Tsang, D.C.; Hashimoto, Y.; Hou, D.; Bolan, N.S.; Rinklebe, J.; Ok, Y.S. Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review. Environ. Int. 2020, 134, 105046. [Google Scholar] [CrossRef]
- Rai, P.K.; Lee, S.S.; Zhang, M.; Tsang, Y.F.; Kim, K.H. Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environ. Int. 2019, 125, 365–385. [Google Scholar] [CrossRef]
- Srivastava, V.; Sarkar, A.; Singh, S.; Singh, P.; de Araujo, A.S.; Singh, R.P. Agroecological responses of heavy metal pollution with special emphasis on soil health and plant performances. Front. Environ. Sci. 2017, 5, 64. [Google Scholar] [CrossRef] [Green Version]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patra, M.; Sharma, A. Mercury toxicity in plants. Bot. Rev. 2000, 66, 379–422. [Google Scholar] [CrossRef]
- Ji, P.; Song, Y.; Jiang, Y.; Tang, X.; Tong, Y.; Gao, P.; Han, W. A two-year field study of phytoremediation using Solanum nigrum L. in China. Int. J. Phytoremediation 2016, 18, 924–928. [Google Scholar] [CrossRef]
- El Mahdy, C. ZooHygiene, Natural Environmental Factors and Their Influence on the Animal Body: Beneficial and Nosogenic Action; NapocaStar: Cluj-Napoca, Romania, 2013; ISBN 978-606-690-049-2. [Google Scholar]
- Ali, H.; Khan, E.; Ilahi, I. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. J. Chem. 2019, 4, 6730305. [Google Scholar] [CrossRef] [Green Version]
- Tóth, G.; Hermann, T.; Da Silva, M.R.; Montanarella, L. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef]
- Jayasumana, C.; Fonseka, S.; Fernando, A.; Jayalath, K.; Amarasinghe, M.; Siribaddana, S.; Gunatilake, S.; Paranagama, P. Phosphate fertilizer is a main source of arsenic in areas affected with chronic kidney disease of unknown etiology in Sri Lanka. SpringerPlus 2015, 4, 90. [Google Scholar] [CrossRef] [Green Version]
- Jigău, G.; Motelica, M.; Lesanu, M.; Tofan, E.; Georgescu, L.; Iticescu, C.; Rogut, V.; Nedealcov, S. Heavy metals in the anthropogenic cycle of elements. In Soil as World Heritage; Dent, D., Ed.; Springer: Dordrecht, The Netherlands, 2014; pp. 61–68. [Google Scholar] [CrossRef]
- Sumner, M.E. Beneficial use of effluents, wastes, and Biosolids. Commun. Soil Sci. Plant Anal. 2000, 31, 1701–1715. [Google Scholar] [CrossRef]
- Hejna, M.; Onelli, E.; Moscatelli, A.; Bellotto, M.; Cristiani, C.; Stroppa, N.; Rossi, L. Heavy-metal phytoremediation from livestock wastewater and exploitation of exhausted biomass. Int. J. Environ. Res. Public Health 2021, 18, 2239. [Google Scholar] [CrossRef]
- Sager, M. Trace and nutrient elements in manure, dung and compost samples in Austria. Soil Biol. Biochem. 2007, 39, 1383–1390. [Google Scholar] [CrossRef]
- Razmi, B.; Ghasemi-Fasaei, R.; Ronaghi, A.; Mostowfizadeh-Ghalamfarsa, R. Investigation of factors affecting phytoremediation of multi-elements polluted calcareous soil using Taguchi optimization. Ecotoxicol. Environ. Saf. 2021, 207, 111315. [Google Scholar] [CrossRef] [PubMed]
- Tonk, S.; Magyarosi, K. Phytoextraction of Heavy Metals Cd(II), Cu(II), Zn(II) from Contaminated Soils. 2016. Available online: https://kt.sapientia.ro/ro/cercetari-cu-studenii/fitoextractia-metalelor-grele-cd-ii-cu-ii-zn-ii-din-soluri-contaminat (accessed on 16 April 2022).
- Van Oosten, M.J.; Maggio, A. Functional biology of halophytes in the phytoremediation of heavy metal contaminated soils. Environ. Exp. Bot. 2015, 111, 135–146. [Google Scholar] [CrossRef]
- Suman, J.; Uhlik, O.; Viktorova, J.; Macek, T. Phytoextraction of heavy metals: A promising tool for clean-up of polluted environment? Front. Plan. Sci. 2018, 9, 1476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Türkdoğan, K.; Kapcı, M.; Akpınar, O.; Duman, A.; Bacakoğlu, G.; Türkdoğan, F.T.; Karabacak, M.; Eren, H.; Coşkun, A. Demographic characteristics of patients in a State Hospital Emergency Service: Meta-analysis of 2011. J. Clin. Ex. Investig. 2013, 4, 274–278. [Google Scholar] [CrossRef] [Green Version]
- Subhashini, V.; Swamy, A.V. Phytoremediation of Pb and Ni contaminated soils using Catharanthus roseus (L.). Univers. J. Environ. Res. Technol. 2013, 3, 465–472. [Google Scholar]
- Järup, L. Hazards of heavy metal contamination. Br. Med. Bull. 2003, 68, 167–182. [Google Scholar] [CrossRef] [Green Version]
- Morkunas, I.; Woźniak, A.; Mai, V.; Rucińska-Sobkowiak, R.; Jeandet, P. The role of heavy metals in plant response to biotic stress. Molecules 2018, 23, 2320. [Google Scholar] [CrossRef] [Green Version]
- Ashfaque, F.; Inam, A.; Sahay, S.; Iqbal, S. Influence of heavy metal toxicity on plant growth, metabolism and its alleviation by phytoremediation—A promising technology. J. Agric. Ecol. Res. Int. 2016, 6, 1–19. [Google Scholar] [CrossRef]
- Haque, M.; Biswas, K.; Narayan Sinha, S. Phytoremediation strategies of some plants under heavy metal stress. In Plant Stress Physiology; Akbar, H., Ed, Eds.; IntechOpen: London, UK, 2021; p. 243. [Google Scholar] [CrossRef]
- Moulick, D.; Chowardhara, B.; Panda, S.K. Agroecotoxicological aspect of arsenic (As) and cadmium (Cd) on field crops and its mitigation: Current status and future prospect. In Plant-Metal Interactions; Srivastava, S., Srivastava, A., Suprasanna, P., Eds.; Springer: Cham, Switzerland, 2019; pp. 217–246. [Google Scholar] [CrossRef]
- Singh, P.; Siddiqui, H.; Sami, F.; Arif, Y.; Bajguz, A.; Hayat, S. Cadmium: A threatening agent for plants. In Plant Responses to Soil Pollution; Singh, P., Singh, S.K., Prasad, S.M., Eds.; Springer: Singapore, 2020; pp. 59–88. [Google Scholar] [CrossRef]
- Upadhyay, R.K.; Panda, S.K. Copper-induced growth inhibition, oxidative stress and ultrastructural alterations in freshly grown water lettuce (Pistia stratiotes L.). Comptes Rendus Biol. 2009, 332, 623–632. [Google Scholar] [CrossRef]
- Kotecha, M.; Medhavi; Chaudhary, S.; Marwa, N.; Deeba, F.; Pandey, V.; Prasad, V. Metals, Crops and Agricultural Productivity: Impact of Metals on Crop Loss. In Plant-Metal Interactions; Srivastava, S., Srivastava, A., Suprasanna, P., Eds.; Springer: Cham, Switzerland, 2019; pp. 191–216. [Google Scholar] [CrossRef]
- Dubey, S.; Shri, M.; Gupta, A.; Rani, V.; Chakrabarty, D. Toxicity and detoxification of heavy metals during plant growth and metabolism. Environ. Chem. Lett. 2018, 16, 1169–1192. [Google Scholar] [CrossRef]
- Zhang, J.; Hamza, A.; Xie, Z.; Hussain, S.; Brestic, M.; Tahir, M.A.L.; Ulhassan, Z.; Yu, M.; Allakhverdiev, S.I.; Shabala, S. Arsenic transport and interaction with plant metabolism: Clues for improving agricultural productivity and food safety. Environ. Pollut. 2021, 290, 117987. [Google Scholar] [CrossRef] [PubMed]
- Zemanová, V.; Pavlíková, D.; Hnilička, F.; Pavlík, M. Arsenic toxicity-induced physiological and metabolic changes in the shoots of Pteris cretica and Spinacia oleracea. Plants 2021, 10, 2009. [Google Scholar] [CrossRef] [PubMed]
- Garg, N.; Singla, P. Arsenic toxicity in crop plants: Physiological effects and tolerance mechanisms. Review. Environ. Chem. Lett. 2011, 9, 303–321. [Google Scholar] [CrossRef]
- Nas, F.S.; Ali, M. The effect of lead on plants in terms of growing and biochemical parameters: A review. MOJ Eco. Environ. Sci. 2018, 3, 265–268. [Google Scholar] [CrossRef]
- Pourrut, B.; Shahid, M.; Dumat, C.; Winterton, P.; Pinelli, E. Lead uptake, toxicity, and detoxification in plants. Rev. Environ. Contam. Toxicol. 2011, 213, 113–136. [Google Scholar] [CrossRef] [Green Version]
- Zaheer, I.E.; Ali, S.; Rizwan, M.; Farid, M.; Shakoor, M.B.; Gill, R.A.; Najeeb, U.; Iqbal, N.; Ahmad, R. Citric acid assisted phytoremediation of copper by Brassica napus L. Ecotoxicol. Environ. Saf. 2015, 120, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.K.; Jha, P.; Desai, N.; Jobby, R. Plant-chromium interactions: From toxicity to remediation. In Plant-Metal Interactions; Srivastava, S., Srivastava, A., Suprasanna, P., Eds.; Springer: Cham, Switzerland, 2019; pp. 169–189. [Google Scholar] [CrossRef]
- Shah, F.U.R.; Ahmad, N.; Masood, K.R.; Peralta-Videa, J.R.; Ahmad, F.U.D. Heavy metal toxicity in plants. In Plant Adaptation and Phytoremediation; Ashraf, M., Oztruk, M., Ahmed, M.S., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 71–97. [Google Scholar] [CrossRef]
- Hernández-Baranda, Y.; Rodríguez-Hernández, P.; Peña-Icart, M.; Meriño-Hernández, Y.; Cartya-Rubio, O. Toxicity of cadmium in plants and strategies to reduce its effects. Case study: The tomato. Cultiv. Trop. 2019, 40, e10. [Google Scholar]
- Haschek-Hock, W.M.; Rousseaux, C.G.; Wallig, M.A.; Bolon, B. Toxicologic Pathology: An Introduction. In Haschek and Rousseaux’s Handbook of Toxicologic Pathology: Principles and Practice of Toxicologic Pathology, 4th ed.; Academic Press: Cambridge, MA, USA, 2021; Volume 1, pp. 1–12. [Google Scholar] [CrossRef]
- Toxicological Profile for Zinc. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp60.pdf (accessed on 21 March 2022).
- Ametepey, S.T.; Cobbina, S.J.; Akpabey, F.J.; Duwiejuah, A.B.; Abuntori, Z.N. Health risk assessment and heavy metal contamination levels in vegetables from Tamale Metropolis, Ghana. Int. J. Food Contam. 2018, 5, 5. [Google Scholar] [CrossRef] [Green Version]
- Vaclavikova, M.; Gallios, G.P.; Hredzak, S.; Jakabsky, S. Removal of arsenic from water streams: An overview of available techniques. Clean Techn. Environ. Policy 2008, 10, 89–95. [Google Scholar] [CrossRef]
- Abdul, K.S.M.; Jayasinghe, S.S.; Chandana, E.P.; Jayasumana, C.; De Silva, P.M.C. Arsenic and human health effects: A review. Environ. Toxicol. Pharmacol. 2015, 40, 828–846. [Google Scholar] [CrossRef]
- World Health Organization. Exposure to Arsenic: A Major Public Health Concern. 2010. Available online: www.who.int/ipcs/features/arsenic.pdf (accessed on 18 January 2022).
- Padmavathiamma, P.K.; Li, L.Y. Phytoremediation technology: Hyper-accumulation metals in plants. Water Air Soil Pollut. 2007, 184, 105–126. [Google Scholar] [CrossRef]
- Mousavi Kouhi, S.M.; Moudi, M. Assessment of phytoremediation potential of native plant species naturally growing in a heavy metal-polluted saline–sodic soil. Environ. Sci. Pollut. Res. 2020, 27, 10027–10038. [Google Scholar] [CrossRef] [PubMed]
- Ferner, D.J. Toxicity of heavy metals. Med. J. 2001, 2, 1. [Google Scholar]
- Kimáková, T.; Vargová, V.; Onačillová, E.; Cimboláková, I.; Uher, I.; Harich, P.; Schuster, J.; Poráčová, J. Mercury Accumulation in Plants from Contaminated Arable Lands in Eastern Slovakia. Ann. Agric. Environ. Med. 2020, 27, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Ismael, M.A.; Elyamine, A.M.; Moussa, M.G.; Cai, M.; Zhao, X.; Hu, C. Cadmium in plants: Uptake, toxicity, and its interactions with selenium fertilizers. Metallomics 2019, 11, 255–277. [Google Scholar] [CrossRef] [PubMed]
- Jomova, K.; Valko, M. Mercury toxicity. In Encyclopedia of Metalloproteins; Springer: New York, NY, USA, 2013; pp. 1367–1372. [Google Scholar] [CrossRef]
- Myers, A. Mercury Overload: What It Is & How It Affects Your Health. 2017. Available online: https://www.amymyersmd.com/article/mercury-overload-health/ (accessed on 17 December 2022).
