Investigation of Fludioxonil Reduction Using Non-Thermal Atmospheric Plasma through Experimental Simulation
Abstract
:1. Introduction
2. Experimental Preparation
2.1. Cylindrical DBD Plasma Source Installed Gas Distribution System
2.1.1. Cylindrical DBD Plasma Source
2.1.2. Gas Distribution System Set-Up
2.2. Microscope Slide Glass Samples with Different Surface Roughnesses
2.3. Pesticide Preparation and Analysis
2.4. Statistical Analysis
3. Experimental Results and Discussion
3.1. Characteristics of the Cylindrical DBD Plasma Source Installed Gas Distribution System
3.2. Reduction of Residual Pesticides on Microscope Slide Glass
4. Conclusions
- The surface roughness does not have a significant impact on the reduction efficiency of fludioxonil.
- A 10 min treatment is sufficient to reduce residual fludioxonil.
- An amount of 11.89 μL/L of ozone is sufficient to reduce residual fludioxonil.
- At the same CT value (O3 concentration × treatment time), O3 concentration has higher priority than treatment time to reduction rates of residual fludioxonil.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Popp, J.; Pető, K.; Nagy, J. Pesticide Productivity and Food Security. A Review. Agron. Sustain. Dev. 2013, 33, 243–255. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Wang, T.; Li, C.; Wu, Z. Effects of Ozone Treatment on Pesticide Residues in Food: A Review. Int. J. Food Sci. Technol. 2019, 54, 301–312. [Google Scholar] [CrossRef]
- Cabras, P.; Angioni, A.; Garau, V.L.; Melis, M.; Pirisi, F.M.; Minelli, E.V.; Cabitza, F.; Cubeddu, M. Fate of Some New Fungicides (Cyprodinil, Fludioxonil, Pyrimethanil, and Tebuconazole) from Vine to Wine. J. Agric. Food Chem. 1997, 45, 2708–2710. [Google Scholar] [CrossRef]
- Lassalle, Y.; Nicol, É.; Genty, C.; Bourcier, S.; Bouchonnet, S. Structural Elucidation and Estimation of the Acute Toxicity of the Major UV-Visible Photoproduct of Fludioxonil—Detection in Both Skin and Flesh Samples of Grape. J. Mass Spectrom. 2015, 50, 864–869. [Google Scholar] [CrossRef] [PubMed]
- Kilani, J.; Fillinger, S. Phenylpyrroles: 30 Years, Two Molecules and (Nearly) No Resistance. Front. Microbiol. 2016, 7, 2014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orton, F.; Rosivatz, E.; Scholze, M.; Kortenkamp, A. Widely Used Pesticides with Previously Unknown Endocrine Activity Revealed as in Vitro Antiandrogens. Environ. Health Perspect. 2011, 119, 794–800. [Google Scholar] [CrossRef] [Green Version]
- Alexandrino, D.A.M.; Mucha, A.P.; Almeida, C.M.R.; Carvalho, M.F. Microbial Degradation of Two Highly Persistent Fluorinated Fungicides—Epoxiconazole and Fludioxonil. J. Hazard. Mater. 2020, 394, 122545. [Google Scholar] [CrossRef]
- Teng, Y.; Manavalan, T.T.; Hu, C.; Medjakovic, S.; Jungbauer, A.; Klinge, C.M. Endocrine Disruptors Fludioxonil and Fenhexamid Stimulate MiR-21 Expression in Breast Cancer Cells. Toxicol. Sci. 2013, 131, 71–83. [Google Scholar] [CrossRef]
- Durjava, M.K.; Kolar, B.; Arnus, L.; Papa, E.; Kovarich, S.; Sahlin, U.; Peijnenburg, W. Experimental Assessment of the Environmental Fate and Effects of Triazoles and Benzotriazole. ATLA Altern. Lab. Anim. 2013, 41, 65–75. [Google Scholar] [CrossRef]
- Jia, M.; Wang, Y.; Wang, D.; Teng, M.; Yan, J.; Yan, S.; Meng, Z.; Li, R.; Zhou, Z.; Zhu, W. The Effects of Hexaconazole and Epoxiconazole Enantiomers on Metabolic Profile Following Exposure to Zebrafish (Danio Rerio) as Well as the Histopathological Changes. Chemosphere 2019, 226, 520–533. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, C.; Wang, D.; Weng, H.; Yang, G.; Guo, D.; Yu, R.; Wang, X.; Wang, Q. Combined Toxic Effects of Fludioxonil and Triadimefon on Embryonic Development of Zebrafish (Danio Rerio). Environ. Pollut. 2020, 260, 114105. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Luan, T.; Lan, C.; Hung Lo, T.W.; Chan, G.Y.S. Removal of Residual Pesticides on Vegetable Using Ozonated Water. Food Control 2007, 18, 466–472. [Google Scholar] [CrossRef]
- Kaushik, G.; Satya, S.; Naik, S.N. Food Processing a Tool to Pesticide Residue Dissipation—A Review. Food Res. Int. 2009, 42, 26–40. [Google Scholar] [CrossRef]
- Khanal, B.P.; Chen, H.; Straube, J.; Knoche, M. Surface Moisture Increases Microcracking and Water Vapour Permeance of Apple Fruit Skin. Plant Biol. 2021, 23, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Chen, J.; Yang, Y.; Guo, L.; Zhang, C. Degradation of Organophosphorus Pesticide Induced by Oxygen Plasma: Effects of Operating Parameters and Reaction Mechanisms. Chemosphere 2010, 81, 408–414. [Google Scholar] [CrossRef] [Green Version]
