Exploring the Research Challenges and Perspectives in Ecophysiology of Plants Affected by Salinity Stress
Abstract
:1. Introduction
2. The Phenomenon of Soil Salinization
3. The Impact of High Salinity Levels on Plant Growth and Development
4. Salinity Stress as a Driver in Plant Physiological and Biochemical Process
5. Tolerance as a Plant Salinity Stress Response
6. The Case Study of Wheat, a Major Cereal Crop, with Regard to Salinity Tolerance
7. Ecophysiological Perspectives in Salinity Stress
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gupta, R.K.; Abrol, I.P.; Finkl, C.W.; Kirkham, M.B.; Arbestain, M.C.; Macías, F.; Chesworth, W.; Germida, J.J.; Loeppert, R.H.; Cook, M.G.; et al. Soil Salinity and Salinization. In Encyclopedia of Soil Science; Chesworth, W., Ed.; Encyclopedia of Earth Sciences Series; Springer Netherlands: Dordrecht, The Netherland, 2008; pp. 699–704. ISBN 978-1-4020-3995-9. [Google Scholar]
- Okur, B.; Örçen, N. Soil Salinization and Climate Change. In Climate Change and Soil Interactions; Elsevier: Cambridge, MA, USA, 2020; pp. 331–350. [Google Scholar]
- Modiga, B.A.; Covașă, M.; Slabu, C.; Marta, A.E.; Jităreanu, C.D. Determination of Productivity and Chlorine Concentration in Some Bean Cultivation, from the Region of Moldova, under Salt Stress. Sci. Pap. -Ser. B Hortic. 2019, 63, 169–175. [Google Scholar]
- Bui, E.N. Causes of Soil Salinization, Sodification, and Alkalinization. In Oxford Research Encyclopedia of Environmental Science; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- ICPA. 2009. Available online: https://www.icpa.ro/documente/diagnoza.pdf (accessed on 20 February 2023).
- Smith, P.; Calvin, K.; Nkem, J.; Campbell, D.; Cherubini, F.; Grassi, G.; Korotkov, V.; Le Hoang, A.; Lwasa, S.; McElwee, P. Which Practices Co-Deliver Food Security, Climate Change Mitigation and Adaptation, and Combat Land Degradation and Desertification? Glob. Change Biol. 2020, 26, 1532–1575. [Google Scholar]
- Pacheco, F.A.L.; Fernandes, L.F.S.; Junior, R.F.V.; Valera, C.A.; Pissarra, T.C.T. Land Degradation: Multiple Environmental Consequences and Routes to Neutrality. Curr. Opin. Environ. Sci. Health 2018, 5, 79–86. [Google Scholar]
- Besser, H.; Dhaouadi, L.; Hadji, R.; Hamed, Y.; Jemmali, H. Ecologic and Economic Perspectives for Sustainable Irrigated Agriculture under Arid Climate Conditions: An Analysis Based on Environmental Indicators for Southern Tunisia. J. Afr. Earth Sci. 2021, 177, 104134. [Google Scholar]
- Scherr, S.J. The Future Food Security and Economic Consequences of Soil Degradation in the Developing World. In Response to Land Degradation; CRC Press: Boca Raton, FL, USA, 2019; pp. 155–170. [Google Scholar]
- Gupta, G.S. Land Degradation and Challenges of Food Security. Rev. Eur. Stud. 2019, 11, 63. [Google Scholar] [CrossRef]
- Liliane, T.N.; Charles, M.S. Factors Affecting Yield of Crops. In Agronomy-Climate Change & Food Security; IntechOpen: London, UK, 2020; p. 9. [Google Scholar]
- Qadir, M.; Qureshi, A.S.; Cheraghi, S.A.M. Extent and Characterisation of Salt-Affected Soils in Iran and Strategies for Their Amelioration and Management. Land Degrad. Dev. 2008, 19, 214–227. [Google Scholar] [CrossRef]
- Yang, F.; An, F.; Ma, H.; Wang, Z.; Zhou, X.; Liu, Z. Variations on Soil Salinity and Sodicity and Its Driving Factors Analysis under Microtopography in Different Hydrological Conditions. Water 2016, 8, 227. [Google Scholar]
- Naidu, R.; Rengasamy, P. Ion Interactions and Constraints to Plant Nutrition in Australian Sodic Soils. Soil Res. 1993, 31, 801–819. [Google Scholar] [CrossRef]
- Pessarakli, M.; Szabolcs, I. Soil Salinity and Sodicity as Particular Plant/Crop Stress Factors. In Handbook of Plant and Crop Stress, 4th ed.; CRC Press: Boca Raton, FL, USA, 2019; pp. 3–21. [Google Scholar]
- Jouyban, Z. The Effects of Salt Stress on Plant Growth. Tech. J. Eng. Appl. Sci. 2012, 2, 7–10. [Google Scholar]
- Maryum, Z.; Luqman, T.; Nadeem, S.; Khan, S.M.U.D.; Wang, B.; Ditta, A.; Khan, M.K.R. An Overview of Salinity Stress, Mechanism of Salinity Tolerance and Strategies for Its Management in Cotton. Front. Plant Sci. 2022, 13, 907937. [Google Scholar] [PubMed]
- Carillo, P.; Annunziata, M.G.; Pontecorvo, G.; Fuggi, A.; Woodrow, P. Salinity Stress and Salt Tolerance. Abiotic Stress Plants-Mech. Adapt. 2011, 1, 21–38. [Google Scholar]
- Van Zandt, P.A.; Tobler, M.A.; Mouton, E.; Hasenstein, K.H.; Mopper, S. Positive and Negative Consequences of Salinity Stress for the Growth and Reproduction of the Clonal Plant, Iris Hexagona. J. Ecol. 2003, 91, 837–846. [Google Scholar]
- Ontoria, Y.; Webster, C.; Said, N.; Ruiz, J.M.; Pérez, M.; Romero, J.; McMahon, K. Positive Effects of High Salinity Can Buffer the Negative Effects of Experimental Warming on Functional Traits of the Seagrass Halophila ovalis. Mar. Pollut. Bull. 2020, 158, 111404. [Google Scholar]
- Isayenkov, S.V.; Maathuis, F.J. Plant Salinity Stress: Many Unanswered Questions Remain. Front. Plant Sci. 2019, 10, 80. [Google Scholar] [PubMed] [Green Version]
- Larbi, A.; Kchaou, H.; Gaaliche, B.; Gargouri, K.; Boulal, H.; Morales, F. Supplementary Potassium and Calcium Improves Salt Tolerance in Olive Plants. Sci. Hortic. 2020, 260, 108912. [Google Scholar]
- Kumari, S.; Chhillar, H.; Chopra, P.; Khanna, R.R.; Khan, M.I.R. Potassium: A Track to Develop Salinity Tolerant Plants. Plant Physiol. Biochem. 2021, 167, 1011–1023. [Google Scholar]
- Zhao, S.; Zhang, Q.; Liu, M.; Zhou, H.; Ma, C.; Wang, P. Regulation of Plant Responses to Salt Stress. Int. J. Mol. Sci. 2021, 22, 4609. [Google Scholar] [CrossRef]
- Chen, H.; Jiang, J.-G. Osmotic Adjustment and Plant Adaptation to Environmental Changes Related to Drought and Salinity. Environ. Rev. 2010, 18, 309–319. [Google Scholar]