- Shekhawat, K.; Chatterjee, S.; Joshi, B. Chromium toxicity and its health hazards. Int. J. Adv. Res. 2015, 7, 167–172. [Google Scholar]
- Sajad, M.A.; Khan, M.S.; Bahadur, S.; Shuaib, M.; Naeem, A.; Zaman, W.; Ali, H. Nickel phytoremediation potential of some plant species of the Lower Dir, Khyber Pakhtunkhwa, Pakistan. Limnol. Rev. 2020, 20, 13–22. [Google Scholar] [CrossRef]
- Alam, M.; Khan, M.; Khan, A.; Zeb, S.; Khan, M.A.; Amin, N.U.; Sajid, M.; Khattak, A.M. Concentrations, dietary exposure, and human health risk assessment of heavy metals in market vegetables of Peshawar, Pakistan. Environ. Monit. Assess. 2018, 190, 505. [Google Scholar] [CrossRef]
- Ji, G.L.; Wang, J.H.; Zhang, X.N. Environmental problems in soil and groundwater induced by acid rain and management strategies in China. In Soils and Groundwater Pollution and Remediation; Huang, P.M., Iskandar, I.K., Eds.; CRC Press: London, UK, 2000; pp. 201–224. [Google Scholar]
- Gebrekidan, A.; Weldegebriel, Y.; Hadera, A.; Van der Bruggen, B. Toxicological assessment of heavy metals accumulated in vegetables and fruits grown in Ginfel river near Sheba Tannery, Tigray, Northern Ethiopia. Ecotoxicol. Environ. Saf. 2013, 95, 171–178. [Google Scholar] [CrossRef]
- Stasinos, S.; Zabetakis, I. The uptake of nickel and chromium from irrigation water by potatoes, carrots and onions. Ecotoxicol. Environ. Saf. 2013, 91, 122–128. [Google Scholar] [CrossRef]
- Clemens, S.; Aarts, M.G.; Thomine, S.; Verbruggen, N. Plant science: The key to preventing slow cadmium poisoning. Trends. Plant Sci. 2013, 18, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Duan, S.; Wu, Q.; Yu, M.; Shabala, S. Reducing cadmium accumulation in plants: Structure–function relations and tissue-specific operation of transporters in the spotlight. Plants 2020, 9, 223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pal, J.; Bishnoi, M.; Kaur, M. Heavy metals in soil and vegetables and their effect on health. Int. J. Eng. Sci. Technol. 2017, 2, 17–27. [Google Scholar] [CrossRef]
- Arora, M.; Kiran, B.; Rani, S.; Rani, A.; Kaur, B.; Mittal, N. Heavy metal accumulation in vegetables irrigated with water from different sources. Food Chem. 2008, 111, 811–815. [Google Scholar] [CrossRef]
- Niţu, M.; Pruteanu, A.; Bordean, D.M.; Popescu, C.; Deak, G.; Boboc, M.; Mustăţea, G. Researches on the accumulation and transfer of heavy metals in the soil in tomatoes—Solanum lycopersicum. E3S Web Conf. 2019, 112, 03020. [Google Scholar] [CrossRef] [Green Version]
- Bayissa, L.D.; Gebeyehu, H.R. Vegetables contamination by heavy metals and associated health risk to the population in Koka area of central Ethiopia. PLoS ONE 2021, 16, e0254236. [Google Scholar] [CrossRef] [PubMed]
- Latif, A.; Bilal, M.; Asghar, W.; Azeem, M.; Ahmad, M.I.; Abbas, A.; Shahzad, T. Heavy metal accumulation in vegetables and assessment of their potential health risk. J. Environ. Anal. Chem. 2018, 5, 1–7. [Google Scholar] [CrossRef]
- Pajević, S.; Arsenov, D.; Nikolić, N.; Borišev, M.; Orčić, D.; Župunski, M.; Mimica-Dukić, N. Heavy metal accumulation in vegetable species and health risk assessment in Serbia. Environ. Monit. Assess. 2018, 190, 459. [Google Scholar] [CrossRef] [PubMed]
- Leblebici, Z.; Kar, M.; Başaran, L. Assessment of the heavy metal accumulation of various green vegetables grown in Nevşehir and their risks human health. Environ. Monit. Assess. 2020, 192, 483. [Google Scholar] [CrossRef]
- Leblebici, Z.; Aksoy, A.; Akgul, G. Accumulation and effects of heavy metals on potatoes (Solanum tuberosum L.) in the Nevsehir, Turkey. Fresenius Environ. Bull. 2017, 26, 7083–7090. [Google Scholar]
- Antisari, L.V.; Orsini, F.; Marchetti, L.; Vianello, G.; Gianquinto, G. Heavy metal accumulation in vegetables grown in urban gardens. Agron. Sustai. Dev. 2015, 35, 1139–1147. [Google Scholar] [CrossRef]
- Amin, N.U.; Hussain, A.; Alamzeb, S.; Begum, S. Accumulation of heavy metals in edible parts of vegetables irrigated with waste water and their daily intake to adults and children, District Mardan, Pakistan. Food Chem. 2013, 136, 1515–1523. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, D.; Bairagi, H.; Mukhopadhyay, S.; Pal, A.; Bera, D.; Ray, L. Heavy metal contamination in fruits and vegetables in two districts of West Bengal, India. Elec. J. Env. Agricult. Food Chem. 2010, 9, 1423–1432. [Google Scholar]
- Skordas, K.; Papastergios, G.; Filippidis, A. Major and trace element contents in apples from a cultivated area of Central Greece. Environ. Monit. Assess. 2013, 185, 8465–8471. [Google Scholar] [CrossRef]
- Sandil, S.; Dobosy, P.; Kröpfl, K.; Füzy, A.; Óvári, M.; Záray, G. Effect of irrigation water containing arsenic on elemental composition of bean and lettuce plants cultivated in calcareous sandy soil. Food. Prod. Process Nutr. 2019, 1, 14. [Google Scholar] [CrossRef] [Green Version]
- Gupta, N.; Yadav, K.K.; Kumar, V.; Prasad, S.; Cabral-Pinto, M.M.; Jeon, B.H.; Kumar, S.; Abdellattif, M.H.; Alsukaibia, A.K.D. Investigation of heavy metal accumulation in vegetables and health risk to humans from their consumption. Front. Environ. Sci. 2022, 10, 791052. [Google Scholar] [CrossRef]
- Alsafran, M.; Usman, K.; Rizwan, M.; Ahmed, T.; Al Jabri, H. The carcinogenic and non-carcinogenic health risks of metal(oid)s bioaccumulation in leafy vegetables: A consumption advisory. Front. Environ. Sci. 2021, 9, 380. [Google Scholar] [CrossRef]
- Zulfiqar, U.; Farooq, M.; Hussain, S.; Maqsood, M.; Hussain, M.; Ishfaq, M.; Ahmad, M.; Anjum, M.Z. Lead toxicity in plants: Impacts and remediation. J. Environ. Manag. 2019, 250, 109557. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Zacharias, M.; Kalpana, S.; Mishra, S. Heavy metals accumulation and distribution pattern in different vegetable crops. J. Environ. Chem. Ecotoxicol. 2018, 4, 170–177. [Google Scholar] [CrossRef]
- Aransiola, S.A.; Ijah, U.J.; Abioye, O.P. Phytoremediation of lead polluted soil by glycine max L. Appl. Environ. Soil Sci. 2013, 2013, 631619. [Google Scholar] [CrossRef] [Green Version]
- Yashim, Z.I.; Kehinde Israel, O.; Hannatu, M.A. Study of the uptake of heavy metals by plants near metal-scrap dumpsite in Zaria, Nigeria. J. Appl. Chem. 2014, 4, 394650. [Google Scholar] [CrossRef] [Green Version]
- Antonious, G.F.; Snyder, J.C. Accumulation of heavy metals in plants and potential phytoremediation of lead by potato, Solanum tuberosum L. J. Environ. Sci. Health Part A 2007, 42, 811–816. [Google Scholar] [CrossRef] [PubMed]
- Musilova, J.; Bystricka, J.; Lachman, J.; Harangozo, L.; Trebichalsky, P.; Volnova, B. Potatoes—A crop resistant against input of heavy metals from the metallicaly contaminated soil. Int. J. Phytoremediation 2016, 18, 547–552. [Google Scholar] [CrossRef] [PubMed]
- Codling, E.E.; Chaney, R.L.; Green, C.E. Accumulation of lead and arsenic by potato grown on lead–arsenate-contaminated orchard soils. Commun. Soil Sci. Plant Anal. 2016, 47, 799–807. [Google Scholar] [CrossRef]
- Rosen, C.J. Lead in the home garden and urban soil environment. Communication and Educational Technology Services. Univ. Minn. Ext. 2002, 1–3. [Google Scholar]
- TatahMentan, M.; Nyachoti, S.; Scott, L.; Phan, N.; Okwori, F.O.; Felemban, N.; Godebo, T.R. Toxic and essential elements in rice and other grains from the United States and other countries. Int. J. Environ. Res. Public Health 2020, 17, 8128. [Google Scholar] [CrossRef]
- Asgari, K.; Cornelis, W.M. Heavy metal accumulation in soils and grains, and health risks associated with use of treated municipal wastewater in subsurface drip irrigation. Environ. Monit. Assess. 2015, 187, 410. [Google Scholar] [CrossRef]
- Baczek-Kwinta, R.; Borek, J.; Antonkiewicz, M.; Bartoszek, A.; Kusznierewicz, B. Cabbage—A zinc hyperaccumulator? In Proceedings of the 15th International Conference on Heavy Metals in the Environment, Gdansk University of Technology, Chemical Faculty, Gdansk, Poland, 19–23 September 2010; p. 1071. [Google Scholar]
- Islam, E.; Yang, X.E.; He, Z.L.; Mahmood, Q. Assessing potential dietary toxicity of heavy metals in selected vegetables and food crops. J. Zhejiang. Univ. Sci. Part B 2007, 8, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Perelló, G.; Martí-Cid, R.; Llobet, J.M.; Domingo, J.L. Effects of various cooking processes on the concentrations of arsenic, cadmium, mercury, and lead in foods. J. Agric. Food Chem. 2008, 56, 11262–11269. [Google Scholar] [CrossRef]
- Zahir, F.; Rizwi, S.J.; Haq, S.K.; Khan, R.H. Low dose mercury toxicity and human health. Environ. Toxicol. Pharmacol. 2005, 20, 351–360. [Google Scholar] [CrossRef]
- Torres, M. 6 Natural Solution to Decontaminate the Soil. 2015. Available online: https://www.wakingtimes.com/2015/05/01/6-natural-solutions-to-decontaminate-soil/ (accessed on 21 May 2022).
- Hajar, E.W.I.; Sulaiman, A.Z.B.; Sakinah, A.M. Assessment of heavy metals tolerance in leaves, stems and flowers of Stevia rebaudiana plant. Procedia Environ. Sci. 2014, 20, 386–393. [Google Scholar] [CrossRef] [Green Version]
- Giacomino, A.; Malandrino, M.; Colombo, M.L.; Miaglia, S.; Maimone, P.; Blancato, S. Metal content in dandelion (Taraxacum officinale) leaves: Influence of vehicular traffic and safety upon consumption as food. J. Chem. 2016, 2016, 9842987. [Google Scholar] [CrossRef] [Green Version]
- Luo, L.; Wang, B.; Jiang, J.; Fitzgerald, M.; Huang, Q.; Yu, Z.; Li, H.; Zhang, J.; Wei, J.; Yang, C.; et al. Heavy metal contaminations in herbal medicines: Determination, comprehensive risk assessments, and solutions. Front Pharmacol. 2021, 11, 595335. [Google Scholar] [CrossRef] [PubMed]
- Bağdat, R.B.; Eid, E.M. Phytoremedation behaviour of some medicinal and aromatic plants to various pollutants. J. Field Crops Cent. Res. Inst. 2007, 16, 1–10. [Google Scholar]
- Pirzadah, T.B.; Malik, B.; Dar, F.A. Phytoremediation potential of aromatic and medicinal plants: A way forward for green economy. J. Stress Physiol. Biochem. 2019, 15, 62–75. [Google Scholar]
- Gawęda, M. Heavy metal content in common correl plants (Rumex Acetosa L.) obtained from natural sites in Małopolska Province. Pol. J. Environ. Stud. 2009, 18, 213–218. [Google Scholar]
- Bărbulescu, A.; Barbeş, L.; Dumitriu, C.Ş. Impact of soil pollution on melliferous plants. Toxics 2022, 10, 239. [Google Scholar] [CrossRef]
- Boawn, L.C.; Rasmussen, P.E. Crop response to excessive zinc fertilization of alkaline soil. Agron. J. 1971, 63, 874–876. [Google Scholar] [CrossRef]
- Nowakowski, P.; Markiewicz-Żukowska, R.; Soroczyńska, J.; Puścion-Jakubik, A.; Mielcarek, K.; Borawska, M.H.; Socha, K. Evaluation of toxic element content and health risk assessment of edible wild mushrooms. J. Food. Compost. Anal. 2021, 96, 103698. [Google Scholar] [CrossRef]
- Árvay, J.; Tomáš, J.; Hauptvogl, M.; Kopernická, M.; Kováčik, A.; Bajčan, D.; Massányi, P. Contamination of wild-grown edible mushrooms by heavy metals in a former mercury-mining area. J. Environ. Sci. Health Part B 2014, 49, 815–827. [Google Scholar] [CrossRef]
- Demková, L.; Árvay, J.; Hauptvogl, M.; Michalková, J.; Šnirc, M.; Harangozo, Ľ.; Bobuľská, L.; Bajčan, D.; Kunca, V. Mercury content in three edible wild-growing mushroom species from different environmentally loaded areas in Slovakia: An ecological and human health risk assessment. J. Fungi 2021, 7, 434. [Google Scholar] [CrossRef] [PubMed]
- Bressa, G.; Cima, L.; Costa, P. Bioaccumulation of Hg in the mushroom Pleurotus ostreatus. Ecotoxicol. Environ. Saf. 1988, 16, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.A.; Rahman, M.M.; Reichman, S.M.; Lim, R.P.; Naidu, R. Heavy metals in Australian grown and imported rice and vegetables on sale in Australia: Health hazard. Ecotoxicol. Environ. Saf. 2014, 100, 53–60. [Google Scholar] [CrossRef]
- Humphreys, D.J. Effects of exposure to excessive quantities of lead on animals. Br. Vet. J. 1991, 147, 18–30. [Google Scholar] [CrossRef] [PubMed]
- Chary, N.S.; Kamala, C.T.; Raj, D.S.S. Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotoxicol. Environ. Saf. 2008, 69, 513–524. [Google Scholar] [CrossRef]
- Arnich, N.; Sirot, V.; Rivière, G.; Jean, J.; Noël, L.; Guérin, T.; Leblanc, J.-C. Dietary exposure to trace elements and health risk assessment in the 2nd French total diet study. Food Chem. Toxicol. 2012, 50, 2432–2449. [Google Scholar] [CrossRef]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef]
- Ihedioha, J.N.; Okoye, C.O.B. Dietary intake and health risk assessment of lead and cadmium via consumption of cow meat for an urban population in Enugu State, Nigeria. Ecotoxicol. Environ. Saf. 2013, 93, 101–106. [Google Scholar] [CrossRef]
- Leontopoulos, S.; Gougoulias, N.; Kantas, D.; Roka, L.; Makridis, C. Heavy metal accumulation in animal tissues and internal organs of pigs correlated with feed habits. Bulg. J. Agric. Sci. 2015, 21, 693–697. [Google Scholar]
- Gašparík, J.; Binkowski, Ł.J.; Jahnátek, A.; Šmehýl, P.; Dobiaš, M.; Lukáč, N.; Błaszczyk, M.; Semla, M.; Massanyi, P. Levels of metals in kidney, liver, and muscle tissue and their influence on the fitness for the consumption of wild boar from western Slovakia. Biol. Trace. Elem. Res. 2017, 177, 258–266. [Google Scholar] [CrossRef] [Green Version]
- Kasprzyk, A.; Kilar, J.; Chwil, S.; Rudaś, M. Content of selected macro- and microelements in the liver of free-living wild boars (Sus scrofa L.) from agricultural areas and health risks associated with consumption of liver. Animals 2020, 10, 1519. [Google Scholar] [CrossRef] [PubMed]
- Kicińska, A.; Glichowska, P.; Mamak, M. Micro- and macroelement contents in the liver of farm and wild animals and the health risks involved in liver consumption. Environ. Monit. Assess. 2019, 191, 132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bilandžić, N.; Sedak, M.; Čalopek, B.; Đokić, M.; Varenina, I.; Solomun Kolanović, B.; Božić Luburić, Đ.; Varga, I.; Roncarati, A. Evaluation of element concentrations in beef and pork meat cuts available to the population in the croatian capital. Foods 2020, 9, 1861. [Google Scholar] [CrossRef]
- Korish, M.A.; Attia, Y.A. Evaluation of heavy metal content in feed, litter, meat, meat products, liver, and table eggs of chickens. Animals 2020, 10, 727. [Google Scholar] [CrossRef] [Green Version]
- Abduljaleel, S.A.; Shuhaimi-Othman, M. Metals concentrations in eggs of domestic avian and estimation of health risk from eggs consumption. J. Biol. Sci. 2011, 11, 448–453. [Google Scholar] [CrossRef] [Green Version]
- Demirulus, H. The heavy metal content in chicken eggs consumed in Van Lake Territory. Ekoloji 2013, 22, 19–25. [Google Scholar] [CrossRef]
- Sarkar, A.; Hossain, M.; Sarkar, A.C. Heavy metal residue in eggs of chicken (Gallus gallus domesticus) available in Sylhet. Fifth Int. Chem. Eng. (ICChE) 2017, 146–154. [Google Scholar]
- Sobhanardakani, S. Assessment of levels and health risk of heavy metals (Pb, Cd, Cr, and Cu) in commercial hen’s eggs from the city of Hamedan. Pollution 2017, 3, 669–677. [Google Scholar] [CrossRef]
- Waegeneers, N.; Hoenig, M.; Goeyens, L.; De Temmerman, L. Trace elements in home-produced eggs in Belgium: Levels and spatiotemporal distribution, Sci. Total Environ. 2008, 407, 4397–4402. [Google Scholar] [CrossRef]
- Roman, A.; Bartkowiak, A.; Reginia, M. The accumulation of selected chemical elements of toxic properties in bee honey originating from the industrial and rural-forest areas. ISAH-Tartu 2007, 2, 877–881. [Google Scholar]
- Abd Wahid, D.N.; Nazarie, W.F.W.; Jawan, R.; Abdulla, R.; Gansau, J.A.; Sabullah, M.K. Potential existence of heavy metal pollution and pesticide in honey-based products. Preprints 2021, 2021120379. [Google Scholar] [CrossRef]
- Aldgini, H.M.; Al-Abbadi, A.A.; Abu-Nameh, E.S.; Alghazeer, R.O. Determination of metals as bio indicators in some selected bee pollen samples from Jordan. Saudi J. Biol. Sci. 2019, 26, 1418–1422. [Google Scholar] [CrossRef] [PubMed]
- Bartha, S.; Taut, I.; Goji, G.; Vlad, I.A.; Dinulică, F. Heavy metal content in polyfloralhoney and potential health risk. A case study of Copșa Mică, Romania. Int. J. Environ. Res. Public Health 2020, 17, 1507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Fiore, C.; Nuzzo, A.; Torino, V.; De Cristofaro, A.; Notardonato, I.; Passarella, S.; Di Giorgi, S.; Avino, P. Honeybees as bioindicators of heavy metal pollution in urban and rural areas in the South of Italy. Atmosphere 2022, 13, 624. [Google Scholar] [CrossRef]
- Vakhonina, E.A.; Lapynina, E.P.; Lizunova, A.S. Study of toxic elements in propolis. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Michurinsk, Russia, 2021; Volume 845, p. 012122. [Google Scholar] [CrossRef]
- Borg, D.; Attard, E. Honeybees and their products as bioindicators for heavy metal pollution in Malta. Acta Brasiliensis 2020, 4, 60–69. [Google Scholar] [CrossRef] [Green Version]
- Bakhtegareeva, Z.; Kozlova, G.; Onina, S. Soil acidity influence on heavy metal concentrations in soil and bee products. Bull. Sci. Pract. 2019, 5, 184–188. [Google Scholar] [CrossRef]
- Tomczyk, M.; Zaguła, G.; Puchalski, C.; Dżugan, M. Transfer of some toxic metals from soil to honey depending on bee habitat conditions. Acta Univ. Cibiniensis Ser. E Food Technol. 2020, 24, 49–59. [Google Scholar] [CrossRef]
- Monchanin, C.; de Brito Sanchez, M.G.; Lecouvreur, L.; Boidard, O.; Méry, G.; Silvestre, J.; Le Roux, G.; Baqué, D.; Elger, A.; Barron, A.B.; et al. Honey bees cannot sense harmful concentrations of metal pollutants in food. Chemosphere 2022, 297, 134089. [Google Scholar] [CrossRef]
- Sivakoff, F.S.; Gardiner, M.M. Soil lead contamination decreases bee visit duration at sunflowers. Urban Ecosyst. 2017, 20, 1221–1228. [Google Scholar] [CrossRef]
- Chekroun, K.B.; Baghour, M. The role of algae in phytoremediation of heavy metals: A review. J. Mater Environ. Sci. 2013, 4, 873–880. [Google Scholar]
- Sabreena; Hassan, S.; Bhat, S.A.; Kumar, V.; Ganai, B.A.; Ameen, F. Phytoremediation of heavy metals: An indispensable contrivance in green remediation technology. Plants 2022, 11, 1255. [Google Scholar] [CrossRef] [PubMed]
- Mirza, N.; Pervez, A.; Mahmood, Q.; Ahmad, S.S. Phytoremediation of arsenic (As) and mercury (Hg) contaminated soil. World Appl. Sci. J. 2010, 1, 113–118. [Google Scholar]
- Oyewole, O.A.; Zobeashia, S.S.; Oladoja, E.O.; Raji, R.O.; Odiniya, E.E.; Musa, A.M. Biosorption of heavy metal polluted soil using bacteria and fungi isolated from soil. SN Appl. Sci. 2019, 1, 857. [Google Scholar] [CrossRef] [Green Version]
- Viktorova, J.; Jandova, Z.; Madlenakova, M.; Prouzova, P.; Bartunek, V.; Vrchotova, B.; Lovecka, P.; Musilova, L.; Macek, T. Native phytoremediation potential of Urtica dioica for removal of PCBs and heavy metals can be improved by genetic manipulations using constitutive CaMV 35S promoter. PLoS ONE 2016, 11, e0167927. [Google Scholar] [CrossRef] [Green Version]
- Chehregani, A.; Malayeri, B.E. Removal of heavy metals by native accumulator plants. Int. J. Agri. Biol. 2007, 9, 462–465. [Google Scholar]
- Ahluwalia, A.K.; Sekhon, B.S. Bioremediation: Current scenario and a necessity in immediate future. Environ. Sci. Indian J. 2012, 7, 349–364. [Google Scholar]
- Fulekar, M.H.; Singh, A.; Bhaduri, A.M. Genetic engineering strategies for enhancing phytoremediation of heavy metals. Afr. J. Biotech. 2009, 8, 529–535. [Google Scholar]
- Zorrig, W.; Rabhi, M.; Ferchichi, S.; Smaoui, A.; Abdelly, C. Phytodesalination: A solution for salt-affected soils in arid and semi-arid regions. J. Arid Land Stud. 2012, 22, 299–302. [Google Scholar]
- Ndubueze, E.U. Potential of Five Plant Species for Phytoremediation of Metal-PAH-Pesticide Contaminated Soil. Electronic Thesis and Dissertation Repository, University of Western Ontario (Canada), 5342. 2018. Available online: https://ir.lib.uwo.ca/etd/5342 (accessed on 4 December 2022).