- Pankaj, S.K.; Misra, N.N.; Walsh, T.; Bourke, P.; Cullen, P.J.; O’Regan, F. In-Package Nonthermal Plasma Degradation of Pesticides on Fresh Produce. J. Hazard. Mater. 2014, 271, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Heo, N.S.; Park, T.J.; Park, J.Y.; Lee, M.-K.; Lee, S.J.; Kim, G.W. Microbial Inactivation and Pesticide Removal by Remote Exposure of Atmospheric Air Plasma in Confined Environments. J. Biosci. Bioeng. 2014, 117, 81–85. [Google Scholar] [CrossRef]
- Misra, N.N. The Contribution of Non-Thermal and Advanced Oxidation Technologies towards Dissipation of Pesticide Residues. Trends Food Sci. Technol. 2015, 45, 229–244. [Google Scholar] [CrossRef] [Green Version]
- Dorraki, N.; Mahdavi, V.; Ghomi, H.; Ghasempour, A. Elimination of Diazinon Insecticide from Cucumber Surface by Atmospheric Pressure Air-Dielectric Barrier Discharge Plasma. Biointerphases 2016, 11, 041007. [Google Scholar] [CrossRef]
- de Souza, L.P.; Faroni, L.R.D.A.; Heleno, F.F.; Pinto, F.G.; de Queiroz, M.E.L.R.; Prates, L.H.F. Ozone Treatment for Pesticide Removal from Carrots: Optimization by Response Surface Methodology. Food Chem. 2018, 243, 435–441. [Google Scholar] [CrossRef]
- Zhou, R.; Zhou, R.; Yu, F.; Xi, D.; Wang, P.; Li, J.; Wang, X.; Zhang, X.; Bazaka, K.; Ostrikov, K. Removal of Organophosphorus Pesticide Residues from Lycium Barbarum by Gas Phase Surface Discharge Plasma. Chem. Eng. J. 2018, 342, 401–409. [Google Scholar] [CrossRef] [Green Version]
- López, M.; Calvo, T.; Prieto, M.; Múgica-Vidal, R.; Muro-Fraguas, I.; Alba-Elías, F.; Alvarez-Ordóñez, A. A Review on Non-Thermal Atmospheric Plasma for Food Preservation: Mode of Action, Determinants of Effectiveness, and Applications. Front. Microbiol. 2019, 10, 622. [Google Scholar] [CrossRef] [PubMed]
- Bhide, S.; Salvi, D.; Schaffner, D.W.; Karwe, M.V. Effect of Surface Roughness in Model and Fresh Fruit Systems on Microbial Inactivation Efficacy of Cold Atmospheric Pressure Plasma. J. Food Prot. 2017, 80, 1337–1346. [Google Scholar] [CrossRef] [PubMed]
- Bhushan, B. Modern Tribology Handbook: Volume One: Principles of Tribology; CRC Press LLC: Boca Raton, FL, USA, 2001; ISBN 9780849377877. [Google Scholar]
- Manley, T.C. The Electric Characteristics of the Ozonator Discharge. Trans. Electrochem. Soc. 1943, 84, 83–96. [Google Scholar] [CrossRef]
Grit Value | Ra (μm) | |
---|---|---|
Average | Std. Dev. | |
Non-scratched | N/A | N/A |
2000 | 58.07 a | ±6.84 |
1000 | 70.68 b | ±14.21 |
400 | 107.37 c | ±21.78 |
Instrument | Agilent 1200 HPLC with Agilent 6410 triple-quadrupole MS | ||
Column | YMC-Pack Pro C18 RS 150 × 3 mm i.d S-3 µm, 8 nm, YMC, Japan | ||
Mobile Phase | A: Water with 0.1% Formic Acid and 5 mM Ammonium Formate | ||
B: ACN with 0.1% Formic Acid and 5 mM Ammonium Formate | |||
Gradient Time | Time (min) | A (%) | B (%) |
0 | 15 | 85 | |
10 | 15 | 85 | |
Flow Rate | 0.4 mL/min | Ionspray Voltage | 4 kV |
Column Temperature | 40 °C | Nebulizer Gas Pressure | 40 psi |
Injection Volume | 5 μL | Gas Flow | 10 L/min |
Ionization Mode | ESI Positive | Gas Temperature | 300 °C |
Scan Type | MRM | Run Time | 10 min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eom, S.; Lim, J.; Ji, S.H.; Song, J.-S.; Yoon, J.W.; Jeon, H.; Ryu, S. Investigation of Fludioxonil Reduction Using Non-Thermal Atmospheric Plasma through Experimental Simulation. Agriculture 2023, 13, 727. https://doi.org/10.3390/agriculture13030727
Eom S, Lim J, Ji SH, Song J-S, Yoon JW, Jeon H, Ryu S. Investigation of Fludioxonil Reduction Using Non-Thermal Atmospheric Plasma through Experimental Simulation. Agriculture. 2023; 13(3):727. https://doi.org/10.3390/agriculture13030727
Chicago/Turabian StyleEom, Sangheum, Junghyun Lim, Sang Hye Ji, Jong-Seok Song, Jung Woo Yoon, Hyeongwon Jeon, and Seungmin Ryu. 2023. "Investigation of Fludioxonil Reduction Using Non-Thermal Atmospheric Plasma through Experimental Simulation" Agriculture 13, no. 3: 727. https://doi.org/10.3390/agriculture13030727
APA StyleEom, S., Lim, J., Ji, S. H., Song, J.-S., Yoon, J. W., Jeon, H., & Ryu, S. (2023). Investigation of Fludioxonil Reduction Using Non-Thermal Atmospheric Plasma through Experimental Simulation. Agriculture, 13(3), 727. https://doi.org/10.3390/agriculture13030727