- Grieve, C.M.; Grattan, S.R.; Maas, E.V. Plant Salt Tolerance. ASCE Man. Rep. Eng. Pract. 2012, 71, 405–459. [Google Scholar]
- Mustafa, G.; Akhtar, M.S.; Abdullah, R. Global Concern for Salinity on Various Agro-Ecosystems. In Salt Stress, Microbes, and Plant Interactions: Causes and Solution: Volume 1; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–19. [Google Scholar]
- Prăvălie, R.; Patriche, C.; Borrelli, P.; Panagos, P.; Roșca, B.; Dumitraşcu, M.; Nita, I.-A.; Săvulescu, I.; Birsan, M.-V.; Bandoc, G. Arable Lands under the Pressure of Multiple Land Degradation Processes. A Global Perspective. Environ. Res. 2021, 194, 110697. [Google Scholar] [PubMed]
- Negacz, K.; Malek, Ž.; de Vos, A.; Vellinga, P. Saline Soils Worldwide: Identifying the Most Promising Areas for Saline Agriculture. J. Arid. Environ. 2022, 203, 104775. [Google Scholar]
- Pavuluri, S. Kinetic Approach for Modeling Salt Precipitation in Porous-Media; GRIN Verlag: Munich, Germany, 2014. [Google Scholar]
- Hassani, A.; Azapagic, A.; Shokri, N. Global Predictions of Primary Soil Salinization under Changing Climate in the 21st Century. Nat. Commun. 2021, 12, 6663. [Google Scholar] [PubMed]
- Daliakopoulos, I.N.; Tsanis, I.K.; Koutroulis, A.; Kourgialas, N.N.; Varouchakis, A.E.; Karatzas, G.P.; Ritsema, C.J. The Threat of Soil Salinity: A European Scale Review. Sci. Total Environ. 2016, 573, 727–739. [Google Scholar]
- Prăvălie, R.; Patriche, C.; Săvulescu, I.; Sîrodoev, I.; Bandoc, G.; Sfîcă, L. Spatial Assessment of Land Sensitivity to Degradation across Romania. A Quantitative Approach Based on the Modified MEDALUS Methodology. Catena 2020, 187, 104407. [Google Scholar]
- Várallyay, G. Climate Change, Soil Salinity and Alkalinity. In Proceedings of the Soil Responses to Climate Change; Springer: Berlin/Heidelberg, Germany, 1994; pp. 39–54. [Google Scholar]
- Rengasamy, P.; de Lacerda, C.F.; Gheyi, H.R. Salinity, Sodicity and Alkalinity. In Subsoil Constraints for Crop Production; Springer: Berlin/Heidelberg, Germany, 2022; pp. 83–107. [Google Scholar]
- Litalien, A.; Zeeb, B. Curing the Earth: A Review of Anthropogenic Soil Salinization and Plant-Based Strategies for Sustainable Mitigation. Sci. Total Environ. 2020, 698, 134235. [Google Scholar] [PubMed]
- Metternicht, G.I.; Zinck, J.A. Remote Sensing of Soil Salinity: Potentials and Constraints. Remote Sens. Environ. 2003, 85, 1–20. [Google Scholar]
- Arora, S. Diagnostic Properties and Constraints of Salt-Affected Soils. In Bioremediation of Salt Affected Soils: An Indian Perspective; Springer: Berlin/Heidelberg, Germany, 2017; pp. 41–52. [Google Scholar]
- Mohanavelu, A.; Naganna, S.R.; Al-Ansari, N. Irrigation Induced Salinity and Sodicity Hazards on Soil and Groundwater: An Overview of Its Causes, Impacts and Mitigation Strategies. Agriculture 2021, 11, 983. [Google Scholar]
- Dimitriadou, S.; Nikolakopoulos, K.G. Evapotranspiration Trends and Interactions in Light of the Anthropogenic Footprint and the Climate Crisis: A Review. Hydrology 2021, 8, 163. [Google Scholar]
- Dehaan, R.L.; Taylor, G.R. Field-Derived Spectra of Salinized Soils and Vegetation as Indicators of Irrigation-Induced Soil Salinization. Remote Sens. Environ. 2002, 80, 406–417. [Google Scholar]
- Kordrostami, M.; Rabiei, B. Salinity Stress Tolerance in Plants: Physiological, Molecular, and Biotechnological Approaches. In Plant Abiotic Stress Tolerance: Agronomic, Molecular and Biotechnological Approaches; Springer: Berlin/Heidelberg, Germany, 2019; pp. 101–127. [Google Scholar]
- Sidău, M.R.; Croitoru, A.-E.; Alexandru, D.-E. Comparative Analysis between Daily Extreme Temperature and Precipitation Values Derived from Observations and Gridded Datasets in North-Western Romania. Atmosphere 2021, 12, 361. [Google Scholar] [CrossRef]
- Bodkhe, U.; Tanwar, S.; Bhattacharya, P.; Kumar, N. Blockchain for Precision Irrigation: Opportunities and Challenges. Trans. Emerg. Telecommun. Technol. 2022, 33, e4059. [Google Scholar]
- Hnilickova, H.; Kraus, K.; Vachova, P.; Hnilicka, F. Salinity Stress Affects Photosynthesis, Malondialdehyde Formation, and Proline Content in Portulaca oleracea L. Plants 2021, 10, 845. [Google Scholar] [CrossRef] [PubMed]
- Corwin, D.L.; Yemoto, K. Salinity: Electrical Conductivity and Total Dissolved Solids. Soil Sci. Soc. Am. J. 2020, 84, 1442–1461. [Google Scholar]
- Mau, Y.; Porporato, A. A Dynamical System Approach to Soil Salinity and Sodicity. Adv. Water Resour. 2015, 83, 68–76. [Google Scholar] [CrossRef] [Green Version]
- Munns, R.; Day, D.A.; Fricke, W.; Watt, M.; Arsova, B.; Barkla, B.J.; Bose, J.; Byrt, C.S.; Chen, Z.-H.; Foster, K.J. Energy Costs of Salt Tolerance in Crop Plants. New Phytol. 2020, 225, 1072–1090. [Google Scholar]
- Flagella, Z.; Cantore, V.; Giuliani, M.M.; Tarantino, E.; De Caro, A. Crop Salt Tollerance: Physiological, Yield and Quality Aspects. In Recent Research Developments in Plant Biology; Transworld Research Signpost: Trivandrum, India, 2002; Volume 2, pp. 155–186. [Google Scholar]
- Vâtcă, S.; Vidican, R.; Ștefania, G.; Horvat, M.; Vâtcă, A.; Stoian, V.A.; Stoian, V. Blackcurrant Variety Specific Growth and Yield Formation as a Response to Foliar Fertilizers. Agronomy 2020, 10, 2014. [Google Scholar]
- Gupta, B.; Huang, B. Mechanism of Salinity Tolerance in Plants: Physiological, Biochemical, and Molecular Characterization. Int. J. Genom. 2014, 2014, 701596. [Google Scholar]
- Farrant, J.M.; Costa, M.-C.D. Molecular Mechanisms and Genetics of Plant Resistance to Abiotic Stress; MDPI: Basel, Switzerland, 2020; ISBN 978-3-03928-122-0. [Google Scholar]