- Dana, M. Advanced Bioremediation Technologies. Course Support and Practical Work, 2014, ISBE 4/2014–2015. Available online: https://dokumen.tips/documents/tehnologii-avansate-de-bioremediere-suport-de-curs-si-lucrari-.html?page=1 (accessed on 1 October 2022).
- Nakbanpote, W.; Meesungnoen, O.; Prasad, M.N.V. Potential of ornamental plants for phytoremediation of heavy metals and income generation. In Bioremediation and Bioeconomy; Prasad, M.N., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 179–217. [Google Scholar] [CrossRef]
- Hooda, V. Phytoremediation of toxic metals from soil and waste water. J. Environ. Biol. 2007, 28, 367–376. [Google Scholar] [PubMed]
- Robinson, B.; Fernández, J.E.; Madejón, P.; Marañón, T.; Murillo, J.M.; Green, S.; Clothier, B. Phytoextraction: An assessment of biogeochemical and economic viability. Plant Soil 2003, 249, 117–125. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Allica, J.; Becerril, J.M.; Zárate, O.; Garbisu, C. Assessment of the efficiency of a metal phytoextraction process with biological indicators of soil health. Plant Soil 2006, 281, 147–158. [Google Scholar] [CrossRef]
- Aken, B.V.; Correa, P.A.; Schnoor, J.L. Phytoremediation of Polychlorinated Biphenyls: New Trends and Promises. Environ. Sci. Technol. 2010, 44, 2767–2776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akomolafe, G.F.; Onwusiri, K.C.; Adokpa, F.A. Phytoremediation and agricultural productivity—A mini review. J. Floric. Landscaping 2018, 4, 15–19. [Google Scholar] [CrossRef] [Green Version]
- Salt, D.E.; Blaylock, M.; Kumar, N.P.; Dushenkov, V.; Ensley, B.D.; Chet, I.; Raskin, I. Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Nat. Biotechnol. 1995, 13, 468–474. [Google Scholar] [CrossRef] [PubMed]
- Schnoor, J.L. Phytoremediation. Technology Evaluation Report, Ground-Water Remediation Technologies Analysis Center. 1997. Available online: https://www.gwrtac.org (accessed on 12 June 2022).
- Yan, A.; Wang, Y.; Tan, S.N.; Mohd Yusof, M.L.; Ghosh, S.; Chen, Z. Phytoremediation: A promising approach for revegetation of heavy metal-polluted land. Front. Plant Sci. 2020, 11, 359. [Google Scholar] [CrossRef]
- Mahajan, P.; Kaushal, J. Role of phytoremediation in reducing cadmium toxicity in soil and water. J. Toxicol. 2018, 2018, 4864365. [Google Scholar] [CrossRef] [Green Version]
- Farrag, K.; Senesi, N.; Rovira, P.S.; Brunetti, G. Effects of selected soil properties on phytoremediation applicability for heavy-metal-contaminated soils in the Apulia region, southern Italy. Environ. Monit. Assess. 2012, 184, 6593–6606. [Google Scholar] [CrossRef]
- Cojocaru, P.C.; Macoveanu, M. Decontamination of polluted soil with cadmium and zinc using greenhouse phytoremediation. Environ. Eng. Manag. J. 2011, 10, 349–355. [Google Scholar] [CrossRef]
- Cluis, C. Junk-greedy greens: Phytoremediation as a new option for soil decontamination. BioTeach J. 2004, 2, 61–67. [Google Scholar]
- Memon, A.R.; Aktoprakligil, D.; Özdemir, A.; Vertii, A. Heavy metal accumulation and detoxification mechanisms in plants. Turk. J. Bot. 2001, 25, 111–121. [Google Scholar]
- Meagher, R.B. Phytoremediation of toxic elemental and organicpollutants. Curr. Opin. Plant. Biol. 2000, 3, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Vishnoi, S.R.; Srivastava, P.N. Phytoremediation–green for environmental clean. Proc. Taal 12th World Lake Conf. 2007, 1016, 1016–1021. [Google Scholar]
- Sytar, O.; Kumar, A.; Latowski, D.; Kuczynska, P.; Strzałka, K.; Prasad, M.N.V. Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiol. Plant. 2013, 35, 985–999. [Google Scholar] [CrossRef]
- Kaushik, P. Use of natural organic and synthetic chelating agents for efficient phytoremediation. Int. J. Enhanced Res. Sci. Technol. Eng. 2015, 4, 99–101. [Google Scholar]
- Cameselle, C.; Chirakkara, R.A.; Reddy, K.R. Electrokinetic-enhanced phytoremediation of soils: Status and opportunities. Chemosphere 2013, 93, 626–636. [Google Scholar] [CrossRef]
- Gratão, P.L.; Prasad, M.N.; Cardoso, P.F.; Lea, P.J.; Azevedo, R.A. Phytoremediation: Green technology for the clean up of toxic metals in the environment. Braz. J. Plant Physiol. 2005, 17, 53–64. [Google Scholar] [CrossRef]
- He, S.; He, Z.; Yang, X.; Baligar, V.C. Mechanisms of nickel uptake and hyperaccumulation by plants and implications for soil remediation. Adv. Agron. 2012, 117, 117–189. [Google Scholar] [CrossRef]
- Krämer, U.; Pickering, I.J.; Prince, R.C.; Raskin, I.; Salt, D.E. Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol. 2000, 122, 1343–1353. [Google Scholar] [CrossRef] [Green Version]
- Hartley-Whitaker, J.; Ainsworth, G.; Vooijs, R.; Bookum, W.T.; Schat, H.; Meharg, A.A. Phytochelatins are involved in differential arsenate tolerance in Holcus lanatus. Plant Physiol. 2001, 126, 299–306. [Google Scholar] [CrossRef] [Green Version]
- Hou, D.; Wang, K.; Liu, T.; Wang, H.; Lin, Z.; Qian, J.; Lu, L.; Tian, S. Unique rhizosphere micro-characteristics facilitate phytoextraction of multiple metals in soil by the hyperaccumulating plant sedum alfredii. Environ. Sci. Technol. 2017, 51, 5675–5684. [Google Scholar] [CrossRef]
- Peuke, A.D.; Rennenberg, H. Phytoremediation: Molecular biology, requirements for application, environmental protection, public attention and feasibility. EMBO Rep. 2005, 6, 497–501. [Google Scholar] [CrossRef] [PubMed]
- Sheoran, V.; Sheoran, A.S.; Poonia, P. Role of hyperaccumulators in phytoextraction of metals from contaminated mining sites: A review. Crit. Rev. Environ. Sci. Technol. 2010, 41, 168–214. [Google Scholar] [CrossRef]
- Zgorelec, Z.; Bilandzija, N.; Knez, K.; Galic, M.; Zuzul, S. Cadmium and mercury phytostabilization from soil using Miscanthus x giganteus. Sci. Rep. 2020, 10, 6685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mangkoedihardjo, S.; Rahmawati, C.O.D.; Rinpropadebi, A.H.; Putri, L.M. Phytostabilization of lead in soil by ornamental local plants and enhanced by compost addition. Int. J. Acad. Res. 2012, 4, 95–100. [Google Scholar] [CrossRef]
- Suchismita, D.; Parag, S. Phytoremediation: A cost-effective clean up technique for soil and ground water contaminants. J. Environ. Res. Dev. 2012, 6, 1087–1091. [Google Scholar]
- Ansari, A.A.; Gill, S.S.; Gill, R.; Lanza, G.R.; Newman, L. Phytoremediation: Management of Environmental Contaminants, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2016; p. 3. [Google Scholar]
- Sarma, H. Metal hyperaccumulation in plants: A review focusing on phytoremediation technology. J. Environ. Sci. Technol. 2011, 4, 118–138. [Google Scholar] [CrossRef] [Green Version]
- US EPA. Introduction to Phytoremediation; EPA/600/R-99/107; US Environmental Protection Agency: Washington, DC, USA, 2000.
- Zine, H.; Midhat, L.; Hakkou, R.; El Adnani, M.; Ouhammou, A. Guidelines for a phytomanagement plan by the phytostabilization of mining wastes. Sci. Afr. 2020, 10, e00654. [Google Scholar] [CrossRef]
- Available online: https://www.cjgorj.ro/Date%20site/Ghiduri/Guide%20for%20Application%20of%20Phytoremediation%20in%20Romania.pdf (accessed on 25 December 2021).
- Henry, J.R. An Overview of the Phytoremediation of Lead and Mercury; National Network of Environmental Management Studies (NNEMS) Report; US Environmental Protection Agency: Washington, DC, USA, 2000; p. 55. Available online: http://clu-in.org/ (accessed on 11 December 2021).
- Sogut, Z.; Zaimoglu, B.Z.; Erdogan, R.; Sucu, M.Y. Phytoremediation of landfill leachate using Pennisetum clandestinum. J. Environ. Biol. 2005, 26, 13–20. [Google Scholar]
- Available online: http://articles.baltimoresun.com/1997-03-30/news/1997089110_1_phytoremediation-mustard-monmouth-junction (accessed on 31 January 2023).
- Shen, Z.; Zhang, Y.; McMillan, O.; O’Connor, D.; Hou, D. The use of biochar for sustainable treatment of contaminated soils. In Sustainable Remediation of Contaminated Soil and Groundwater; Elsevier: Amsterdam, The Netherlands, 2020; pp. 119–167. [Google Scholar] [CrossRef]
- Vasilachi, I.C.; Maria Gavrilescu, M. Methods for the Remediation of Soils Polluted with Heavy Metals. Bull. Polytech. Inst. Iaşi 2021, 67, 23–240. Available online: http://www.bipcic.icpm.tuiasi.ro/pdf/ (accessed on 23 December 2021).
- Kim, K.R.; Owens, G. Potential for enhanced phytoremediation of landfills using biosolids—A review. J. Environ. Manage. 2010, 91, 791–797. [Google Scholar] [CrossRef]
- Cristaldi, A.; Conti, G.O.; Jho, E.H.; Zuccarello, P.; Grasso, A.; Copat, C.; Ferrante, M. Phytoremediation of contaminated soils by heavy metals and pahs. A brief review. Environ. Technol. Innov. 2017, 8, 309–326. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Maiti, S.K. Phytoremediation of metal mine waste. Appl. Ecol. Environ. Res. 2010, 8, 207–222. [Google Scholar]
- Egendorf, S.P.; Groffman, P.; Moore, G.; Cheng, Z. The limits of lead (PB) phytoextraction and possibilities of phytostabilization in contaminated soil: A critical review. Int. J. Phytoremediation 2020, 22, 916–930. [Google Scholar] [CrossRef] [PubMed]
- Freitas, E.V.; Nascimento, C.W.; Souza, A.; Silva, F.B. Citric acid-assisted phytoextraction of lead: A field experiment. Chemosphere 2013, 92, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Li, J.T.; Baker, A.J.; Ye, Z.H.; Wang, H.B.; Shu, W.S. Phytoextraction of Cd-contaminated soils: Current status and future challenges. Crit. Rev. Environ. Sci. Technol. 2012, 42, 2113–2152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cristina Negri, M.; Hinchman, R.R. Plants that remove contaminants from the environment. Lab. Med. 1996, 27, 36–40. [Google Scholar] [CrossRef] [Green Version]
- Brown, S.L.; Chaney, R.L.; Angle, J.S.; Baker, A.J. Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens and metal tolerant Silene vulgaris grown on sludge-amended soils. Environ. Sci. Technol. 1995, 29, 1581–1585. [Google Scholar] [CrossRef]
- Li, J.T.; Liao, B.; Dai, Z.Y.; Zhu, R.; Shu, W.S. Phytoextraction of Cd-contaminated soil by carambola (Averrhoa carambola) in field trials. Chemosphere 2009, 76, 1233–1239. [Google Scholar] [CrossRef]
- Neagoe, A.; Iordache, V.; Fărcăşanu, I.C. Remediation of Polluted Areas; Universităţii din Bucureşti: București, Romania, 2011; p. 197. [Google Scholar]
- Shukla, A.; Srivastava, S. A review of phytoremediation prospects for arsenic contaminated water and soil. In Phytomanagement of Polluted Sites: Market Opportunities in Sustainable Phytoremediation; Elsevier Science BV: Amsterdam, The Netherlands, 2019; pp. 243–254. [Google Scholar] [CrossRef]
- Recent Developments for In Situ Treatment of Metal Contaminated Soils. 1997. Available online: http://clu-in.org/techfocus (accessed on 17 August 2022).
- Gavrilă, L. Biotehnologii de Depoluare şi Remediere a Solului. 2011. Available online: https://cadredidactice.ub.ro/gavrilalucian/files/2011/03/gavrila-biotehnologii-de-depoluare-si-remediere-a-solului.pdf (accessed on 16 March 2023).
- Doran, P.M. Application of plant tissue cultures in phytoremediation research: Incentives and limitations. Biotechnol. Bioeng. 2009, 103, 60–76. [Google Scholar] [CrossRef]
- Garbisu, C.; Alkorta, I. Phytoextraction: A cost-effective plant-based technology for the removal of metals from the environment. Bioresour. Technol. 2001, 77, 229–236. [Google Scholar] [CrossRef]
- Li, Y.M.; Chaney, R.; Brewer, E.; Roseberg, R.; Angle, J.S.; Baker, A.; Reeves, R.; Nelkin, J. Development of a technology for commercial phytoextraction of nickel: Economic and technical considerations. Plant Soil 2003, 249, 107–115. [Google Scholar] [CrossRef]
- Kumari, P.; Kumar, P.; Kumar, T. An overview of phytomining: A metal extraction process from plant species. J. Emerg. Technol. Innov. Res. 2019, 6, 1367–1376. Available online: https://www.jetir.org/papers/JETIRDY06218.pdf (accessed on 17 October 2022).
- Babu, S.M.O.F.; Hossain, M.B.; Rahman, M.S.; Rahman, M.; Ahmed, A.S.S.; Hasan, M.M.; Rakib, A.; Emran, T.B.; Xiao, J.; Simal-Gandara, J. Phytoremediation of toxic metals: A sustainable green solution for clean environment. Appl. Sci. 2021, 11, 10348. [Google Scholar] [CrossRef]
- Taeprayoon, P.; Homyog, K.; Meeinkuirt, W. Organic amendment additions to cadmium-contaminated soils for phytostabilization of three bioenergy crops. Sci. Rep. 2022, 12, 13070. [Google Scholar] [CrossRef]
- Abioye, O.P.; Ijah, U.J.; Aransiola, S.A. Phytoremediation of soil contaminants by the biodiesel plant Jatropha curcas. In Phytoremediation Potential Bioenergy Plants; Springer: Singapore, 2017; pp. 97–137. [Google Scholar] [CrossRef]
- Meers, E.; Van Slycken, S.; Adriaensen, K.; Ruttens, A.; Vangronsveld, J.; Du Laing, G.; Witters, N.; Thewys, T.; Tack, F.M.G. The use of bio-energy crops (Zea mays) for “phytoattenuation” of heavy metals on moderately contaminated soils: A field experiment. Chemosphere 2010, 78, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Fujii, T.; Murakami, K.; Endo, T.; Fujimoto, S.; Minowa, T.; Matsushika, A.; Yano, S.; Sawayama, S. Bench-scale bioethanol production from eucalyptus by high solid saccharification and glucose/xylose fermentation method. Bioprocess Biosyst. Eng. 2013, 37, 749–754. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.Y.; He, C.Q. Tolerance uptake and accumulation of cadmium by Ricinus communis L. J. Agro-Environ. Sci. 2005, 24, 674–677. [Google Scholar]
- Carrino, L.; Visconti, D.; Fiorentino, N.; Fagnano, M. Biofuel production with castor bean: A win–win strategy for marginal land. Agronomy 2020, 10, 1690. [Google Scholar] [CrossRef]
- Amin, H.; Arain, B.A.; Jahangir, T.M.; Abbasi, M.S.; Amin, F. Accumulation and distribution of lead (PB) in plant tissues of guar (Cyamopsis tetragonoloba L.) and sesame (Sesamum indicum L.): Profitable phytoremediation with biofuel crops. Geol. Ecol. Landsc. 2018, 2, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Nehnevajova, E.; Herzig, R.; Federer, G.; Erismann, K.H.; Schwitzguébel, J.P. Screening of sunflower cultivars for metal phytoextraction in a contaminated field prior to mutagenesis. Int. J. Phytoremediation 2005, 7, 337–349. [Google Scholar] [CrossRef]
- Saleem, M.H.; Ali, S.; Hussain, S.; Kamran, M.; Chattha, M.S.; Ahmad, S.; Aqeel, M.; Rizwan, M.; Aljarba, N.H.; Alkahtani, S.; et al. Flax (Linum usitatissimum L.): A potential candidate for phytoremediation? Biological and economical points of view. Plants 2020, 9, 496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Placido, D.F.; Lee, C.C. Potential of Industrial Hemp for Phytoremediation of Heavy Metals. Plants 2022, 11, 595. [Google Scholar] [CrossRef] [PubMed]
- Zheljazkov, V.D.; Nielsen, N.E. Effect of heavy metals on peppermint and cornmint. Plant and Soil 1996, 178, 59–66. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Nielsen, N.E. Studies on the effect of heavy metals (Cd, Pb, Cu, Mn, Zn and Fe) upon the growth, productivity and quality of lavender (Lavandula angustifolia Mill.) production. J. Essent. Oil Res. 1996, 8, 259–274. [Google Scholar] [CrossRef]
- Szczygłowska, M.; Piekarska, A.; Konieczka, P.; Namieśnik, J. Use of brassica plants in the phytoremediation and biofumigation processes. Int. J. Mol. Sci. 2011, 12, 7760–7771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Z.; Banuelos, G.S.; Lin, Z.Q.; Liu, Y.; Yuan, L.; Yin, X.; Li, M. Biofortification and phytoremediation of selenium in China. Front. Plant. Sci. 2015, 6, 136. [Google Scholar] [CrossRef]
- Pandey, V.C.; Bajpai, O. Phytoremediation: From theory toward practice. In Phytomanagement of Polluted Sites; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–49. [Google Scholar] [CrossRef]
- Boi, J. 5 Best Plants for Phytoremediation. 2015. Available online: https://land8.com/5-best-plants-for-phytoremediation/ (accessed on 23 December 2021).
- Kaller, B. Using Plants to Clean Contaminated Soil. 2014. Available online: https://www.resilience.org/stories/2014-08-11/using-plants-to-clean-contaminated-soil/ (accessed on 13 February 2022).
- Aliyu, H.G.; Adamu, H.M. The potential of maize as phytoremediation tool of heavy metals, Eur. Sci. J. 2014, 10, 30–37. [Google Scholar] [CrossRef]
- Bañuelos, G.S.; Arroyo, I.; Pickering, I.J.; Yang, S.I.; Freeman, J.L. Selenium biofortification of broccoli and carrots grown in soil amended with Se-enriched hyperaccumulator Stanleya pinnata. Food Chem. 2015, 166, 603–608. [Google Scholar] [CrossRef]
- Lew, D. Advantages and Limitations of Phytoremediation. 2022. Available online: https://www.drdarrinlew.us/ecotoxicological-effects/advantages-and-limitations-of-phytoremediation.html (accessed on 24 November 2022).
- Mavity, J. Organic Home Gardening Series: 10 Plants for Healing Contaminated Soil. 2017. Available online: https://basmati.com/2017/05/01/organic-home-gardening-series-10-plants-healing-contaminated-soil (accessed on 14 May 2022).
- Mondaca, P.; Catrin, J.; Verdejo, J.; Sauvé, S.; Neaman, A. Advances on the determination of thresholds of Cu phytotoxicity in field-contaminated soils in central Chile. Environ. Pollut. 2017, 223, 146–152. [Google Scholar] [CrossRef]
- Volf, I.; Stîngu, A.; Popa, V.I. New natural chelating agents with modulator effects on copper phytoextraction. Environ. Eng. Manag. J. 2012, 11, 487–491. [Google Scholar] [CrossRef]
- Available online: https://frtr.gov/matrix2/section4/4-3.html (accessed on 19 July 2022).
- Sameera, V.; Naga Deepthi, C.H.; Srinu Babu, G.; Ravi Teja, Y. Role of biosorption in environmental cleanup. J. Microbial. Biochem. Technol. 2011, 3, 1–8. [Google Scholar] [CrossRef]
- Jung, M.C.; Thornton, I. Heavy metal contamination of soils and plants in the vicinity of a lead-zinc mine, Korea. Appl. Geochem. 1996, 11, 53–59. [Google Scholar] [CrossRef]
- Uraguchi, S.; Watanabe, I.; Yoshitomi, A.; Kiyono, M.; Kuno, K. Characteristics of cadmium accumulation and tolerance in novel CD-accumulating crops, Avena strigosa and Crotalaria juncea. J. Exp. Bot. 2006, 57, 2955–2965. [Google Scholar] [CrossRef] [PubMed]
- Mendez, M.O.; Maier, R.M. Phytoremediation of mine tailings in temperate and arid environments. Rev. Environ. Sci. Biotechnol. 2008, 7, 47–59. [Google Scholar] [CrossRef]
- Zeeb, B.A.; Amphlett, J.S.; Rutter, A.; Reimer, K.J. Potential for Phytoremediation of Polychlorinated Biphenyl (PCB)–Contaminated Soil, Int. J. Phytoremediation 2006, 8, 199–221. [Google Scholar] [CrossRef]
- Rădulescu, C.; Stihi, C.; Barbes, L.; Chilian, A.; Chelarescu, D.E. Studies concerning heavy metals accumulation of Carduus nutans L. and Taraxacum officinale as potential soil bioindicator species. Rev. De Chim. 2013, 64, 754–760. [Google Scholar]
- Yu, X.Z.; Peng, X.Y.; Xing, L.Q. Effect of temperature on phytoextraction of hexavalent and trivalent chromium by hybrid willows. Ecotoxicology 2010, 19, 61–68. [Google Scholar] [CrossRef]
- Baghour, M.; Moreno, D.A.; Hernández, J.; Castilla, N.; Romero, L. Influence of root temperature on phytoaccumulation of As, Ag, Cr, and Sb in potato plants (Solanum tuberosum L. var. Spunta). J. Environ. Sci. Health Part A 2001, 36, 1389–1401. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, X.; Tu, C.; Huang, X.; Zhang, J.; Fang, H.; Huo, H.; Lin, C. Relationships between soil properties and the accumulation of heavy metals in different Brassica campestris L. growth stages in a Karst mountainous area. Ecotoxicol. Environ. Saf. 2020, 206, 111150. [Google Scholar] [CrossRef]
- Bhargava, A.; Carmona, F.F.; Bhargava, M.; Srivastava, S. Approaches for enhanced phytoextraction of heavy metals. J. Environ. Manag. 2012, 105, 103–120. [Google Scholar] [CrossRef]
- De Maria, S.; Puschenreiter, M.; Rivelli, A.R. Cadmium accumulation and physiological response of sunflower plants to CD during the vegetative growing cycle. Plant, Soil Environ. 2013, 59, 254–261. [Google Scholar] [CrossRef] [Green Version]
- Ji, P.; Song, Y.; Sun, T.; Liu, Y.; Cao, X.; Xu, D.; Yang, X.; McRae, T. In-situ cadmium phytoremediation using Solanum nigrum L.: The bio-accumulation characteristics trail. Int. J. Phytoremediation 2011, 13, 1014–1023. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhou, Q.; Wang, L.; Liu, W. The influence of different growth stages and dosage of EDTA on Cd uptake and accumulation in Cd-hyperaccumulator (Solanum nigrum L.). Bull. Environ. Contam. Toxicol. 2009, 82, 348–353. [Google Scholar] [CrossRef]
- Escarré, J.; Lefèbvre, C.; Raboyeau, S.; Dossantos, A.; Gruber, W.; Cleyet Marel, J.C.; Frérot, H.; Noret, N.; Mahieu, S.; Collin, C.; et al. Heavy metal concentration survey in soils and plants of the Les Malines mining district (southern France): Implications for soil restoration. Water Air Soil Pollut. 2011, 216, 485–504. [Google Scholar] [CrossRef] [Green Version]
- Basic, N.; Keller, C.; Galland, N. Ecological preferences and heavy metal hyperaccumulation of wild populations of Thlaspi caerulescens in Switzerland. In Proceedings of the Workshop “Phytoremediation of Toxic Metals” Meeting, Stockholm, Sweden, 12–15 June 2003; pp. 2–15. [Google Scholar]
- Zeremski, T.; Ranđelović, D.; Jakovljević, K.; Marjanović Jeromela, A.; Milić, S. Brassica Species in Phytoextractions: Real potentials and challenges. Plants 2021, 10, 2340. [Google Scholar] [CrossRef]
- Huang, H.; Yu, N.; Wang, L.; Gupta, D.K.; He, Z.; Wang, K.; Zhu, Z.; Yan, X.; Li, T.; Yang, X.E. The phytoremediation potential of bioenergy crop Ricinus communis for DDTs and cadmium co-contaminated soil. Bioresour. Technol. 2011, 102, 11034–11038. [Google Scholar] [CrossRef]
- Thongchai, A.; Meeinkuirt, W.; Taeprayoon, P.; Pichtel, J. Soil amendments for cadmium phytostabilization by five Marigold cultivars. Environ. Sci. Pollut. Res. 2019, 26, 8737–8747. [Google Scholar] [CrossRef]
- Zalewska, M.; Nogalska, A. Phytoextraction potential of sunflower and white mustard plants in zinc-contaminated soil. Chil. J. Agric. Res. 2014, 74, 485–489. [Google Scholar] [CrossRef] [Green Version]
- Alaboudi, K.A.; Ahmed, B.; Brodie, G. Phytoremediation of Pb and Cd contaminated soils by using sunflower (Helianthus annuus) plant. Ann. Agric. Sci. 2018, 63, 123–127. [Google Scholar] [CrossRef]
- Buchanan, C.L. Method to Evaluate Plants and Soils to Optimize Conditions for Phytoremediation of Copper. Ph.D. Thesis, University of Toledo, Toledo, OH, USA, 2010. [Google Scholar]
- Jigău, G. Structural-functional levels of soil system integration, processes and evaluation indices. Sci. Pap. UASVM Buchar. Ser A 2011, 14, 16–22. [Google Scholar]
- Narayanan, M.; Ma, Y. Influences of biochar on bioremediation/phytoremediation potential of metal-contaminated soils. Front. Microbiol. 2022, 13, 929730. [Google Scholar] [CrossRef] [PubMed]
- Yakovyshyna, T. Integrated approach of phytostabilization for urban ecosystem soils contaminated with Lead. Environ. Res. Eng. Manag. 2021, 77, 43–52. [Google Scholar] [CrossRef]
- Durante-Yánez, E.V.; Martínez-Macea, M.A.; Enamorado-Montes, G.; Combatt Caballero, E.; Marrugo-Negrete, J. Phytoremediation of soils contaminated with heavy metals from gold mining activities using Clidemia sericea D. Don. Plants 2022, 11, 597. [Google Scholar] [CrossRef] [PubMed]
- Babincev, L.M. Heavy metals in soil and application of new plant materials in the process of phytoremediation. J. Bioremediat. Biodegrad. 2017, 8, 413. [Google Scholar] [CrossRef] [Green Version]
- Meindl, G.A.; Bain, D.J.; Ashman, T.L. Nickel accumulation in leaves, floral organs and rewards varies by serpentine soil affinity. AoB Plants 2014, 6, plu036. [Google Scholar] [CrossRef] [Green Version]
- Kierczak, J.; Pietranik, A.; Pędziwiatr, A. Ultramafic geoecosystems as a natural source of Ni, Cr, and Co to the environment: A review. Sci. Total. Environ. 2021, 755, 142620. [Google Scholar] [CrossRef]
- Sukarjo, S.; Zulaehah, I.; Purbalisa, W. The critical limit of cadmium in three types of soil texture with shallot as an indicator plant. AIP Conf. Proc. 2019, 2120, 040012. [Google Scholar] [CrossRef]
- Lotfy, S.M.; Zhran, M.A.; Abdel-Sabour, M. Influence of some chelators on the phytoextraction ability of sunflower (Helianthus annuus) for nickel-contaminated soil. Remediation 2014, 25, 101–114. [Google Scholar] [CrossRef]
- Guerra Sierra, B.E.; Muñoz Guerrero, J.; Sokolski, S. Phytoremediation of heavy metals in tropical soils an overview. Sustainability 2021, 13, 2574. [Google Scholar] [CrossRef]
- Quezada-Hinojosa, R.; Föllmi, K.B.; Gillet, F.; Matera, V. Cadmium accumulation in six common plant species associated with soils containing high geogenic cadmium concentrations at Le Gurnigel, Swiss Jura Mountains. Catena 2015, 124, 85–96. [Google Scholar] [CrossRef]
- Evangelou, M.W.H.; Ebel, M.; Schaeffer, A. Chelate assisted phytoextraction of heavy metals from soil: Effect, mechanism, toxicity, and fate of chelating agents. Chemosphere 2007, 68, 989–1003. [Google Scholar] [CrossRef] [PubMed]