- Dos Santos, T.B.; Ribas, A.F.; de Souza, S.G.H.; Budzinski, I.G.F.; Domingues, D.S. Physiological Responses to Drought, Salinity, and Heat Stress in Plants: A Review. Stresses 2022, 2, 113–135. [Google Scholar]
- Hayat, S.; Hayat, Q.; Alyemeni, M.N.; Wani, A.S.; Pichtel, J.; Ahmad, A. Role of Proline under Changing Environments: A Review. Plant Signal. Behav. 2012, 7, 1456–1466. [Google Scholar] [CrossRef] [Green Version]
- Hussain, S.; Cao, X.; Zhong, C.; Zhu, L.; Khaskheli, M.A.; Fiaz, S.; Zhang, J.; Jin, Q. Sodium Chloride Stress during Early Growth Stages Altered Physiological and Growth Characteristics of Rice. Chil. J. Agric. Res. 2018, 78, 183–197. [Google Scholar] [CrossRef]
- Uçarlı, C. Effects of Salinity on Seed Germination and Early Seedling Stage. In Abiotic Stress in Plants; IntechOpen: London, UK, 2020; p. 211. [Google Scholar]
- Angon, P.B.; Tahjib-Ul-Arif, M.; Samin, S.I.; Habiba, U.; Hossain, M.A.; Brestic, M. How Do Plants Respond to Combined Drought and Salinity Stress?—A Systematic Review. Plants 2022, 11, 2884. [Google Scholar] [PubMed]
- Corwin, D.L. Climate Change Impacts on Soil Salinity in Agricultural Areas. Eur. J. Soil Sci. 2021, 72, 842–862. [Google Scholar] [CrossRef]
- Ondrasek, G.; Rathod, S.; Manohara, K.K.; Gireesh, C.; Anantha, M.S.; Sakhare, A.S.; Parmar, B.; Yadav, B.K.; Bandumula, N.; Raihan, F. Salt Stress in Plants and Mitigation Approaches. Plants 2022, 11, 717. [Google Scholar] [CrossRef] [PubMed]
- Quamruzzaman, M.; Manik, S.N.; Shabala, S.; Zhou, M. Improving Performance of Salt-Grown Crops by Exogenous Application of Plant Growth Regulators. Biomolecules 2021, 11, 788. [Google Scholar] [PubMed]
- Tan, J.; Ben-Gal, A.; Shtein, I.; Bustan, A.; Dag, A.; Erel, R. Root Structural Plasticity Enhances Salt Tolerance in Mature Olives. Environ. Exp. Bot. 2020, 179, 104224. [Google Scholar]
- Wang, H.; Liang, L.; Liu, S.; An, T.; Fang, Y.; Xu, B.; Zhang, S.; Deng, X.; Palta, J.A.; Siddique, K.H. Maize Genotypes with Deep Root Systems Tolerate Salt Stress Better than Those with Shallow Root Systems during Early Growth. J. Agron. Crop Sci. 2020, 206, 711–721. [Google Scholar] [CrossRef]
- Arif, M.R.; Islam, M.T.; Robin, A.H.K. Salinity Stress Alters Root Morphology and Root Hair Traits in Brassica napus. Plants 2019, 8, 192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, Y.; Zhang, Y.; Testerink, C. Root Dynamic Growth Strategies in Response to Salinity. Plant Cell Environ. 2022, 45, 695–704. [Google Scholar] [CrossRef]
- Dai, X.; Huo, Z.; Wang, H. Simulation for Response of Crop Yield to Soil Moisture and Salinity with Artificial Neural Network. Field Crops Res. 2011, 121, 441–449. [Google Scholar] [CrossRef]
- Munns, R. Comparative Physiology of Salt and Water Stress. Plant Cell Environ. 2002, 25, 239–250. [Google Scholar]
- Christie, B.R. CRC Handbook of Plant Science in Agriculture; Christie, B.R., Ed.; CRC Series in Agriculture; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- Yadav, S.; Irfan, M.; Ahmad, A.; Hayat, S. Causes of Salinity and Plant Manifestations to Salt Stress: A Review. J. Environ. Biol. 2011, 32, 667. [Google Scholar]
- Öztürk, M.; Waisel, Y.; Khan, M.A.; Görk, G. Biosaline Agriculture and Salinity Tolerance in Plants; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Yadav, S.; Modi, P.; Dave, A.; Vijapura, A.; Patel, D.; Patel, M. Effect of Abiotic Stress on Crops. In Sustainable Crop Production; IntechOpen: London, UK, 2020; p. 3. [Google Scholar]
- Cakir, R. Effect of Water Stress at Different Development Stages on Vegetative and Reproductive Growth of Corn. Field Crops Res. 2004, 89, 1–16. [Google Scholar] [CrossRef]
- Munir, N.; Hasnain, M.; Roessner, U.; Abideen, Z. Strategies in Improving Plant Salinity Resistance and Use of Salinity Resistant Plants for Economic Sustainability. Crit. Rev. Environ. Sci. Technol. 2022, 52, 2150–2196. [Google Scholar] [CrossRef]
- Song, J.; Feng, G.; Zhang, F. Salinity and Temperature Effects on Germination for Three Salt-Resistant Euhalophytes, Halostachys caspica, Kalidium foliatum and Halocnemum strobilaceum. Plant Soil 2006, 279, 201–207. [Google Scholar] [CrossRef]
- Flowers, T.J. Physiology of Halophytes. In Biosalinity in Action: Bioproduction with Saline Water; Pasternak, D., San Pietro, A., Eds.; Developments in Plant and Soil Sciences; Springer Netherlands: Dordrecht, The Netherlands, 1985; pp. 41–56. ISBN 978-94-009-5111-2. [Google Scholar]
- Yuan, F.; Guo, J.; Shabala, S.; Wang, B. Reproductive Physiology of Halophytes: Current Standing. Front. Plant Sci. 2019, 9, 1954. [Google Scholar] [CrossRef] [PubMed]
- Shabala, S. Learning from Halophytes: Physiological Basis and Strategies to Improve Abiotic Stress Tolerance in Crops. Ann. Bot. 2013, 112, 1209–1221. [Google Scholar] [CrossRef]
- Hernández, J.A. Salinity Tolerance in Plants: Trends and Perspectives. Int. J. Mol. Sci. 2019, 20, 2408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Hassan, M.; FUERTES, M.M.; SÁNCHEZ, F.J.R.; Vicente, O.; Boscaiu, M. Effects of Salt and Water Stress on Plant Growth and on Accumulation of Osmolytes and Antioxidant Compounds in Cherry Tomato. Not. Bot. Horti Agrobot. 2015, 43, 1–11. [Google Scholar] [CrossRef]
- Bohnert, H.J.; Nelson, D.E.; Jensen, R.G. Adaptations to Environmental Stresses. Plant Cell 1995, 7, 1099. [Google Scholar] [CrossRef]
- Daneshmand, F.; Arvin, M.J.; Kalantari, K.M. Physiological Responses to NaCl Stress in Three Wild Species of Potato in Vitro. Acta Physiol. Plant. 2010, 32, 91–101. [Google Scholar] [CrossRef]
- Sytar, O.; Mbarki, S.; Zivcak, M.; Brestic, M. The Involvement of Different Secondary Metabolites in Salinity Tolerance of Crops. In Salinity Responses and Tolerance in Plants, Volume 2: Exploring RNAi, Genome Editing and Systems Biology; Springer: Berlin/Heidelberg, Germany, 2018; pp. 21–48. [Google Scholar]