- Zaky, M.H.; Abdel-Salam, M. Elwa. Heavy metals content relating to soil physical properties. Egypt. J. Appl. Sci. 2020, 35, 50–62. [Google Scholar] [CrossRef]
- Violante, A.U.; Cozzolino, V.U.; Perelomov, L.P.S.; Caporale, A.G.; Pigna, M.U. Mobility and bioavailability of heavy metals and metalloids in soil environments. Soil Sci. Plant Nutr. 2010, 10, 268–292. [Google Scholar] [CrossRef] [Green Version]
- Alvarenga, P.; Gonçalves, A.P.; Fernandes, R.M.; de Varennes, A.; Vallini, G.; Duarte, E.; Cunha-Queda, A. Organic residues as immobilizing agents in aided phytostabilization: (I) effects on soil chemical characteristics. Chemosphere 2009, 74, 1292–1300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pikuła, D.; Stępień, W. Effect of the degree of soil contamination with heavy metals on their mobility in the soil profile in a Microplot experiment. Agronomy 2021, 11, 878. [Google Scholar] [CrossRef]
- Figueroa, J.A.; Wrobel, K.; Afton, S.; Caruso, J.A.; Corona, J.F.; Wrobel, K. Effect of some heavy metals and soil humic substances on the phytochelatin production in wild plants from silver mine areas of Guanajuato, Mexico. Chemosphere 2008, 70, 2084–2091. [Google Scholar] [CrossRef]
- Franco, A.; Buoso, S.; Zanin, L.; Pinton, R.; Tomasi, N. Copper Toxicity in Maize: The Severity of the Stress is Reduced Depending on the Applied Fe-Chelating Agent. J. Plant Growth Regul. 2022, 42, 1567–1581. [Google Scholar] [CrossRef]
- Dzantor, E.K.; Beauchamp, R.G. Phytoremediation, Part I: Fundamental basis for the use of plants in remediation of organic and metal contamination. Environ. Pract. 2002, 4, 77–87. [Google Scholar]
- Lu, Y.; Wang, Q.F.; Li, J.; Xiong, J.; Zhou, L.N.; He, S.L.; Zhang, J.-Q.; Chen, Z.-A.; He, S.-G.; Liu, H. Effects of exogenous sulfur on alleviating cadmium stress in tartary buckwheat. Sci. Rep. 2019, 9, 7397. [Google Scholar] [CrossRef] [Green Version]
- Erdogan, R.; Zaimoglu, Z. The characteristics of phytoremediation of soil and leachate polluted by landfills. In Advances in Bioremediation of Wastewater and Polluted Soil; Intech Open: London, UK, 2015; pp. 227–246. [Google Scholar] [CrossRef] [Green Version]
- Bell, P.F.; Adamu, C.A.; Mulchi, C.L.; McIntosh, M.; Chaney, R.L. Residual effects of land applied municipal sludge on tobacco. I: Effects on heavy metals concentrations in soils and plants. Tob. Sci. 1988, 32, 33–38. [Google Scholar]
- Huang, J.W.; Chen, J.; Berti, W.R.; Cunningham, S.D. Phytoremediation of lead-contaminated soils: Role of synthetic chelates in lead phytoextraction. Environ. Sci. Technol. 1997, 31, 800–805. [Google Scholar] [CrossRef]
- Jabeen, R.; Ahmad, A.; Iqbal, M. Phytoremediation of heavy metals: Physiological and molecular mechanisms Bot. Rev. 2009, 75, 339–364. [Google Scholar] [CrossRef]
- Shabani, N.; Sayadi, M.H. Evaluation of heavy metals accumulation by two emergent macrophytes from the polluted soil: An experimental study. Environmentalist 2012, 32, 91–98. [Google Scholar] [CrossRef]
- Sinha, R.K.; Herat, S.; Tandon, P. Phytoremediation: Role of plants in contaminated site management. In Environmental Bioremediation Technologies; Singh, S.N., Tripathi, R.D., Eds.; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar] [CrossRef]
- Vangronsveld, J.; Weyens, N.; Thijs, S.; Dubin, D.; Clemmens, M.; Van Geert, K.; van den Eeckhaut, M.; van den Bossche, P.; van Gestel, G.; Bruneel, N.; et al. Phytoremediation, Code of Good Practice 2019. Available online: www.ovam.be/sites/default/files/atoms/files/2019_Code%20of%20Good%20Practice_Phytoremediation_final.pdf (accessed on 23 December 2021).
- McCutcheon, S.C.; Schnoor, I.L. Phytoremediation: Transformation and Control of Contaminants; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2003; pp. 863–885. [Google Scholar]
- Khashij, S.; Karimi, B.; Makhdoumi, P. Phytoremediation with Festuca arundinacea: A mini review. Int. J. Health Life. Sci. 2018, 4, e86625. [Google Scholar] [CrossRef] [Green Version]
- Reeves, R.D.; Baker, A.J.; Jaffré, T.; Erskine, P.D.; Echevarria, G.; van der Ent, A. A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytol. 2018, 218, 407–411. [Google Scholar] [CrossRef] [Green Version]
- Cioica, N.; Tudora, C.; Iuga, D.; Deak, G.; Matei, M.; Nagy, E.M.; Gyorgy, Z. A review on phytoremediation as an ecological method for in situ clean up of heavy metals contaminated soils. E3S Web Conf. 2019, 112, 03024. [Google Scholar] [CrossRef] [Green Version]
- Bergqvist, C. Arsenic Accumulation in Various Plant Types. Ph.D. Thesis, Department of Botany, Stockholm University, Stockholm, Sweden, 2011. [Google Scholar]
- Liphadzi, M.S.; Kirkham, M.B.; Musil, C.F. Phytoremediation of soil contaminated with heavy metals: A technology for rehabilitation of the environment. S. Afr. J. Bot. 2005, 71, 24–37. [Google Scholar] [CrossRef] [Green Version]
- Hyperaccumulators, Hyperaccumulators Table—3. Available online: https://en.wikipedia.org/wiki/Hyperaccumulators_table_%E2%80%93_3 (accessed on 26 February 2022).
- Rascio, N.; Navari-Izzo, F. Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Sci. 2011, 180, 169–181. [Google Scholar] [CrossRef]
- Ma, L.Q.; Komar, K.M.; Tu, C.; Zhang, W.; Cai, Y.; Kenelly, E.D. A fern that hyperaccumulates arsenic. Nature 2001, 409, 579–582. [Google Scholar] [CrossRef]
- Nouri, J.; Lorestani, B.; Yousefi, N.; Khorasani, N.; Hasani, A.H.; Seif, F.; Cheraghi, M. Phytoremediation potential of native plants grown in the vicinity of Ahangaran lead–zinc mine (Hamedan, Iran). Environ. Earth Sci. 2011, 62, 639–644. [Google Scholar] [CrossRef]
- Behmer, S.T.; Lloyd, C.M.; Raubenheimer, D.; Stewart-Clark, J.; Knight, J.; Leighton, R.S.; Smith, J.A.C. Metal hyperaccumulation in plants: Mechanisms of defense against insect herbivores. Funct. Ecol. 2005, 19, 55–66. [Google Scholar] [CrossRef]
- Paz-Alberto, A.M.; Sigua, G.C. Phytoremediation: A green technology to remove environmental pollutants. Am. J. Clim. Chang. 2013, 2, 71–86. [Google Scholar] [CrossRef] [Green Version]
- Salt, D.E.; Smith, R.D.; Raskin, I. Phytoremediation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1998, 49, 643–668. [Google Scholar] [CrossRef]
- Bezemer, M. Phytoremediation: How Plants Help Restore Balance to Our Environment. Available online: https://www.eilo.eu/phytoremediation-how-plants-help-restore-balance-to-our-environment/ (accessed on 29 March 2022).
- Ebbs, S.D.; Lasat, M.M.; Brady, D.J.; Cornish, J.; Gordon, R.; Kochian, L.V. Phytoextraction of cadmium and zinc from contaminated soil. J. Environ. Qual. 1997, 26, 1424–1430. [Google Scholar] [CrossRef]
- Gasco, G.; Alvarez, M.L.; Paz-Ferreiro, J.; Mendez, A. Combining phytoextraction by Brassica napus and biochar amendment for the remediation of a mining soil in Riotinto (Spain). Chemosphere 2019, 231, 562–570. [Google Scholar] [CrossRef]
- Benavides, B.J.; Drohan, P.J.; Spargo, J.T.; Maximova, S.N.; Guiltinan, M.J.; Miller, D.A. Cadmium phytoextraction by Helianthus annuus (sunflower), Brassica napus cv Wichita (rapeseed), and Chyrsopogon zizanioides (vetiver). Chemosphere 2021, 265, 129086. [Google Scholar] [CrossRef]
- Kötschau, A.; Büchel, G.; Einax, J.W.; Tümpling, W.; Merten, D. Sunflower (Helianthus annuus): Phytoextraction capacity for heavy metals on a mining-influenced area in Thuringia, Germany. Environ. Earth Sci. 2014, 72, 2023–2031. [Google Scholar] [CrossRef]
- Khan, A.H.A.; Kiyani, A.; Mirza, C.R.; Butt, T.A.; Barros, R.; Ali, B.; Iqbal, M.; Yousaf, S. Ornamental plants for the phytoremediation of heavy metals: Present knowledge and future perspectives. Environ. Res. 2021, 195, 110780. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Salt, D.E.; Koornneef, M.; Aarts, M.G. Construction and analysis of a Noccaea caerulescens TILLING population. BMC Plant Biol. 2022, 22, 360. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xu, W.; Wang, Y.; Hao, W.; Zhou, Q.; Liu, J. Growth responses and accumulation characteristics of three ornamental plants to Sn contamination in soil. Agriculture 2021, 11, 205. [Google Scholar] [CrossRef]
- Xv, L.; Ge, J.; Tian, S.; Wang, H.; Yu, H.; Zhao, J.; Lu, L. A Cd/Zn Co-hyperaccumulator and Pb accumulator, Sedum alfredii, is of high Cu tolerance. Environ. Pollut. 2020, 263, 14401. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Gao, Y.; Wu, L.; Wang, L.; Zhang, T.; Dai, C.; Xu, W.; Feng, L.; Ma, M.; Zhu, Y.-G.; et al. Potential use of the Pteris vittata arsenic hyperaccumulation-regulation network for phytoremediation. J. Hazard. Mater. 2019, 368, 386–396. [Google Scholar] [CrossRef] [PubMed]
- Guidi Nissim, W.; Palm, E.; Mancuso, S.; Azzarello, E. Trace element phytoextraction from contaminated soil: A case study under Mediterranean climate. Environ. Sci. Pollut. Res. Int. 2018, 25, 9114–9131. [Google Scholar] [CrossRef] [PubMed]
- Karimi, R.; Chorom, M.; Solhi, S.; Solhi, M.; Safe, A. Potential of Vicia faba and Brassica arvensis for phytoextraction of soil contaminated with cadmium, lead and nickel. Afr. J. Agric. Res. 2012, 7, 3293–3301. [Google Scholar] [CrossRef]
- Tamura, H.; Honda, M.; Sato, T.; Kamachi, H. Pb hyperaccumulation and tolerance in common buckwheat (Fagopyrum esculentum Moench). J. Plant Res. 2005, 118, 355–359. [Google Scholar] [CrossRef]
- Zhuang, P.; Ye, Z.H.; Lan, C.Y.; Xie, Z.W.; Shu, W.S. Chemically assisted phytoextraction of heavy metals contaminated soils using three plant species. Plant Soil 2005, 276, 153–162. [Google Scholar] [CrossRef]
- Wang, Q.R.; Cui, Y.S.; Liu, X.M.; Dong, Y.T.; Christie, P. Soil contamination and plant uptake of heavy metals at polluted sites in China. J. Environ. Sci. Health Part A 2003, 38, 823–838. [Google Scholar] [CrossRef] [Green Version]
- Barrutia, O.; Epelde, L.; García-Plazaola, J.I.; Garbisu, C.; Becerril, J.M. Phytoextraction potential of two Rumex acetosa L. accessions collected from metalliferous and non-metalliferous sites: Effect of fertilization. Chemosphere 2009, 74, 259–264. [Google Scholar] [CrossRef]
- Adamczyk-Szabela, D.; Lisowska, K.; Wolf, W.M. Hysteresis of heavy metals uptake induced in Taraxacum officinale by thiuram. Sci. Rep. 2021, 11, 20151. [Google Scholar] [CrossRef]
- Mahmud, R.; Inoue, N.; Kasajima, S.Y.; Shaheen, R. Assessment of potential indigenous plant species for the phytoremediation of arsenic-contaminated areas of Bangladesh. Int. J. Phytoremediation 2008, 10, 119–132. [Google Scholar] [CrossRef]
- Berman, P.; Nizri, S.; Wiesman, Z. Castor oil biodiesel and its blends as alternative fuel. Biomass Bioenergy 2011, 35, 2861–2866. [Google Scholar] [CrossRef]
- Olivares, A.R.; Carrillo-González, R.; González-Chávez, M.D.C.A.; Hernández, R.M.S. Potential of castor bean (Ricinus communis L.) for phytoremediation of mine tailings and oil production. J. Environ. Manage. 2013, 114, 316–323. [Google Scholar] [CrossRef]
- de Abreu, C.A.; Coscione, A.R.; Pires, A.M.; Paz-Ferreiro, J. Phytoremediation of a soil contaminated by heavy metals and boron using castor oil plants and organic matter amendments. J. Geochem. Explor. 2012, 123, 3–7. [Google Scholar] [CrossRef]
- Melo, E.E.C.; Costa, E.T.S.; Guilherme, L.R.G.; Faquin, V.; Nascimento, C.W.A. Accumulation of arsenic and nutrients by castor bean plants grown on an As-enriched nutrient solution. J. Hazard Mater. 2009, 168, 479–483. [Google Scholar] [CrossRef] [PubMed]
- Hosman, M.E.; El Feky, S.S.; Elshahawy, M.I.; Shaker, E.M. Mechanism of phytoremediation potential of flax (Linum usitatissimum L.) to Pb, Cd and Zn. Asian J. Plant Sci. Res. 2017, 7, 30–40. [Google Scholar]
- Zhao, X.; Guo, Y.; Papazoglou, E.G. Screening flax, kenaf and hemp varieties for phytoremediation of trace element-contaminated soils. Ind. Crop. Prod. 2022, 185, 115121. [Google Scholar] [CrossRef]
- Schwitzguébel, J.P. Phytoremediation of soils contaminated by organic compounds: Hype, hope and facts. J. Soils Sediments 2017, 17, 1492–1502. [Google Scholar] [CrossRef]
- Piotrowski, S.; Carus, M. Ecological benefits of hemp and flax cultivation and products. Nova Institut. 2011, 5, 68. [Google Scholar]
- Yang, J.; Yang, J.; Huang, J. Role of co-planting and chitosan in phytoextraction of As and heavy metals by Pteris vittata and castor bean–a field case. Ecol. Eng. 2017, 109, 35–40. [Google Scholar] [CrossRef]
- Liu, L.; Li, Y.; Tang, J.; Hu, L.; Chen, X. Plant coexistence can enhance phytoextraction of cadmium by tobacco (Nicotiana tabacum L.) in contaminated soil. J. Environ. Sci. 2011, 23, 453–460. [Google Scholar] [CrossRef]
- Bhardwaj, R.; Sharma, R.; Handa, N.; Kaur, H.; Kaur, R.; Sirhindi, G.; Thukral, A.K. Prospects of field crops for phytoremediation of contaminants. In Emerging Technologies and Management of Crop Stress Tolerance; Parvaiz, A., Saiema, R., Eds.; Elsevier: Amsterdam, The Netherlands; Academic Press: Cambridge, MA, USA, 2014; Volume 2, pp. 449–470. [Google Scholar] [CrossRef]
- Blaylock, M. Field Demonstrations of Phytoremediation of Lead-Contaminated Soils. In Phytoremediation of Contaminated Soil and Water, 1st ed.; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar] [CrossRef]
- Kano, N.; Hori, T.; Zhang, H.; Miyamoto, N.; Anak, D.E.V.; Mishima, K. Study on the behavior and removal of cadmium and zinc using Taraxacum officinale and Gazania under the application of biodegradable chelating agents. Appl. Sci. 2021, 11, 1557. [Google Scholar] [CrossRef]
- Blaylock, M.J.; Salt, D.E.; Dushenkov, S.; Zakharova, O.; Gussman, C.; Kapulnik, Y.; Ensley, B.D.; Raskin, I. Enhanced accumulation of Pb in Indian Mustard by soil-applied chelating agents. Environ. Sci. Technol. 1997, 31, 860–865. [Google Scholar] [CrossRef]
- Tassi, E.; Barbafieri, M.; Petruzzelli, G. Preliminary studies of phosphate-enhanced phytoremediation in arsenic-contaminated soil. In Brownfield Sites II; WIT Transactions on Ecology and the Environment, 70; Donati, A., Rossi, C., Brebbia, A., Eds.; WIT Press: Billerica, MA, USA, 2004; pp. 107–115. Available online: https://www.witpress.com/elibrary/wit-transactions-on-ecology-and-the-environment/70/12729 (accessed on 16 March 2023).
- Hegedűsová, A.; Jakabová, S.; Vargová, A.; Hegedűs, O.; Pernyeszi, T.J. Use of phytoremediation techniques for elimination of lead from polluted soils. Nova Biotechnologica 2009, 9, 125–132. [Google Scholar] [CrossRef]
- Vamerali, T.; Bandiera, M.; Mosca, G. Field crops for phytoremediation of metal-contaminated land. A review. Environ. Chem. Lett. 2010, 8, 1–17. [Google Scholar] [CrossRef]
- Zhang, H.; Guo, Q.; Yang, J.; Ma, J.; Chen, G.; Chen, T.; Zhu, G.; Wang, J.; Zhang, G.; Wang, X.; et al. Comparison of chelates for enhancing Ricinus communis L. phytoremediation of Cd and Pb contaminated soil. Ecotoxicol. Environ. Saf. 2016, 133, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Farid, M.; Farid, S.; Zubair, M.; Ghani, M.A.; Rizwan, M.; Ishaq, H.K.; Alkahtani, S.; Abdel-Daim, M.M.; Ali, S. Glutamic acid-assisted phytomanagement of chromium contaminated soil by sunflower (Helianthus annuus L.): Morphophysiological and biochemical alterations. Front. Plant. Sci. 2020, 11, 1297. [Google Scholar] [CrossRef] [PubMed]
- Smolińska, B.; Król, K. Leaching of mercury during phytoextraction assisted by EDTA, KI and citric acid. J. Chem. Technol. Biotechnol. 2012, 87, 1360–1365. [Google Scholar] [CrossRef]
- Scholtz, O.F. Citric Acid Induced Phytoextraction of Heavy Metals from Uranium Contaminated Soils. Ph.D. Thesis, University of the Free State, Bloemfontein, South Africa, 2006. [Google Scholar]
- Chang, P.; Kim, K.W.; Yoshida, S.; Kim, S.Y. Uranium accumulation of crop plants enhanced by citric acid. Environ. Geochem. Health 2005, 27, 529–538. [Google Scholar] [CrossRef]
- Pérez-Esteban, J.; Escolástico, C.; Moliner, A.; Masaguer, A. Chemical speciation and mobilization of copper and zinc in naturally contaminated mine soils with citric and tartaric acids. Chemosphere 2013, 90, 276–283. [Google Scholar] [CrossRef] [Green Version]
- Cassina, L.; Tassi, E.; Pedron, F.; Petruzzelli, G.; Ambrosini, P.; Barbafieri, M. Using a plant hormone and a thioligand to improve phytoremediation of Hg-contaminated soil from a petrochemical plant. J. Hazard. Mater. 2012, 231, 36–42. [Google Scholar] [CrossRef]
- Pickering, I.J.; Prince, R.C.; George, M.J.; Smith, R.D.; George, G.N.; Salt, D.E. Reduction and coordination of arsenic in Indian mustard. Plant Physiol. 2000, 122, 1171–1177. [Google Scholar] [CrossRef] [PubMed]
- Pivetz, B.E. Phytoremediation of Contaminated Soil and Ground Water at Hazardous Waste Sites. US Environmental Protection Agency, Office of Research and Development, Office of Solid Waste and Emergency Response, Washington, DC, USA, p. 36. 2015. Available online: https://www.epa.gov/sites/default/files/2015-06/documents/epa_540_s01_500.pdf (accessed on 25 November 2021).
- Kang, B.H.; Shim, S.I.; Lee, S.G.; Kim, K.H.; Chung, I.M. Evaluation of Ambrosia artemisiifolia var. elatior, Ambrosia trifida, Rumex crispus for phytoremediation of Cu and Cd contaminated soil. Korean J. Weed Sci. 1998, 18, 262–267. [Google Scholar]
- Alves, J.D.C.; Souza, A.P.D.; Pôrto, M.L.; Fontes, R.L.; Arruda, J.; Marques, L.F. Potential of sunflower, castor bean, common buckwheat and vetiver as lead phytoaccumulators. Rev. Bras. Eng. Agrícola Ambient. 2016, 20, 243–249. [Google Scholar] [CrossRef] [Green Version]
- Zakari, S.; Jiang, X.; Zhu, X.; Liu, W.; Allakonon, M.G.B.; Singh, A.K.; Chen, C.; Zou, X.; Akponikpè, P.I.; Dossa, G.G.; et al. Influence of sulfur amendments on heavy metals phytoextraction from agricultural contaminated soils: A meta-analysis. Environ. Pollut. 2021, 288, 117820. [Google Scholar] [CrossRef]
- Kayser, A.; Wenger, K.; Keller, A.; Attinger, W.; Felix, H.R.; Gupta, S.K.; Schulin, R. Enhancement of phytoextraction of Zn, Cd, and Cu from calcareous soil: The use of NTA and sulfur amendments. Environ. Sci. Technol. 2000, 34, 1778–1783. [Google Scholar] [CrossRef]
- Williams Araújo do Nascimento, C.; Xing, B. Phytoextraction: A review on enhanced metal availability and plant accumulation. Sci. Agric. 2006, 63, 299–311. [Google Scholar] [CrossRef]
- Habiba, U.; Ali, S.; Farid, M.; Shakoor, M.B.; Rizwan, M.; Ibrahim, M.; Abbasi, G.H.; Hayat, T.; Ali, B. EDTA enhanced plant growth, antioxidant defense system, and phytoextraction of copper by Brassica napus L. Environ. Sci. Pollut. Res. Int. 2015, 22, 1534–1544. [Google Scholar] [CrossRef]
- Blaylock, M.J.; Muhr, E.; Page, D.; Montes, G.; Vasudev, D.; Kapulnik, Y. Phytoremediation of lead contaminated soil at a Brownfield Site in New Jersey. In Proceedings of the ACS Industrial & Engineering Chemistry, 1996, Division Special Symposium, Birmingham, UK, 9–11 September 1966. [Google Scholar]
- Neugschwandtner, R.W.; Tlustoš, P.; Komárek, M.; Száková, I. Phytoextraction of Pb and Cd from a contaminated agricultural soil using different EDTA application regimes: Laboratory versus field scale measures of efficiency. Geoderma 2008, 144, 446–454. [Google Scholar] [CrossRef]
- Chaney, R.L.; Brown, S.L.; Li, Y.M.; Angle, J.S.; Stuczynski, T.I.; Daniels, W.L.; Charles, L. Henry, Grzegorz Siebielec, Minnie Malik, James A. Ryan and Harry Compton. Progress in risk assessment for soil metals, and in-situ remediation and phytoextraction of metals from hazardous contaminated soils. Proc. USEPA Conf. Phytoremediat. State Sci. 2000, 1–26. [Google Scholar]
- Sun, B.; Zhao, F.J.; Lombi, E.; McGrath, S.P. Leaching of heavy metals from contaminated soils using EDTA. Environ. Pollut. 2001, 113, 111–120. [Google Scholar] [CrossRef]
- Tomczyk, A.; Boguta, P.; Sokołowska, Z. Biochar efficiency in copper removal from Haplic soils. Int. J. Environ. Sci. Technol. 2019, 16, 4899–4912. [Google Scholar] [CrossRef] [Green Version]
- Sinegani, A.S.; Khalilikhah, F. Phytoextraction of lead by Helianthus annuus: Effect of mobilising agent application time. Plant. Soil. Environ. 2008, 54, 434–440. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Greger, M. Use of iodide to enhance the phytoextraction of mercury-contaminated soil. Sci. Total Environ. 2006, 368, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Liphadzi, M.S.; Kirkham, M.B. Availability and plant uptake of heavy metals in EDTA-assisted phytoremediation of soil and composted biosolids. South Afr. J. Bot. 2006, 72, 391–397. [Google Scholar] [CrossRef] [Green Version]
- Hadi, F.; Arifeen, M.Z.; Aziz, T.; Nawab, S.; Nabi, G. Phytoremediation of cadmium by Ricinus communis L. in hydrophonic condition. Am.-Eurasian J. Agric. Environ. Sci. 2015, 15, 1155–1162. [Google Scholar] [CrossRef]
- Van Nevel, L.; Mertens, J.; Oorts, K.; Verheyen, K. Phytoextraction of metals from soils: How far from practice? Environ. Pollut. 2007, 150, 34–40. [Google Scholar] [CrossRef]
- Čudić, V.; Stojiljković, D.; Jovović, A. Phytoremediation potential of wild plants growing on soil contaminated with heavy metals. Arh. Hig. Rada. Toksikol. 2016, 67, 229–239. [Google Scholar] [CrossRef] [Green Version]
- Gisbert, C.; Clemente, R.; Navarro-Aviñó, J.; Carlos Baixauli, C.; Ginér, A.; Serrano, R.; Walker, D.J.; Pilar Bernal, M.P. Tolerance and accumulation of heavy metals by Brassicaceae species grown in contaminated soils from Mediterranean regions of Spain. Environ. Exp. Bot. 2006, 56, 19–26. [Google Scholar] [CrossRef]
- Bernal, M.P.; Alvarenga, P.; Carmody, K.; Pogrzeba, M.; Soja, G. Protecting Agricultural Soils from Contamination. MINIPAPER 3: Biological Remediation of Contaminated Agricultural Soils, EIP-AGRI Focus Group. 2020. Available online: https://ec.europa.eu/eip/agriculture/sites/default/files/fg37_mp3_remediation_final.pdf (accessed on 29 November 2021).
- Miller, R. Phytoremediation Technology Overview Report; Ground-Water Remediation Technologies Analysis Center: Pittsburgh, PA, USA, 1996. [Google Scholar]
- Barceló, J.; Poschenrieder, C. Phytoremediation: Principles and perspectives. Contrib. Sci. 2003, 2, 333–344. [Google Scholar] [CrossRef]
- Flathman, P.E.; Lanza, G.R. Phytoremediation: Current views on an emerging green technology. J. Soil. Contamin. 1998, 7, 415–432. [Google Scholar] [CrossRef]
- Shackira, A.M.; Puthur, J.T. Phytostabilization of heavy metals: Understanding of principles and practices. In Plant-Metal Interactions; Srivastava, S., Srivastava, A., Suprasanna, P., Eds.; Springer: Cham, Switzerland, 2019; pp. 263–282. [Google Scholar] [CrossRef]
- Yoon, J.; Cao, X.; Zhou, Q.; Ma, L.Q. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci. Total Environ. 2006, 368, 456–464. [Google Scholar] [CrossRef]
- Mganga, N.; Manoko, M.L.K.; Rulangaranga, Z.K. Classification of plants according to their heavy metal content around North Mara gold mine, Tanzania: Implication for phytoremediation. Tanz. J. Sci. 2011, 37, 109–119. [Google Scholar] [CrossRef]
- Pichtel, J.; Salt, C.A. Vegetative growth and trace metal accumulation on metalliferous wastes. J. Environ. Qual. 1998, 27, 618–624. [Google Scholar] [CrossRef]
- Valujeva, K.; Straupe, I.; Grīnfelde, L. The use of phytoremediation method in Latvia. In 5th International Scientific Conference Proceedings; University of Agriculture: Jelgava, Latvia, 2015; Volume 5, pp. 155–162. [Google Scholar]
- Burges, A.; Alkorta, I.; Epelde, L.; Garbisu, C. From phytoremediation of soil contaminants to phytomanagement of ecosystem services in metal contaminated sites. Int. J. Phytoremediation 2018, 20, 384–397. [Google Scholar] [CrossRef] [PubMed]
- Freitas, M.; Pacheco, A.; Anawar, H.; Dionísio, I.; Dung, H.; Canha, N.; Bettencourt, A.; Henriques, F.; Pinto-Gomes, C.J.; Capelo, S. Determination of phytoextraction potential of plant species for toxic elements in soils of abandoned sulphide-mining areas. J. Radioanal. Nucl. Chem. 2009, 282, 21–27. [Google Scholar] [CrossRef]
- Shapter, F.M.; Crowther, A.; Fox, G.; Godwin, I.D.; Watson-Fox, L.; Hannah, I.J.C.; Norton, S.L. The domestication, spread and uses of sorghum as a crop. In Achieving Sustainable Cultivation of Sorghum, 1st ed.; Burleigh Dodds Science Publishing: Cambridgeshire, UK, 2018; p. 2. [Google Scholar] [CrossRef]
- Duble, R.L. Tall fescue. Aggie Horticulture. College Station, TX, USA: Texas A&M AgriLife Extension Service. 2016. Available online: https://aggie-horticulture.tamu.edu/archives/parsons/turf/publications/tallfesc.html (accessed on 26 November 2021).