- Gall, H.L.; Philippe, F.; Domon, J.-M.; Gillet, F.; Pelloux, J.; Rayon, C. Cell Wall Metabolism in Response to Abiotic Stress. Plants 2015, 4, 112–166. [Google Scholar] [CrossRef]
- Zhang, M.; Smith, J.A.C.; Harberd, N.P.; Jiang, C. The Regulatory Roles of Ethylene and Reactive Oxygen Species (ROS) in Plant Salt Stress Responses. Plant Mol. Biol. 2016, 91, 651–659. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Otie, V.; Matsuura, A.; Junichi, K.; Irshad, M.; Zheng, Y.; Fujimaki, H.; An, P. Pectin Characteristics Affect Root Growth in Spinach under Salinity. Plants 2022, 11, 3130. [Google Scholar] [CrossRef] [PubMed]
- Amudha, J.; Balasubramani, G. Recent Molecular Advances to Combat Abiotic Stress Tolerance in Crop Plants. Biotechnol. Mol. Biol. Rev. 2011, 6, 31–58. [Google Scholar]
- Hare, P.D.; Cress, W.A.; Van Staden, J. Dissecting the Roles of Osmolyte Accumulation during Stress. Plant Cell Environ. 1998, 21, 535–553. [Google Scholar] [CrossRef]
- Pardo-Domènech, L.L.; Tifrea, A.; Grigore, M.N.; Boscaiu, M.; Vicente, O. Proline and Glycine Betaine Accumulation in Two Succulent Halophytes under Natural and Experimental Conditions. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2016, 150, 904–915. [Google Scholar] [CrossRef]
- Di Martino, C.; Delfine, S.; Pizzuto, R.; Loreto, F.; Fuggi, A. Free Amino Acids and Glycine Betaine in Leaf Osmoregulation of Spinach Responding to Increasing Salt Stress. New Phytol. 2003, 158, 455–463. [Google Scholar] [CrossRef]
- Liu, L.; Wu, X.; Sun, W.; Yu, X.; Demura, T.; Li, D.; Zhuge, Q. Galactinol Synthase Confers Salt-Stress Tolerance by Regulating the Synthesis of Galactinol and Raffinose Family Oligosaccharides in Poplar. Ind. Crops Prod. 2021, 165, 113432. [Google Scholar] [CrossRef]
- Saberali, S.F.; Moradi, M. Effect of Salinity on Germination and Seedling Growth of Trigonella foenum-graecum, Dracocephalum moldavica, Satureja hortensis and Anethum graveolens. J. Saudi Soc. Agric. Sci. 2019, 18, 316–323. [Google Scholar] [CrossRef]
- Bojović, B.; \DJelić, G.; Topuzović, M.; Stanković, M. Effects of NaCl on Seed Germination in Some Species from Families Brassicaceae and Solanaceae. Kragujev. J. Sci. 2010, 32, 83–87. [Google Scholar]
- Ashraf, M.; Foolad, M.R. Pre-Sowing Seed Treatment—A Shotgun Approach to Improve Germination, Plant Growth, and Crop Yield under Saline and Non-Saline Conditions. Adv. Agron. 2005, 88, 223–271. [Google Scholar]
- Thompson: EIP-AGRI Focus Group Soil Salinisation. Available online: https://ec.europa.eu/eip/agriculture/sites/default/files/eip-agri_fg_soil_salinisation_final_report_2020_en.pdf (accessed on 26 February 2023).
- Taffouo, V.D.; Nouck, A.E.; Nyemene, K.P.; Tonfack, B.; Meguekam, T.L.; Youmbi, E. Effects of Salt Stress on Plant Growth, Nutrient Partitioning, Chlorophyll Content, Leaf Relative Water Content, Accumulation of Osmolytes and Antioxidant Compounds in Pepper (Capsicum Annuum L.) Cultivars. Not. Bot. Horti Agrobot. 2017, 45, 481–490. [Google Scholar]
- Ahmad, F.; Kamal, A.; Singh, A.; Ashfaque, F.; Alamri, S.; Siddiqui, M.H.; Khan, M.I.R. Seed Priming with Gibberellic Acid Induces High Salinity Tolerance in Pisum Sativum through Antioxidants, Secondary Metabolites and up-Regulation of Antiporter Genes. Plant Biol. 2021, 23, 113–121. [Google Scholar] [CrossRef]
- Negrão, S.; Schmöckel, S.M.; Tester, M. Evaluating Physiological Responses of Plants to Salinity Stress. Ann. Bot. 2017, 119, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsiao, T.C.; Xu, L.-K. Sensitivity of Growth of Roots versus Leaves to Water Stress: Biophysical Analysis and Relation to Water Transport. J. Exp. Bot. 2000, 51, 1595–1616. [Google Scholar] [CrossRef]
- Dos Reis, S.P.; Lima, A.M.; De Souza, C.R.B. Recent Molecular Advances on Downstream Plant Responses to Abiotic Stress. Int. J. Mol. Sci. 2012, 13, 8628–8647. [Google Scholar] [CrossRef] [PubMed]
- Munns, R.; Tester, M. Mechanisms of Salinity Tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yildiz, M.; Poyraz, İ.; Çavdar, A.; Özgen, Y.; Beyaz, R. Plant Responses to Salt Stress. In Plant Breeding-Current and Future Views; IntechOpen: London, UK, 2020. [Google Scholar]
- Gregoria, G.B.; Senadhira, D.; Mendoza, R.D. Screening Rice for Salinity Tolerance. International Rice Research Institute: Manila, Philippines, 1997. [Google Scholar]
- Al-Maskri, A.; Al-Kharusi, L.; Al-Miqbali, H.; Khan, M.M. Effects of Salinity Stress on Growth of Lettuce (Lactuca sativa) under Closed-Recycle Nutrient Film Technique. Int. J. Agric. Biol. 2010, 12, 377–380. [Google Scholar]
- Alam, M.; Juraimi, A.S.; Rafii, M.Y.; Hamid, A.A.; Aslani, F.; Hakim, M.A. Salinity-Induced Changes in the Morphology and Major Mineral Nutrient Composition of Purslane (Portulaca oleracea L.) Accessions. Biol. Res. 2016, 49, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Todd, J.L.; Luo, H. Turfgrass Salinity Stress and Tolerance—A Review. Plants 2023, 12, 925. [Google Scholar] [CrossRef] [PubMed]
- Walczak, A. The Use of World Water Resources in the Irrigation of Field Cultivations. J. Ecol. Eng. 2021, 22, 186–206. [Google Scholar] [CrossRef]
- Safdar, H.; Amin, A.; Shafiq, Y.; Ali, A.; Yasin, R.; Shoukat, A.; Hussan, M.U.; Sarwar, M.I. A Review: Impact of Salinity on Plant Growth. Nat. Sci. 2019, 17, 34–40. [Google Scholar]
- Katerji, N.; Van Hoorn, J.W.; Hamdy, A.; Mastrorilli, M. Salinity Effect on Crop Development and Yield, Analysis of Salt Tolerance According to Several Classification Methods. Agric. Water Manag. 2003, 62, 37–66. [Google Scholar] [CrossRef]
- FAO. Saline Soil and Their Management. 2022. Available online: https://www.fao.org/3/x5871e/x5871e04.htm (accessed on 22 February 2023).
- Downton, W.J.S.; Läuchli, A. Salt Tolerance of Food Crops: Prospectives for Improvements. Crit. Rev. Plant Sci. 1984, 1, 183–201. [Google Scholar] [CrossRef]
- EL Sabagh, A.; Islam, M.S.; Skalicky, M.; Ali Raza, M.; Singh, K.; Anwar Hossain, M.; Hossain, A.; Mahboob, W.; Iqbal, M.A.; Ratnasekera, D. Salinity Stress in Wheat (Triticum Aestivum L.) in the Changing Climate: Adaptation and Management Strategies. Front. Agron. 2021, 3, 661932. [Google Scholar] [CrossRef]
- Saddiq, M.S.; Iqbal, S.; Hafeez, M.B.; Ibrahim, A.M.; Raza, A.; Fatima, E.M.; Baloch, H.; Woodrow, P.; Ciarmiello, L.F. Effect of Salinity Stress on Physiological Changes in Winter and Spring Wheat. Agronomy 2021, 11, 1193. [Google Scholar] [CrossRef]
- Moustafa, E.S.; Ali, M.M.; Kamara, M.M.; Awad, M.F.; Hassanin, A.A.; Mansour, E. Field Screening of Wheat Advanced Lines for Salinity Tolerance. Agronomy 2021, 11, 281. [Google Scholar] [CrossRef]
- Sabagh, A.E.; Çiğ, F.; Seydoşoğlu, S.; Battaglia, M.L.; Javed, T.; Iqbal, M.A.; Awad, M. Salinity Stress in Maize: Effects of Stress and Recent Developments of Tolerance for Improvement. Cereal Grains 2021, 1, 213. [Google Scholar]
- Costa, F.H.; Goes, G.F.; Almeida, M.d.S.; Magalhães, C.L.; Sousa, J.; Sousa, G.G. Maize Crop Yield in Function of Salinity and Mulch. Rev. Bras. Eng. Agrícola Ambient. 2021, 25, 840–846. [Google Scholar] [CrossRef]
- Fu, X.; Wang, J.; Shangguan, T.; Wu, R.; Li, S.; Chen, G.; Xu, S. SMXLs Regulate Seed Germination under Salinity and Drought Stress in Soybean. Plant Growth Regul. 2022, 96, 397–408. [Google Scholar] [CrossRef]
- Khan, M.A.; Sahile, A.A.; Jan, R.; Asaf, S.; Hamayun, M.; Imran, M.; Adhikari, A.; Kang, S.-M.; Kim, K.-M.; Lee, I.-J. Halotolerant Bacteria Mitigate the Effects of Salinity Stress on Soybean Growth by Regulating Secondary Metabolites and Molecular Responses. BMC Plant Biol. 2021, 21, 176. [Google Scholar]
- Abulfaraj, A.A.; Jalal, R.S. Use of Plant Growth-Promoting Bacteria to Enhance Salinity Stress in Soybean (Glycine Max L.) Plants. Saudi J. Biol. Sci. 2021, 28, 3823–3834. [Google Scholar] [CrossRef] [PubMed]
- Dell’Aversana, E.; Hessini, K.; Ferchichi, S.; Fusco, G.M.; Woodrow, P.; Ciarmiello, L.F.; Abdelly, C.; Carillo, P. Salinity Duration Differently Modulates Physiological Parameters and Metabolites Profile in Roots of Two Contrasting Barley Genotypes. Plants 2021, 10, 307. [Google Scholar] [CrossRef] [PubMed]
- Akhter, M.S.; Noreen, S.; Mahmood, S.; Ashraf, M.; Alsahli, A.A.; Ahmad, P. Influence of Salinity Stress on PSII in Barley (Hordeum vulgare L.) Genotypes, Probed by Chlorophyll-a Fluorescence. J. King Saud Univ. -Sci. 2021, 33, 101239. [Google Scholar] [CrossRef]
- Ouertani, R.N.; Jardak, R.; Ben Chikha, M.; Ben Yaala, W.; Abid, G.; Karmous, C.; Hamdi, Z.; Mejri, S.; Jansen, R.K.; Ghorbel, A. Genotype-Specific Patterns of Physiological and Antioxidative Responses in Barley under Salinity Stress. Cereal Res. Commun. 2022, 50, 851–863. [Google Scholar] [CrossRef]
- Mansour, E.; Moustafa, E.S.; Abdul-Hamid, M.I.; Ash-shormillesy, S.M.; Merwad, A.-R.M.; Wafa, H.A.; Igartua, E. Field Responses of Barley Genotypes across a Salinity Gradient in an Arid Mediterranean Environment. Agric. Water Manag. 2021, 258, 107206. [Google Scholar]
- Bimurzayev, N.; Sari, H.; Kurunc, A.; Doganay, K.H.; Asmamaw, M. Effects of Different Salt Sources and Salinity Levels on Emergence and Seedling Growth of Faba Bean Genotypes. Sci. Rep. 2021, 11, 18198. [Google Scholar] [CrossRef]
- Mohamed, H.I.; El-Sayed, A.A.; Rady, M.M.; Caruso, G.; Sekara, A.; Abdelhamid, M.T. Coupling Effects of Phosphorus Fertilization Source and Rate on Growth and Ion Accumulation of Common Bean under Salinity Stress. PeerJ 2021, 9, e11463. [Google Scholar] [PubMed]
- Afzal, M.; Alghamdi, S.S.; Migdadi, H.H.; El-Harty, E.; Al-Faifi, S.A. Agronomical and Physiological Responses of Faba Bean Genotypes to Salt Stress. Agriculture 2022, 12, 235. [Google Scholar] [CrossRef]
- Aly, T.A.; Mustapha, A.T.; Zhang, L.; Yu, X.; Yagoub, A.E.A.; Ma, H.; Chen, L.; Zhou, C. Interaction Effects of Salinity and Ultrasound Pretreatment on the Phytochemical Compounds of Clover Sprouts. Acta Sci. Nutr. Health 2021, 5, 90–101. [Google Scholar]
- Abdelrazek, S.A.; Fayed, R.I.M.; El Naka, A. Salinity Effects of Irrigation Water and Cultivation of Egyptian Clover (Trifolium alexandrinum, L.) on Physicochemical Properties of Calcareous Soil. Alex. Sci. Exch. J. 2022, 43, 555–564. [Google Scholar] [CrossRef]
- Demirkol, G. PopW Improves Salt Stress Tolerance of Red Clover (Trifolium pratense L.) via Activating Phytohormones and Salinity Related Genes. Biologia 2023, 78, 979–991. [Google Scholar] [CrossRef]
- Yu, R.; Wang, G.; Yu, X.; Li, L.; Li, C.; Song, Y.; Xu, Z.; Zhang, J.; Guan, C. Assessing Alfalfa (Medicago sativa L.) Tolerance to Salinity at Seedling Stage and Screening of the Salinity Tolerance Traits. Plant Biol. 2021, 23, 664–674. [Google Scholar] [PubMed]
- Qiu, Y.; Fan, Y.; Chen, Y.; Hao, X.; Li, S.; Kang, S. Response of Dry Matter and Water Use Efficiency of Alfalfa to Water and Salinity Stress in Arid and Semiarid Regions of Northwest China. Agric. Water Manag. 2021, 254, 106934. [Google Scholar]
- Hou, C.; Li, X.; Tian, D.; Xu, B.; Zhang, C.; Ren, J.; Chen, N. Evaluation of the Effects of Water and Salinity Stress on the Growth and Biochemistry of Alfalfa (Medicago sativa L.) at the Branching Stage. Sustainability 2022, 14, 10262. [Google Scholar] [CrossRef]
- El-Mageed, T.A.A.; Mekdad, A.A.; Rady, M.O.; Abdelbaky, A.S.; Saudy, H.S.; Shaaban, A. Physio-Biochemical and Agronomic Changes of Two Sugar Beet Cultivars Grown in Saline Soil as Influenced by Potassium Fertilizer. J. Soil Sci. Plant Nutr. 2022, 22, 3636–3654. [Google Scholar]
- Bouras, H.; Bouaziz, A.; Bouazzama, B.; Hirich, A.; Choukr-Allah, R. How Phosphorus Fertilization Alleviates the Effect of Salinity on Sugar Beet (Beta vulgaris L.) Productivity and Quality. Agronomy 2021, 11, 1491. [Google Scholar] [CrossRef]