- Pinsker, N. Phytoremediation of PCB Contaminated Soil: Effectiveness and Regulatory Policy. Master’s Thesis, Commonwealth University, Richmond, VA, USA, 2011; p. 110. [Google Scholar] [CrossRef]
- Rabêlo, F.H.S.; Vangronsveld, J.; Baker, A.J.; van der Ent, A.; Alleoni, L.R.F. Are grasses really useful for the phytoremediation of potentially toxic trace elements? A Review. Front. Plant Sci. 2021, 12, 778275. [Google Scholar] [CrossRef]
- Sas-Nowosielska, A.; Galimska-Stypa, R.; Kucharski, R.; Zielonka, U.; Małkowski, E.; Gray, L. Remediation aspect of microbial changes of plant rhizosphere in mercury contaminated soil. Environ. Monit. Assess 2008, 137, 101–109. [Google Scholar] [CrossRef]
- Smith, R.A.H.; Bradshaw, A.D. The use of metal tolerant plant populations for the reclamation of metalliferous wastes. J. Appl. Ecol. 1979, 16, 595–612. [Google Scholar] [CrossRef]
- Shukla, K.P.; Singh, N.K.; Sharma, S. Bioremediation: Developments, current practices and perspectives. Genet. Eng. Biotechnol. J. 2010, 3, 1–20. [Google Scholar]
- Peco, J.D.; Higueras, P.; Campos, J.A.; Esbrí, J.M.; Moreno, M.M.; Battaglia-Brunet, F.; Sandalio, L.M. Abandoned mine lands reclamation by plant remediation technologies. Sustainability 2021, 13, 6555. [Google Scholar] [CrossRef]
- Putnam, D.H.; Orloff, S.B. Forage Crops. In Encyclopedia of Agriculture and Food Systems; Van Alfen, N.K., Ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 381–405. [Google Scholar] [CrossRef]
- Rani, K.; Dhania, G. Bioremediation and biodegradation of pesticide from contaminated soil and water—A noval approach. Review Article. Int. J. Curr. Microbiol. App. Sci. 2014, 3, 23–33. [Google Scholar]
- He, H.; Wang, X.; Wu, M.; Guo, L.; Fan, C.; Peng, Q. Cadmium and lead affect the status of mineral nutrients in alfalfa grown on a calcareous soil. Soil Sci. Plant Nutr. 2020, 66, 506–514. [Google Scholar] [CrossRef]
- Cui, T.; Fang, L.; Wang, M.; Jiang, M.; Shen, G. Intercropping of gramineous pasture ryegrass (Lolium perenne L.) and leguminous forage alfalfa (Medicago sativa L.) increases the resistance of plants to heavy metals. J. Chem. 2018, 2018, 7803408. [Google Scholar] [CrossRef] [Green Version]
- Rocha, C.S.; Rocha, D.C.; Kochi, L.Y.; Carneiro, D.N.M.; Dos Reis, M.V.; Gomes, M.P. Phytoremediation by ornamental plants: A beautiful and ecological alternative. Environ. Sci. Pollut. Res. Int. 2022, 29, 3336–3354. [Google Scholar] [CrossRef] [PubMed]
- Madanan, M.T.; Shah, I.K.; Varghese, G.K.; Kaushal, R.K. Application of Aztec Marigold (Tagetes erecta L.) for phytoremediation of heavy metal polluted lateritic soil. J. Environ. Chem. Ecotoxicol. 2021, 3, 17–22. [Google Scholar] [CrossRef]
- Watanabe, T.; Murata, Y.; Osaki, M. Amaranthus tricolor has the potential for phytoremediation of cadmium-contaminated soils. Commun. Soil Sci. Plant Anal. 2009, 40, 3158–3169. [Google Scholar] [CrossRef] [Green Version]
- Jadaun, N.; Pandey, S. A review on the responses of ornamental plants in the phytoremediation of disturbed sites. Int. J. Botany Stud. 2021, 6, 1312–1318. [Google Scholar]
- Ishak, I.A.; Hum, N.N.M.F. Phytoremediation using ornamental plants in removing heavy metals from wastewater sludge. IOP Conf. Series Earth Environ. Sci. 2022, 1019, 012009. [Google Scholar] [CrossRef]
- Reed, S.T.; Ayala-Silva, T.; Dunn, C.B.; Gordon, G.G.; Meerow, A. Screening ornamentals for their potential as as accumulator plants. J. Agric. Sci. 2013, 5, 20. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Wang, H.; Zhang, Y.; Wang, H.; Yang, J.; Liu, J.; Shi, Y. Comparison of heavy metal accumulation and cadmium phytoextraction rates among ten leading tobacco (Nicotiana tabacum L.) cultivars in China. Int. J. Phytoremediation 2019, 21, 699–706. [Google Scholar] [CrossRef]
- Angelova, V. Phytoremediation potential of enhanced tobacco in soil contaminated with heavy metals. In Proceedings of the 2nd International Scientific Conference ITEMA, Graz, Austria, 8 November 2018; pp. 1049–1057. [Google Scholar] [CrossRef] [Green Version]
- Manoj, M.A.D.M.R.; Ranjitha, G.M.K. Phytoremediation of E-Waste using Nicotiana Tabacum & Moringa Oleifera. Mr. R. Manoj Guru J. Eng. Res. Appl. 2020, 10, 20–23. [Google Scholar]
- Saghi, A.; Rashed Mohassel, M.H.; Parsa, M.; Hammami, H. Phytoremediation of lead-contaminated soil by Sinapis arvensis and Rapistrum rugosum. Int. J. Phytoremediation 2016, 18, 387–392. [Google Scholar] [CrossRef]
- El Berkaoui, M.; El Adnani, M.; Hakkou, R.; Ouhammou, A.; Bendaou, N.; Smouni, A. Phytostabilization of phosphate mine wastes used as a store-and-release cover to control acid mine drainage in a semiarid climate. Plants 2021, 10, 900. [Google Scholar] [CrossRef]
- Frérot, H.; Lefèbvre, C.; Gruber, W.; Collin, C.C.; Santos, D.A.; Escarré, J. Specific interactions between local metallicolous plants improve the phytostabilization of mine soils. Plant Soil 2006, 282, 53–65. [Google Scholar] [CrossRef]
- Raj, D.; Kumar, A.; Maiti, S.K. Brassica juncea (L.) Czern. (Indian mustard): A putative plant species to facilitate the phytoremediation of mercury contaminated soils. Int. J. Phytoremediation 2020, 22, 733–744. [Google Scholar] [CrossRef] [PubMed]
- Chiu, K.; Ye, Z.H.; Wong, M.H. Growth of Vetiveria zizanioides and Phragmities australis on Pb/Zn and Cu mine tailings amended with manure compost and sewage sludge: A greenhouse study. Bioresour. Technol. 2006, 97, 158–170. [Google Scholar] [CrossRef] [PubMed]
- Gayatri, N.; Sailesh, A.R.; Srinivas, N. Phytoremediation potential of Brassica juncea for removal of selected heavy metals in urban soil amended with cow dung. J. Mater. Environ. Sci. 2019, 10, 463–469. [Google Scholar]
- Rizzi, L.; Petruzzelli, G.; Poggio, G.; Guidi, G.V. Soil physical changes and plant availability of Zn and PB in a treatability test of phytostabilization. Chemosphere 2004, 57, 1039–1046. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.H.; Wong, J.W.C.; Wong, M.H.; Lan, C.Y.; Baker, A.J.M. Lime and pig manure as ameliorants for revegetating lead/zinc mine tailings: A greenhouse study. Bioresour. Technol. 1999, 69, 35–43. [Google Scholar] [CrossRef]
- Gudichuttu, V. Phytostabilization of Multi-Metal Contaminated Mine Waste Materials: Long-Term Monitoring of Influence of Soil Amendments on Soil Properties, Plants, and Biota and the Avoidance Response of Earthworms. Master’s Thesis, Kansas State University Manhattan, Manhattan, KS, USA, 2014. [Google Scholar]
- Hernandez-Soriano, M.C.; Jimenez-Lopez, J.C. Effects of soil water content and organic matter addition on the speciation and bioavailability of heavy metals. Sci. Total Environ. 2012, 423, 55–61. [Google Scholar] [CrossRef]
- Frutos, I.; García-Delgado, C.; Cala, V.; Gárate, A.; Eymar, E. The use of spent mushroom compost to enhance the ability of Atriplex halimus to phytoremediate contaminated mine soils. Environ. Technol. 2017, 38, 1075–1084. [Google Scholar] [CrossRef]
- Awad, M.; El-Desoky, M.; Ghallab, A.; Kubes, J.; Abdel-Mawly, S.; Danish, S.; Ratnasekera, D.; Islam, M.S.; Skalicky, M.; Brestic, M.; et al. Ornamental plant efficiency for heavy metals phytoextraction from contaminated soils amended with organic materials. Molecules 2021, 26, 3360. [Google Scholar] [CrossRef]
- Lwin, C.S.; Seo, B.H.; Kim, H.U.; Owens, G.; Kim, K.R. Application of soil amendments to contaminated soils for heavy metal immobilization and improved soil quality—A critical review. Soil Sci. Plant Nutr. 2018, 64, 156–167. [Google Scholar] [CrossRef]
- Alasmary, Z.; Hettiarachchi, G.M.; Roozeboom, K.L.; Davis, L.C.; Erickson, L.E.; Pidlisnyuk, V.; Stefanovska, T.; Trögl, J. Phytostabilization of a contaminated military site using Miscanthus and soil amendments. J. Environ. Qual. 2021, 50, 1220–1232. [Google Scholar] [CrossRef] [PubMed]
- Epelde, L.; Becerril, J.M.; Mijangos, I.; Garbisu, C. Evaluation of the efficiency of a phytostabilization process with biological indicators of soil health. J. Environ. Qual. 2009, 38, 2041–2049. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Zhu, Y.; Li, Z.; Huang, B.; Luo, N.; Liu, C.; Zeng, G. Compost as a soil amendment to remediate heavy metal-contaminated agricultural soil: Mechanisms, efficacy, problems, and strategies. Water Air Soil Pollut. 2016, 227, 359. [Google Scholar] [CrossRef]
- Jadia, C.D.; Fulekar, M.H. Phytoremediation: The application of vermicompost to remove zinc, cadmium, copper, nickel and lead by sunflower plant. Environ. Eng. Manag. J. 2008, 7, 547–558. [Google Scholar] [CrossRef]
- Angelova, V.; Ivanova, R.; Pevicharova, G.; Ivanov, K. Effect of organic amendments on heavy metals uptake by potato plants. In Proceedings of the 19th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia, 1–9 August 2010; Volume 16, pp. 84–87. [Google Scholar]
- Radziemska, M.; Bęś, A.; Gusiatin, Z.M.; Sikorski, Ł.; Brtnicky, M.; Majewski, G.; Liniauskienė, E.; Pecina, V.; Datta, R.; Bilgin, A.; et al. Successful outcome of phytostabilization in Cr(VI) contaminated soils amended with alkalizing additives. Int. J. Environ. Res. Public Health 2020, 17, 6073. [Google Scholar] [CrossRef]
- Sabir, M.; Zia-ur-Rehman, M.; Hakeem, K.R.; and Saifullah, U. Phytoremediation of metal-contaminated soils using organic amendments: Prospects and challenges. In Soil Remediation and Plants; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2014; pp. 503–523. [Google Scholar] [CrossRef]
- Aggarwal, A.; Ezaki, B.; Munjal, A.; Tripathi, B.N. Physiology and biochemistry of aluminum toxicity and tolerance in crops. In Stress Responses in Plants; Tripathi, B.N., Műller, M., Eds.; Springer: Cham, Switzerland, 2015; pp. 35–57. [Google Scholar] [CrossRef]
- Abedi, T.; Gavanji, S.; Mojiri, A. Lead and zinc uptake and toxicity in maize and their management. Plants 2022, 11, 1922. [Google Scholar] [CrossRef]
- Kaninga, B.; Chishala, B.H.; Maseka, K.K.; Sakala, G.M.; Young, S.D.; Lark, R.M.; Tye, A.; Hamilton, E.M.; Gardner, A.; Watts, M.J. Do soil amendments used to improve agricultural productivity have consequences for soils contaminated with heavy metals? Heliyon 2020, 6, e05502. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2000; p. 432. [Google Scholar]
- Blaustein, R. Phytoremediation of lead: What works, what doesn’t. BioScience 2017, 67, 868. [Google Scholar] [CrossRef] [Green Version]
- Cunningham, S.D.; William, R.; Berti, W.R. Phytoextraction and phytostabilization: Technical, economic, and regulatory considerations of the soil–lead issue. In Phytoremediation of Contaminated Soil and Water; Terry, N., Bañuelos, G., Eds.; CRC Press: Boca Raton, FL, USA, 2000; pp. 364–381. [Google Scholar]
- Mains, D.; Craw, D.; Rufaut, C.G.; Smith, C.M.S. Phytostabilization of gold mine tailings from New Zealand. Part 2: Experimental evaluation of arsenic mobilization during revegetation. Int. J. Phytoremediation 2006, 8, 163–183. [Google Scholar] [CrossRef] [PubMed]
- The Use of Soil Amendments for Remediation, Revitalization and Reuse. 2007. Available online: https://www.epa.gov/sites/default/files/2015-08/documents/soil_amendments_542-r-07-013.pdf (accessed on 18 September 2021).
- Padmavathiamma, P.K.; Li, L.Y. Phytoavailability and fractionation of lead and manganese in a contaminated soil after application of three amendments. Bioresour. Technol. 2010, 101, 5667–5676. [Google Scholar] [CrossRef] [PubMed]
- Padmavathiamma, P.K.; Li, L.Y. Effect of amendments on phytoavailability and fractionation of Copper and Zinc in a contaminated soil. Int. J. Phytoremediation 2010, 12, 697–715. [Google Scholar] [CrossRef]
- Shehata, S.M.; Badawy, R.K.; Aboulsoud, Y.I.E. Phytoremediation of some heavy metals in contaminated soil. Bull. NatL. Res. Cent. 2019, 43, 189. [Google Scholar] [CrossRef] [Green Version]
- Pogrzeba, M.; Ciszek, D.; Galimska-Stypa, R.; Nowak, B.; Sas-Nowosielska, A. Ecological strategy for soil contaminated with mercury. Plant Soil 2016, 409, 371–387. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Sun, J.; Du, L.; Liu, X. Comparative transcriptome analysis of cadmium responses in Solanum nigrum and Solanum torvum. New Phytol. 2012, 196, 110–124. [Google Scholar] [CrossRef]
- Arco-Lázaro, E.; Pardo, T.; Clemente, R.; Bernal, M.P. Arsenic adsorption and plant availability in an agricultural soil irrigated with As-rich water: Effects of Fe-rich amendments and organic and inorganic fertilisers. J. Environ. Manag. 2018, 209, 262–272. [Google Scholar] [CrossRef]
- Radziemska, M. Aided phytostabilization of copper contaminated soils with L. Perenne and mineral sorbents as Soil amendments. Civ. Environ. Eng. Rep. 2017, 26, 79–89. [Google Scholar] [CrossRef] [Green Version]
- Wiszniewska, A.; Hanus-Fajerska, E.; Muszynska, E.; Ciarkowska, K. Natural organic amendments for improved phytoremediation of polluted soils: A review of recent progress. Pedosphere 2016, 26, 1–12. [Google Scholar] [CrossRef]
- Chlopecka, A.; Adriano, D.C. Influence of zeolite, apatite and Fe-oxide on Cd and Pb uptake by crops. Sci. Total Environ. 1997, 207, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Moeen, M.; Qi, T.; Hussain, Z.; Ge, Q.; Maqbool, Z.; Jianjie, X.; Kaiqing, F. Use of zeolite to reduce the bioavailability of heavy metals in a contaminated soil. J. Ecol. Eng. 2020, 21, 186–196. [Google Scholar] [CrossRef]
- Peter, A.; Nicula, C.; Mihaly-Cozmuta, A.; Mihaly-Cozmuta, L.; Indrea, E.; Danciu, V.; Tutu, H.; Nsimba, E.B. Efficiency of amendments based on zeolite and bentonite in reducing the accumulation of heavy metals in tomato organs (Lycopersicum esculentum) grown in polluted soils. Afr. J. Agric. Res. 2011, 6, 5010–5023. [Google Scholar] [CrossRef]
- Rizwan, M.; Ali, S.; Abbas, T.; Zia-ur-Rehman, M.; Hannan, F.; Keller, C.; Al-Wabel, M.I.; Ok, Y.S. Cadmium minimization in wheat: A critical review. Ecotoxicol. Environ. Saf. 2016, 130, 43–53. [Google Scholar] [CrossRef]
- Elad, Y.; Cytryn, E.; Harel, Y.M.; Lew, B.; Graber, E.R. The biochar effect: Plant resistance to biotic stresses. Phytopathol. Mediterr. 2011, 50, 335–349. [Google Scholar] [CrossRef]
- Paz-Ferreiro, J.; Lu, H.; Fu, S.; Mendez, A.; Gasco, G. Use of phytoremediation and biochar to remediate heavy metal polluted soils: A review. Solid Earth 2014, 5, 65–75. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Rinklebe, J.; Tack, F.M.; Hou, D. A review of green remediation strategies for heavy metal contaminated soil. Soil Use Manag. 2021, 27, 936–963. [Google Scholar] [CrossRef]
- Sigua, G.C.; Novak, J.M.; Watts, D.W.; Ippolito, J.A.; Ducey, T.F.; Johnson, M.G.; Spokas, K.A. Phytostabilization of Zn and Cd in mine soil using corn in combination with biochars and manure-based compost. Environments 2019, 6, 69. [Google Scholar] [CrossRef] [Green Version]
- Montoya, D.; Fernández, J.A.; Franco, J.A.; del Carmen Martínez Ballesta, M. Enriched-biochar application increases broccoli nutritional and phytochemical content without detrimental effect on yield. J. Sci. Food Agric. 2022, 102, 7353–7362. [Google Scholar] [CrossRef]
- Taraqqi-A-Kamal, A.; Atkinson, C.J.; Khan, A.; Zhang, K.; Sun, P.; Akther, S.; Zhang, Y. Biochar remediation of soil: Linking biochar production with function in heavy metal contaminated soils. Plant, Soil Environ. 2021, 67, 183–201. [Google Scholar] [CrossRef]
- Hanč, A.; Tlustoš, P.; Száková, J.; Balík, J. The CD mobility in incubated sewage sludge after ameliorative materials additions. Plant Soil Environ. 2006, 52, 64–71. [Google Scholar] [CrossRef] [Green Version]
- Casucci, C.; De Bernardi, A.; D’Amato, R.; Businelli, D.; Vischetti, C. Zeolite and bentonite as nickel sequestrants in carbonation lime coming from the sugar industry. Environ. Sci. Pollut. Res. 2020, 27, 18803–18809. [Google Scholar] [CrossRef] [PubMed]
- Wasilkowski, D.; Nowak, A.; Płaza, G.; Mrozik, A. Effects of pulp and Na-bentonite amendments on the mobility of trace elements, soil enzymes activity and microbial parameters under Ex situ aided phytostabilization. PLoS ONE 2017, 12, e0169688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahmoradi, S.; Mohmmad, M.A.; Hajabbasi, A. Efficiency of Fe-zeolite and Fe-bentonite on co-stabilization of As, Cd and Pb in contaminated soil. Int. J. Environ. Monit. Anal. 2020, 8, 45–49. [Google Scholar] [CrossRef]
- Le Forestier, L.; Motelica-Heino, M.; Le Coustumer, P.; Mench, M. Phytostabilisation of a copper contaminated topsoil aided by basic slags: Assessment of Cu mobility and phytoavailability. J. Soils Sediments 2017, 17, 1262–1271. [Google Scholar] [CrossRef]
- Bes, C.M.; Mench, M.; Aulen, M.; Gaste, H.; Taberly, J. Spatial variation of plant communities and shoot Cu concentrations of plant species at a timber treatment site. Plant Soil 2010, 330, 267–280. [Google Scholar] [CrossRef]
- Hong, Y.K.; Kim, J.W.; Lee, S.P.; Yang, J.E.; Kim, S.C. Heavy metal remediation in soil with chemical amendments and its impact on activity of antioxidant enzymes in Lettuce (Lactuca sativa) and soil enzymes. Appl. Biol. Chem. 2020, 63, 42. [Google Scholar] [CrossRef]
- Nandillon, R.; Lahwegue, O.; Miard, F.; Lebrun, M.; Gaillard, M.; Sabatier, S.; Battaglia-Brunet, F.; Morabito, D.; Bourgerie, S. Potential use of biochar, compost and iron grit associated with Trifolium repens to stabilize Pb and As on a multi-contaminated technosol. Ecotoxicol. Environ. Saf. 2019, 182, 109432. [Google Scholar] [CrossRef]
- Lee, J.H. An overview of phytoremediation as a potentially promising technology for environmental pollution control. Biotechnol. Bioproc. E 2013, 18, 431–439. [Google Scholar] [CrossRef]
- Santos, F.S.D.; Magalhães, M.O.L.; Mazur, N.; Amaral Sobrinho, N.M.B.D. Chemical amendment and phytostabilization of an industrial residue contaminated with Zn and Cd. Sci. Agric. 2007, 64, 506–512. [Google Scholar] [CrossRef]
- Otunola, B.O.; Aghoghovwia, M.P.; Thwala, M.; Gómez-Arias, A.; Jordaan, R.; Hernandez, J.C.; Ololade, O.O. Influence of clay mineral amendments characteristics on heavy metals uptake in vetiver grass (Chrysopogon zizanioides L. Roberty) and indian mustard (Brassica juncea L. Czern). Sustainability 2022, 14, 5856. [Google Scholar] [CrossRef]
- Nwaichi, E.O.; Dhankher, O.P. Heavy metals contaminated environments and the road map with phytoremediation. J. Environ. Prot. 2016, 7, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Neuman, D.; Ford, K.L. Phytostabilization as a Remediation Alternative at Mining Sites; Technical Note 420; BLM/ST/ST-06/003+3720; Bureau of Land Management: Lakewood, CO, USA, 2006; p. 48. [Google Scholar]
- Chyn, Y. Phytostabilization. 2011. Available online: https://knowhowtogmo.wordpress.com/tag/disadvantages-of-phytostabilization/ (accessed on 26 April 2021).