- Alotaibi, F.; Bamagoos, A.A.; Ismaeil, F.M.; Zhang, W.; Abou-Elwafa, S.F. Application of Beet Sugar Byproducts Improves Sugar Beet Biofortification in Saline Soils and Reduces Sugar Losses in Beet Sugar Processing. Environ. Sci. Pollut. Res. 2021, 28, 30303–30311. [Google Scholar] [CrossRef] [PubMed]
- Jayawardhane, J.; Goyali, J.C.; Zafari, S.; Igamberdiev, A.U. The Response of Cowpea (Vigna unguiculata) Plants to Three Abiotic Stresses Applied with Increasing Intensity: Hypoxia, Salinity, and Water Deficit. Metabolites 2022, 12, 38. [Google Scholar] [CrossRef]
- Maamallan, S.; Prakash, M.; Sathiyanarayanan, G.; Rameshkumar, S. Effect of Seed Hardening and Pelleting on Germination and Seedling Attributes of Cowpea under Saline Condition. Legume Res. -Int. J. 2021, 44, 723–729. [Google Scholar]
- Praxedes, S.S.C.; Ferreira Neto, M.; Loiola, A.T.; Santos, F.J.Q.; Umbelino, B.F.; Silva, L.d.A.; Moreira, R.C.L.; de Melo, A.S.; de Lacerda, C.F.; Fernandes, P.D. Photosynthetic Responses, Growth, Production, and Tolerance of Traditional Varieties of Cowpea under Salt Stress. Plants 2022, 11, 1863. [Google Scholar] [CrossRef]
- Ma, T.; Chen, K.; He, P.; Dai, Y.; Yin, Y.; Peng, S.; Ding, J.; Yu, S.; Huang, J. Sunflower Photosynthetic Characteristics, Nitrogen Uptake, and Nitrogen Use Efficiency under Different Soil Salinity and Nitrogen Applications. Water 2022, 14, 982. [Google Scholar] [CrossRef]
- Ma, T.; Zeng, W.; Lei, G.; Wu, J.; Huang, J. Predicting the Rooting Depth, Dynamic Root Distribution and the Yield of Sunflower under Different Soil Salinity and Nitrogen Applications. Ind. Crops Prod. 2021, 170, 113749. [Google Scholar] [CrossRef]
- Naveed, M.; Aslam, M.K.; Ahmad, Z.; Abbas, T.; Al-Huqail, A.A.; Siddiqui, M.H.; Ali, H.M.; Ashraf, I.; Mustafa, A. Growth Responses, Physiological Alterations and Alleviation of Salinity Stress in Sunflower (Helianthus annuus L.) Amended with Gypsum and Composted Cow Dung. Sustainability 2021, 13, 6792. [Google Scholar]
- Swiontek Brzezinska, M.; Świątczak, J.; Wojciechowska, A.; Burkowska-But, A.; Kalwasińska, A. Consortium of Plant Growth-Promoting Rhizobacteria Enhances Oilseed Rape (Brassica napus L.) Growth under Normal and Saline Conditions. Arch. Microbiol. 2022, 204, 393. [Google Scholar] [PubMed]
- Li, X.; Yu, X.; Yang, H.; Wang, J.; Li, Z.; Bai, C.; Wang, J.; Wang, B.; Zhou, G.; Kuai, J. Physiological Response Mechanism of Oilseed Rape to Abiotic Stress and the Stress-Resistant Cultivation Regulation. In Sustainable Crop Productivity and Quality Under Climate Change; Elsevier: Amsterdam, The Netherlands, 2022; pp. 207–234. [Google Scholar]
- Mansour, M.M.F.; Emam, M.M.; Salama, K.H.A.; Morsy, A.A. Sorghum under Saline Conditions: Responses, Tolerance Mechanisms, and Management Strategies. Planta 2021, 254, 24. [Google Scholar]
- Punia, H.; Tokas, J.; Malik, A.; Singh, S.; Phogat, D.S.; Bhuker, A.; Mor, V.S.; Rani, A.; Sheokand, R.N. Discerning Morpho-Physiological and Quality Traits Contributing to Salinity Tolerance Acquisition in Sorghum [Sorghum Bicolor (L.) Moench]. South Afr. J. Bot. 2021, 140, 409–418. [Google Scholar] [CrossRef]
- Dourado, P.R.M.; de Souza, E.R.; dos Santos, M.A.; Lins, C.M.T.; Monteiro, D.R.; Paulino, M.K.S.S.; Schaffer, B. Stomatal Regulation and Osmotic Adjustment in Sorghum in Response to Salinity. Agriculture 2022, 12, 658. [Google Scholar] [CrossRef]
- Šamec, D.; Linić, I.; Salopek-Sondi, B. Salinity Stress as an Elicitor for Phytochemicals and Minerals Accumulation in Selected Leafy Vegetables of Brassicaceae. Agronomy 2021, 11, 361. [Google Scholar] [CrossRef]
- Seymen, M.; Yavuz, D.; Eroğlu, S.; Arı, B.Ç.; Tanrıverdi, Ö.B.; Atakul, Z.; Issı, N. Effects of Different Levels of Water Salinity on Plant Growth, Biochemical Content, and Photosynthetic Activity in Cabbage Seedling Under Water-Deficit Conditions. Gesunde Pflanz. 2022. [Google Scholar] [CrossRef]
- Zeiner, M.; Juranović Cindrić, I.; Nemet, I.; Franjković, K.; Salopek Sondi, B. Influence of Soil Salinity on Selected Element Contents in Different Brassica Species. Molecules 2022, 27, 1878. [Google Scholar] [PubMed]
- Chourasia, K.N.; Lal, M.K.; Tiwari, R.K.; Dev, D.; Kardile, H.B.; Patil, V.U.; Kumar, A.; Vanishree, G.; Kumar, D.; Bhardwaj, V. Salinity Stress in Potato: Understanding Physiological, Biochemical and Molecular Responses. Life 2021, 11, 545. [Google Scholar]
- Sanwal, S.K.; Kumar, P.; Kesh, H.; Gupta, V.K.; Kumar, A.; Kumar, A.; Meena, B.L.; Colla, G.; Cardarelli, M.; Kumar, P. Salinity Stress Tolerance in Potato Cultivars: Evidence from Physiological and Biochemical Traits. Plants 2022, 11, 1842. [Google Scholar] [CrossRef]
- Zaki, H.E.; Radwan, K.S. The Use of Osmoregulators and Antioxidants to Mitigate the Adverse Impacts of Salinity Stress in Diploid and Tetraploid Potato Genotypes (Solanum Spp.). Chem. Biol. Technol. Agric. 2022, 9, 19. [Google Scholar]
- Yavuz, D.; Kılıç, E.; Seymen, M.; Dal, Y.; Kayak, N.; Kal, Ü.; Yavuz, N. The Effect of Irrigation Water Salinity on the Morph-Physiological and Biochemical Properties of Spinach under Deficit Irrigation Conditions. Sci. Hortic. 2022, 304, 111272. [Google Scholar] [CrossRef]
- Bali, K.M.; Eltarabily, M.G.; Berndtsson, R.; Selim, T. Nutrient and Salinity Management for Spinach Production under Sprinkler Irrigation in the Low Desert Region of California. Irrig. Sci. 2021, 39, 735–749. [Google Scholar] [CrossRef]
- Tareq, F.S.; Kotha, R.R.; Ferreira, J.F.; Sandhu, D.; Luthria, D.L. Influence of Moderate to High Salinity on the Phytochemical Profiles of Two Salinity-Tolerant Spinach Genotypes. ACS Food Sci. Technol. 2021, 1, 205–214. [Google Scholar] [CrossRef]
- Khan, M.A.H.; Baset Mia, M.A.; Quddus, M.A.; Sarker, K.K.; Rahman, M.; Skalicky, M.; Brestic, M.; Gaber, A.; Alsuhaibani, A.M.; Hossain, A. Salinity-Induced Physiological Changes in Pea (Pisum Sativum L.): Germination Rate, Biomass Accumulation, Relative Water Content, Seedling Vigor and Salt Tolerance Index. Plants 2022, 11, 3493. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Roychoudhury, A. Omics Tools to Understand Abiotic Stress Response and Adaptation in Rye, Oat and Barley. In Omics Approach to Manage Abiotic Stress in Cereals; Springer: Berlin/Heidelberg, Germany, 2022; pp. 513–529. [Google Scholar]
- Rakoczy-Trojanowska, M.; Bolibok-Brągoszewska, H.; Myśków, B.; Dzięgielewska, M.; Stoja\lowski, S.; Grądzielewska, A.; Boczkowska, M.; Moskal, K. Genetics and Genomics of Stress Tolerance. In The Rye Genome; Springer: Berlin/Heidelberg, Germany, 2021; pp. 213–236. [Google Scholar]
- Yang, X.; Steenhuis, T.S.; Davis, K.F.; van der Werf, W.; Ritsema, C.J.; Pacenka, S.; Zhang, F.; Siddique, K.H.M.; Du, T. Diversified Crop Rotations Enhance Groundwater and Economic Sustainability of Food Production. Food Energy Secur. 2021, 10, e311. [Google Scholar] [CrossRef]
- Giraldo, P.; Benavente, E.; Manzano-Agugliaro, F.; Gimenez, E. Worldwide Research Trends on Wheat and Barley: A Bibliometric Comparative Analysis. Agronomy 2019, 9, 352. [Google Scholar] [CrossRef] [Green Version]
- Dixon, J.; Braun, H.J.; Kosina, P.; Crouch, J.H. Wheat Facts and Futures 2009; CIMMYT: Veracruz, Mexico, 2009. [Google Scholar]
- Katerji, N.; Van Hoorn, J.W.; Hamdy, A.; Mastrorilli, M.; Fares, C.; Ceccarelli, S.; Grando, S.; Oweis, T. Classification and Salt Tolerance Analysis of Barley Varieties. Agric. Water Manag. 2006, 85, 184–192. [Google Scholar]
- Gholizadeh, A.; Dehghania, H.; Dvorakb, J. Determination of the Most Effective Traits on Wheat Yield under Saline Stress. Agric. Adv. 2014, 3, 103–110. [Google Scholar]
- Shannon, M.C. Adaptation of Plants to Salinity. Adv. Agron. 1997, 60, 75–120. [Google Scholar]
- Munns, R.; James, R.A. Screening Methods for Salinity Tolerance: A Case Study with Tetraploid Wheat. Plant Soil 2003, 253, 201–218. [Google Scholar] [CrossRef]
- Dehghani, H.; Dvorak, J.; Sabaghnia, N. Graphic Analysis of Biomass and Seed Yield of Beard Wheat in Salt Stress Condition. Ann. Biol. Res 2012, 3, 4246–4253. [Google Scholar]
- Afzal, I.; Rauf, S.; Basra, S.M.A.; Murtaza, G. Halopriming Improves Vigor, Metabolism of Reserves and Ionic Contents in Wheat Seedlings under Salt Stress. Plant Soil Environ. 2008, 54, 382–388. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Shafi, M.; Bakht, J.; Khan, M.O.; Anwar, S. Response of Wheat Varieties to Salinity Stress as Ameliorated by Seed Priming. Pak. J. Bot. 2019, 51, 1969–1978. [Google Scholar] [CrossRef] [Green Version]
- Parvaiz, A.; Satyawati, S. Salt Stress and Phyto-Biochemical Responses of Plants-a Review. Plant Soil Environ. 2008, 54, 89. [Google Scholar]
- Nasim, M.; Qureshi, R.H.; Aziz, T.; Saqib, M.; Nawaz, S.; Sahi, S.T.; Pervaiz, S. Screening Trees for Salinity Tolerance: A Case-Study with Ten Eucalyptus Species. Pak. J. Agric. Sci. 2007, 44, 385–396. [Google Scholar]
- Shafi, M.; Zhang, G.; Bakht, J.; Khan, M.A.; Islam, U.E.; Khan, M.D.; Raziuddin, G.Z. Effect of Cadmium and Salinity Stresses on Root Morphology of Wheat. Pak. J. Bot. 2010, 42, 2747–2754. [Google Scholar]
- Royo, A.; Abió, D. Salt Tolerance in Durum Wheat Cultivars. Span. J. Agric. Res. 2003, 1, 27–35. [Google Scholar] [CrossRef]
- Miransari, M.; Smith, D. Sustainable Wheat (Triticum aestivum L.) Production in Saline Fields: A Review. Crit. Rev. Biotechnol. 2019, 39, 999–1014. [Google Scholar] [CrossRef]
- Díaz De León, J.L.; Escoppinichi, R.; Geraldo, N.; Castellanos, T.; Mujeeb-Kazi, A.; Röder, M.S. Quantitative Trait Loci Associated with Salinity Tolerance in Field Grown Bread Wheat. Euphytica 2011, 181, 371–383. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Nahar, K.; Rahman, A.; Anee, T.I.; Alam, M.U.; Bhuiyan, T.F.; Oku, H.; Fujita, M. Approaches to Enhance Salt Stress Tolerance in Wheat. In Wheat Improvement, Management and Utilization; IntechOpen: London, UK, 2017; pp. 151–187. [Google Scholar]
- Genc, Y.; Oldach, K.; Gogel, B.; Wallwork, H.; McDonald, G.K.; Smith, A.B. Quantitative Trait Loci for Agronomic and Physiological Traits for a Bread Wheat Population Grown in Environments with a Range of Salinity Levels. Mol. Breed. 2013, 32, 39–59. [Google Scholar] [CrossRef]
- Puniran-Hartley, N.; Hartley, J.; Shabala, L.; Shabala, S. Salinity-Induced Accumulation of Organic Osmolytes in Barley and Wheat Leaves Correlates with Increased Oxidative Stress Tolerance: In Planta Evidence for Cross-Tolerance. Plant Physiol. Biochem. 2014, 83, 32–39. [Google Scholar] [CrossRef]
- Truşcă, M.; Gâdea, Ş.; Stoian, V.; Vâtcă, A.; Vâtcă, S. Plants Physiology in Response to the Saline Stress Interconnected Effects. Not. Bot. Horti Agrobot. 2022, 50, 1–16. [Google Scholar] [CrossRef]
- Munns, R.; James, R.A.; Xu, B.; Athman, A.; Conn, S.J.; Jordans, C.; Byrt, C.S.; Hare, R.A.; Tyerman, S.D.; Tester, M. Wheat Grain Yield on Saline Soils Is Improved by an Ancestral Na+ Transporter Gene. Nat. Biotechnol. 2012, 30, 360–364. [Google Scholar] [CrossRef] [PubMed]
- Zaman, M.; Shahid, S.A.; Heng, L.; Shahid, S.A.; Zaman, M.; Heng, L. Soil Salinity: Historical Perspectives and a World Overview of the Problem. In Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques; Springer: Berlin/Heidelberg, Germany, 2018; pp. 43–53. [Google Scholar]
- Dagar, J.C.; Yadav, R.K.; Singh, A.; Singh, N.T. Historical Perspectives and Dynamics of Nature, Extent, Classification and Management of Salt-Affected Soils and Waters. In Research Developments in Saline Agriculture; Springer: Berlin/Heidelberg, Germany, 2019; pp. 3–52. [Google Scholar]