- Wuana, R.A.; Okieimen, F.E. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. Int. Sch. Res. Notices 2011, 2011, 402647. [Google Scholar] [CrossRef] [Green Version]
- Fanrong, Z.; Shafaqat, A.; Haitao, Z.; Younan, O.; Boyin, Q.; Feibo, W.; Guoping, Z. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environ. Pollut. 2011, 159, 84–91. [Google Scholar] [CrossRef]
- Wang, F.; Ouyang, W.; Hao, F.; Lin, C.; Song, N. In situ remediation of cadmium-polluted soil reusing four by-products individually and in combination. J. Soils Sediments 2014, 14, 451–461. [Google Scholar] [CrossRef]
- Shrestha, P.; Bellitürk, K.; Görres, J.H. Phytoremediation of heavy metal-contaminated soil by switchgrass: A comparative study utilizing different composts and coir fiber on pollution remediation, plant productivity, and nutrient leaching. Int. J. Environ. Res. Public Health 2019, 16, 1261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antonious, G.F.; Kochhar, T.S.; Coolong, T. Yield, quality, and concentration of seven heavy metals in cabbage and broccoli grown in sewage sludge and chicken manure amended soil. J. Environ. Sci Health A Tox Hazard Subst. Environ. Eng. 2012, 47, 1955–1965. [Google Scholar] [CrossRef] [PubMed]
- Shabir, H.W.; Gulzar, S.S.; Haribhushan, A.; Jyotsna, N.; Rita, N.; Brajendra, S.N.; Herojit, S.A. Phytoremediation: Curing soil problems with crops. Afr. J. Agric. Res. 2012, 7, 3991–4002. [Google Scholar]
- Zhao, K.; Fu, W.; Ye, Z.; Zhang, C. Contamination and spatial variation of heavy metals in the soil-rice system in Nanxun County, southeastern China. Int. J. Environ. Res. Public Health 2015, 12, 1577–1594. [Google Scholar] [CrossRef]
- Ur Rehman, M.Z.; Rizwan, M.; Ali, S.; Ok, Y.S.; Ishaque, W.; Nawaz, M.F.; Akmal, F.; Waqar, M. Remediation of heavy metal contaminated soils by using Solanum nigrum: A review. Ecotoxicol. Environ. Saf 2017, 143, 236–248. [Google Scholar] [CrossRef]
- Nayak, A.K.; Raja, R.; Rao, K.S.; Shukla, A.K.; Mohanty, S.; Shahid, M.; Tripathi, R.; Panda, B.; Bhattacharyya, P.; Kumar, A.; et al. Effect of fly ash application on soil microbial response and heavy metal accumulation in soil and rice plant. Ecotoxicol. Environ. Saf. 2015, 114, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Elouear, Z.; Bouhamed, F.; Boujelben, N.; Bouzid, J. Application of sheep manure and potassium fertilizer to contaminated soil and its effect on zinc, cadmium and lead accumulation by alfalfa plants. Sustain. Environ. Res. 2016, 26, 131–135. [Google Scholar] [CrossRef] [Green Version]
Species | Country | The Source of Heavy Metals | Accumulated Heavy Metals | Author | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1. Capsicum annuum (green pepper) and Lactuca sativa (lettuce) | Northern Ethiopia | Irrigated soil | Cu and Zn | [96] | ||||||||
2. Beta vulgaris subsp. Vulgaris (Swiss chard) | Fe, Mn, Cr, Cd, Ni and Co | |||||||||||
3. Lactuca sativa (lettuce) and Solanum lycopersicum L. (tomato) | Cd | |||||||||||
4. Capsicum annuum (green pepper), Solanum lycopersicum L.(tomato), Allium cepa (onion) | Pb | |||||||||||
1. Allium cepa (onion, shoots and leaves) 2. Solanum tuberosum (potatoes) 3. Daucus carota (carrot) | Greece | Irrigated soil | 1. Cr (VI), Ni (II) 2. Ni can also pass to potatoes, depending on the irrigation concentration of the two heavy metals, through cross contamination 3. The results did not prove that Cr and Ni can cross-contaminate carrot bulbs. | [97] | ||||||||
1. Lactuca sativa (lettuce) 2. Cichorium endivia L. (endive) 3. Triticum (wheat) and Oryza sativa (rice) | China | Phosphate fertilizer, leakage of factory sewage | 1, 2. Cd it has a concentration 4 times higher in leaves than in roots and 20–30 times higher than the concentration in the soil 3. Cd is accumulated in grains | [98,99] | ||||||||
1. Spinacia oleracea (spinach) 2. Brassica oleracea (cabbage) 3. Solanum melongena (eggplant) 4. Daucus carota (carrot) | India | Irrigated soil | Cd (1.30 ± 0.31 mg kg−1), Pb (4.23 ± 0.32 mg kg−1), Cu (1.42 ± 0.25 mg kg−1), Zn (3.4 ± 0.28 mg kg−1), Cr (1.16 ± 0.11 mg kg−1) and Ni (2.45 ± 0.86 mg kg−1) | [100] | ||||||||
1. Mentha piperita (mint) 2. Spinacia oleracea (spinach) 3. Daucus carota (carrot) | India | Irrigated soil (wastewater) | 1. Fe, Mn, Cu and Zn 2. Fe, Mn 3. Cu, Zn | [101] | ||||||||
Solanum lycopersicum (tomatoes) | Romania | Experimental field | Cu > Zn > Pb; | [102] | ||||||||
Brassica oleracea (cabbage), Solanum lycopersicum (tomatoes) | Ethiopia | Soil | As, Pb, Cd, Cr and Hg (even if the concentration is below the tolerable limit/day there is a risk of intoxication) | [103] | ||||||||
1. Spinacia oleracea (spinach) 2. Solanum melongena (eggplant) 3. Cucurbita pepo L. (pumpkin) | Pakistan | Sewage water | 1. Mn, Cr and Fe 2. Cd, Ni, Zn 3. Cu | [104] | ||||||||
1. Spinacia oleracea (spinach) 2. Spinacia oleracea (spinach) > Brassica oleracea var. italica (broccoli) > Solanum lycopersicum (tomatoes) 3. Spinacia oleracea (spinach) > Beta vulgaris and (beetroot) > Petroselinum crispum (parsnips) | Serbia | Soil (farm producers) | 1. Cd, Pb (Spinach appears to have the highest accumulation of heavy metals) 2. Ni 3. Cr | [105] | ||||||||
1. Allium porrum (leek) 2. Petroselinum crispum (parsley) 3. Allium cepa (onion) | Turkey | Soil | 1. As, Cu 2. Ni, Mn 3. Zn, Cd, Pb | [106] | ||||||||
Solanum Tuberosum L. (potatoes) | Turkey | Soil cause by roadside industrial places irrigating pesticides | High: zinc, copper, nickel Less: cadmium, lead, chrome | [107] | ||||||||
1. Solanum lycopersicum (tomatoes leaves) 2. Cucurbita pepo (zucchini) | Italy | Airborne pollutants | 1. Cd, Cr, Ni, Sn, Zn, 2. Ni, Sn, Zn, Ba | [108] | ||||||||
1. Lycopersicum (tomatoes) > Allium sativum (garlic) > Solanum melongena (eggplant) 2. Allium cep (onions), Allium. Sativum (garlic), Solanum lycopersicum (tomatoes) and Solanum melongena (eggplant) | Pakistan | Waste water and household wastes and the use of heavy duty vehicles to convey sand from the river Acid–lead batteries as waste dumped in the river | 1. Cu 2. Pb, Co | [109] | ||||||||
Lactuca sativa (lettuce) > Allium cepa (onions) > Daucus carota (carrots) | India | Polluted and degraded environmental conditions | Pb | [110] | ||||||||
Malus domestica (apple fruits) | Greece | Local geology, plus fertilizers, pesticides, fungicides and insecticides | As (0.05–0.2); Cd (0.01–0.1); Hg (0.001–0.008) Ni (0.05–0.7);Pb (0.01–0.46); Zn (1.1–10.3) | [111] | ||||||||
Lactuca sativa (lettuce), Amaranthus (amaranth), Vigna unguiculata (cowpea), Oryza sativa (rice) | China | Soil near by coal-fired power plants, thermal power plants | Hg | [42] | ||||||||
1. Lactuca sativa (lettuce) 2. Phaseolus vulgaris L. (bean) | Hungary | Irrigated water containing sodium arsenate (0.1, 0.25 and 0.5 mg L−1) | 1. As: root > stem > leaf > bean fruit 2. root > leaves | [112] | ||||||||
Beta vulgaris L. (Spinach leaves) | Bangladesh | soil | ppm | [42] | ||||||||
Cr | Mn | Ni | Cu | Zn | As | Sr | Cd | Pb | ||||
<0.05 | <0.06 | <0.65 | 5.59 ± 0.33 | 112.24 ± 0.47 | <0.01 | 23.75 ± 0.23 | <0.06 | 0.98 ± 0.00 | ||||
Lycopersicon esculentum L. (tomato) | 0.51 ± 0.03 | <0.06 | <0.65 | 3.62 ± 0.29 | 31.1 ± 0.43 | 0.05 ± 0.0 | <0.14 | <0.06 | 0.12 ± 0.00 | |||
Raphanus sativus L. (radish—root) | <0.05 | 0.87 ± 0.13 | 0.87 ± 0.13 | 4.45 ± 0.34 | 25.78 ± 0.46 | 0.05 ± 0.00 | 7.23 ± 0.28 | 0.65 ± 0.05 | 0.51 ± 0.06 | |||
Phaseolus lunatus L. (bean—fruit) | <0.05 | 25.95 ± 2.56 | 0.87 ± 0.13 | 5.91 ± 0.22 | 68.34 ± 0.44 | 0.05 ± 0.00 | <0.14 | <0.06 | 0.65 ± 005 | |||
Daucus carota var sativus L. (carrot—root) | <0.05 | <0.06 | <0.65 | 5.35 ± 0.31 | 45.28 ± 0.45 | 0.04 ± 0.00 | <0.14 | <0.06 | 0.72 ± 0.03 | |||
Brassica oleracea L. (cauliflower—inflorescence) | <0.05 | <0.06 | 0.94 ± 0.29 | 4.59 ± 0.35 | 42.05 ± 0.43 | 0.05 ± 0.00 | <0.14 | 0.16 ± 0.04 | 0.23 ± 0.00 | |||
Pakistan | Soil | mg/kg dw | Cd | Pb | Ni | Co | Zn | Cu | Mn | [113] | ||
Coriandrum sativum (coriander) | 0.23 | 2.12 | 0.77 | 0.47 | 36.65 | 5.92 | 21.65 | |||||
Allium cepa (onion) | 0.13 | 0.66 | 0.54 | 0.32 | 23.94 | 6.25 | 20.15 | |||||
Lycopersicon esculentum L. (tomato) | 0.14 | 0.46 | 0.89 | 0.22 | 16.77 | 4.77 | 14.46 | |||||
Quatar | Soil Irrigated farms | mg/kg | V | Cr | Ni | Cu | As | Cd | Pb | |||
Eruca vesicaria (rocca) | 17.09 | 6.41 | 1.70 | 13.074 | 14.72 | 0.9 | 6.36 | [114] | ||||
Coriandrum sativum (coriander) | 15.91 | 6.03 | 1.38 | 15.30 | 16.86 | 0.43 | 5.00 | |||||
Petroselinum crispum (parsley) | 16.25 | 6.26 | 2.19 | 17.97 | 16.60 | 0.51 | 5.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hegedus, C.; Pașcalău, S.-N.; Andronie, L.; Rotaru, A.-S.; Cucu, A.-A.; Dezmirean, D.S. The Journey of 1000 Leagues towards the Decontamination of the Soil from Heavy Metals and the Impact on the Soil–Plant–Animal–Human Chain Begins with the First Step: Phytostabilization/Phytoextraction. Agriculture 2023, 13, 735. https://doi.org/10.3390/agriculture13030735
Hegedus C, Pașcalău S-N, Andronie L, Rotaru A-S, Cucu A-A, Dezmirean DS. The Journey of 1000 Leagues towards the Decontamination of the Soil from Heavy Metals and the Impact on the Soil–Plant–Animal–Human Chain Begins with the First Step: Phytostabilization/Phytoextraction. Agriculture. 2023; 13(3):735. https://doi.org/10.3390/agriculture13030735
Chicago/Turabian StyleHegedus, Cristina, Simona-Nicoleta Pașcalău, Luisa Andronie, Ancuţa-Simona Rotaru, Alexandra-Antonia Cucu, and Daniel Severus Dezmirean. 2023. "The Journey of 1000 Leagues towards the Decontamination of the Soil from Heavy Metals and the Impact on the Soil–Plant–Animal–Human Chain Begins with the First Step: Phytostabilization/Phytoextraction" Agriculture 13, no. 3: 735. https://doi.org/10.3390/agriculture13030735
APA StyleHegedus, C., Pașcalău, S.-N., Andronie, L., Rotaru, A.-S., Cucu, A.-A., & Dezmirean, D. S. (2023). The Journey of 1000 Leagues towards the Decontamination of the Soil from Heavy Metals and the Impact on the Soil–Plant–Animal–Human Chain Begins with the First Step: Phytostabilization/Phytoextraction. Agriculture, 13(3), 735. https://doi.org/10.3390/agriculture13030735