- Shahid, S.A.; Abdelfattah, M.A.; Taha, F.K. Developments in Soil Salinity Assessment and Reclamation: Innovative Thinking and Use of Marginal Soil and Water Resources in Irrigated Agriculture; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Rakshit, A.; Singh, H.B.; Singh, A.K.; Singh, U.S.; Fraceto, L. New Frontiers in Stress Management for Durable Agriculture; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Lambers, H.; Chapin, F.S.; Pons, T.L. Plant Physiological Ecology; Springer: Berlin/Heidelberg, Germany, 2008; Volume 2. [Google Scholar]
- Hasanuzzaman, M. Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives II: Mechanisms of Adaptation and Stress Amelioration; Springer Nature: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Sánchez-Moreiras, A.M.; Pacenza, M.; Araniti, F.; Bruno, L. Confocal and Transmission Electron Microscopy for Plant Studies. In Advances in Plant Ecophysiology Techniques; Springer: Berlin/Heidelberg, Germany, 2018; pp. 253–271. [Google Scholar]
- Cominelli, E.; Conti, L.; Tonelli, C.; Galbiati, M. Challenges and Perspectives to Improve Crop Drought and Salinity Tolerance. New Biotechnol. 2013, 30, 355–361. [Google Scholar] [CrossRef]
- Alkharabsheh, H.M.; Seleiman, M.F.; Hewedy, O.A.; Battaglia, M.L.; Jalal, R.S.; Alhammad, B.A.; Schillaci, C.; Ali, N.; Al-Doss, A. Field Crop Responses and Management Strategies to Mitigate Soil Salinity in Modern Agriculture: A Review. Agronomy 2021, 11, 2299. [Google Scholar] [CrossRef]
- Hopmans, J.W.; Qureshi, A.S.; Kisekka, I.; Munns, R.; Grattan, S.R.; Rengasamy, P.; Ben-Gal, A.; Assouline, S.; Javaux, M.; Minhas, P.S. Critical Knowledge Gaps and Research Priorities in Global Soil Salinity. Adv. Agron. 2021, 169, 1–191. [Google Scholar]
- Yeo, A. Predicting the Interaction between the Effects of Salinity and Climate Change on Crop Plants. Sci. Hortic. 1998, 78, 159–174. [Google Scholar] [CrossRef]
- Pitman, M.G.; Läuchli, A. Global Impact of Salinity and Agricultural Ecosystems. In Salinity: Environment-Plants-Molecules; Springer: Berlin/Heidelberg, Germany, 2002; pp. 3–20. [Google Scholar]
- Valenzuela, F.J.; Reineke, D.; Leventini, D.; Chen, C.C.L.; Barrett-Lennard, E.G.; Colmer, T.D.; Dodd, I.C.; Shabala, S.; Brown, P.; Bazihizina, N. Plant Responses to Heterogeneous Salinity: Agronomic Relevance and Research Priorities. Ann. Bot. 2022, 129, 499–518. [Google Scholar] [CrossRef]
- Arun, K.D.; Sabarinathan, K.G.; Gomathy, M.; Kannan, R.; Balachandar, D. Mitigation of Drought Stress in Rice Crop with Plant Growth-Promoting Abiotic Stress-Tolerant Rice Phyllosphere Bacteria. J. Basic Microbiol. 2020, 60, 768–786. [Google Scholar] [CrossRef]
- Yadav, A.N. Beneficial Plant-Microbe Interactions for Agricultural Sustainability. J. Appl. Biol. Biotechnol. 2021, 9, i–iv. [Google Scholar] [CrossRef]
- Parasuraman, P.; Pattnaik, S.; Busi, S. Phyllosphere Microbiome: Functional Importance in Sustainable Agriculture. In New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2019; pp. 135–148. [Google Scholar]
- Mukhtar, S.; Malik, K.A.; Mehnaz, S. Microbiome of Halophytes: Diversity and Importance for Plant Health and Productivity. Microbiol. Biotechnol. Lett. 2019, 47, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Xun, W.; Chen, L.; Xu, Z.; Zhang, N.; Feng, H.; Zhang, Q.; Zhang, R. Rhizosphere Microbes Enhance Plant Salt Tolerance: Toward Crop Production in Saline Soil. Comput. Struct. Biotechnol. J. 2022, 20, 6543–6551. [Google Scholar] [CrossRef]
- Paul, D.; Lade, H. Plant-Growth-Promoting Rhizobacteria to Improve Crop Growth in Saline Soils: A Review. Agron. Sustain. Dev. 2014, 34, 737–752. [Google Scholar] [CrossRef]
- Santos, S.S.; Rask, K.A.; Vestergård, M.; Johansen, J.L.; Priemé, A.; Frøslev, T.G.; Ekelund, F. Specialized microbiomes facilitate natural rhizosphere microbiome interactions counteracting high salinity stress in plants. Environ. Exp. Bot. 2021, 186, 104430. [Google Scholar] [CrossRef]
No. | Common Name | Botanical Name | S | MS | MT | T | Supplementary References | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Wheat | Triticum aestivum | [110,111,112] | ||||||||||
2 | Durum wheat | Triticum turgidum | |||||||||||
3 | Maize | Zea mays | [113,114] | ||||||||||
4 | Soybean | Glycine max | [115,116,117] | ||||||||||
5 | Barley (grain) | Hordeum vulgare | [118,119,120,121] | ||||||||||
6 | Barley (forage) | Hordeum vulgare | |||||||||||
7 | Bean | Phaseolus vulgaris | [122,123,124] | ||||||||||
8 | Broadband | Vicia faba | |||||||||||
9 | Clover | Trifolium repens | [125,126,127] | ||||||||||
10 | Alfalfa | Medicago sativa | [128,129,130] | ||||||||||
11 | Sugarbeet | Beta vulgaris | [131,132,133] | ||||||||||
12 | Cowpea | Vigna unguiculata | [134,135,136] | ||||||||||
13 | Sunflower | Helianthus annuus | [137,138,139] | ||||||||||
14 | Rape | Brassica napus | [140,141] | ||||||||||
15 | Sorghum | Sorghum bicolor | [142,143,144] | ||||||||||
16 | Cabbage | Brassica oleracea capitata | [145,146,147] | ||||||||||
17 | Potato | Solanum tuberosum | [148,149,150] | ||||||||||
18 | Spinach | Spinacia oleracea | [151,152,153] | ||||||||||
19 | Pea | Pisum sativum | [154] | ||||||||||
20 | Rye (forage) | Secale cereale | [155,156] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trușcă, M.; Gâdea, Ș.; Vidican, R.; Stoian, V.; Vâtcă, A.; Balint, C.; Stoian, V.A.; Horvat, M.; Vâtcă, S. Exploring the Research Challenges and Perspectives in Ecophysiology of Plants Affected by Salinity Stress. Agriculture 2023, 13, 734. https://doi.org/10.3390/agriculture13030734
Trușcă M, Gâdea Ș, Vidican R, Stoian V, Vâtcă A, Balint C, Stoian VA, Horvat M, Vâtcă S. Exploring the Research Challenges and Perspectives in Ecophysiology of Plants Affected by Salinity Stress. Agriculture. 2023; 13(3):734. https://doi.org/10.3390/agriculture13030734
Chicago/Turabian StyleTrușcă, Mădălina, Ștefania Gâdea, Roxana Vidican, Vlad Stoian, Anamaria Vâtcă, Claudia Balint, Valentina Ancuța Stoian, Melinda Horvat, and Sorin Vâtcă. 2023. "Exploring the Research Challenges and Perspectives in Ecophysiology of Plants Affected by Salinity Stress" Agriculture 13, no. 3: 734. https://doi.org/10.3390/agriculture13030734