An Application of Partial Least Squares Structural Equation Modeling (PLS-SEM) to Examining Farmers’ Behavioral Attitude and Intention towards Conservation Agriculture in Bangladesh
Abstract
:1. Introduction
2. Conceptual Framework
2.1. The Theory of the Technology Acceptance Model
2.2. The Theory of Diffusion of Innovation
3. Material and Methods
3.1. Survey Procedure
3.2. Analytical Methods
Robustness Checks in PLS-SEM
- (A)
- Non-linear effects
- (B) Unobserved heterogeneity
- (C) Endogeneity
4. Results
4.1. Measurement Model Assessment
4.2. Assessment of Reflective Measurement Models
4.3. Assessment of Formative Measurement Models
4.4. Assessment of the Structural Model
5. Conclusions and Discussion
5.1. Conclusions
5.2. Discussion
5.3. Limitation
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Test | Construct | Coefficient | p Value |
---|---|---|---|
Gaussian copula of model 1 | RA | 0.332 | 0.000 |
LC | 0.215 | 0.000 | |
COMP | 0.271 | 0.030 | |
ATT | 0.674 | 0.000 | |
RA c | 0.037 | 0.712 | |
Gaussian copula of model 2 | RA | 0.331 | 0.000 |
LC | 0.239 | 0.000 | |
COMP | 0.269 | 0.031 | |
ATT | 0.683 | 0.000 | |
LC c | 0.027 | 0.598 | |
Gaussian copula of model 3 | RA | 0.328 | 0.000 |
LC | 0.233 | 0.000 | |
COMP | 0.266 | 0.037 | |
ATT | 0.691 | 0.000 | |
COMP c | 0.052 | 0.413 | |
Gaussian copula of model 4 | RA | 0.319 | 0.000 |
LC | 0.217 | 0.000 | |
COMP | 0.279 | 0.029 | |
ATT | 0.659 | 0.000 | |
ATT c | 0.016 | 0.822 | |
Gaussian copula of model 5 | RA | 0.330 | 0.000 |
LC | 0.219 | 0.000 | |
COMP | 0.274 | 0.029 | |
ATT | 0.686 | 0.000 | |
RA c | 0.039 | 0.813 | |
LC c | 0.026 | 0.579 | |
Gaussian copula of model 6 | RA | 0.329 | 0.000 |
LC | 0.207 | 0.000 | |
COMP | 0.263 | 0.033 | |
ATT | 0.690 | 0.000 | |
RA c | 0.031 | 0.789 | |
COMP c | 0.051 | 0.411 | |
Gaussian copula of model 7 | RA | 0.318 | 0.000 |
LC | 0.221 | 0.000 | |
COMP | 0.231 | 0.031 | |
ATT | 0.663 | 0.000 |
References
- Ali, P.; Kabir, M.M.M.; Haque, S.S.; Qin, X.; Nasrin, S.; Landis, D.; Holmquist, B.; Ahmed, N. Farmer’s behavior in pesticide use: Insights study from smallholder and intensive agricultural farms in Bangladesh. Sci. Total. Environ. 2020, 747, 141160. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, T.; Von Braun, J. Climate Change Impacts on Global Food Security. Science 2013, 341, 508–511. [Google Scholar] [CrossRef]
- Ziervogel, G.; Ericksen, P.J. Adapting to climate change to sustain food security. WIREs Clim. Chang. 2010, 1, 525–540. [Google Scholar] [CrossRef]
- Pradhan, A.; Chan, C.; Roul, P.K.; Halbrendt, J.; Sipes, B. Potential of conservation agriculture (CA) for climate change adaptation and food security under rainfed uplands of India: A transdisciplinary approach. Agric. Syst. 2018, 163, 27–35. [Google Scholar] [CrossRef]
- Findlater, K.; Kandlikar, M.; Satterfield, T. Misunderstanding conservation agriculture: Challenges in promoting, monitoring and evaluating sustainable farming. Environ. Sci. Policy 2019, 100, 47–54. [Google Scholar] [CrossRef]
- Garnett, T.; Appleby, M.C.; Balmford, A.; Bateman, I.J.; Benton, T.G.; Bloomer, P.; Burlingame, B.; Dawkins, M.; Dolan, L.; Fraser, D.; et al. Sustainable Intensification in Agriculture: Premises and Policies. Science 2013, 341, 33–34. [Google Scholar] [CrossRef]
- Poppy, G.M.; Jepson, P.C.; Pickett, J.A.; Birkett, M. Achieving food and environmental security: New approaches to close the gap. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20120272. [Google Scholar] [CrossRef] [Green Version]
- FAO. How to Feed the World in 2050 [WWW Document]. FAO CA Website. 2009. Available online: http://www.fao.org/wsfs/forum2050 (accessed on 15 November 2020).
- Jat, R.A.; Sahrawat, K.L.; Kassam, A.H.; Friedrich, T. Conservation agriculture for sustainable and resilient agriculture: Global status, prospects and challenges. Conserv. Agric. Glob. Prospect. Chall. 2014, 1–25. [Google Scholar] [CrossRef] [Green Version]
- FAO. The 3 Principles of Conservation Agriculture [WWW Document]. 2014. Available online: http://www.fao.org/emergencies/fao-in-action/stories/stories-detail/en/c/216752/#:~:text=The%203%20principles%20of%20CA,crop%20rotation%20and%20intercropping (accessed on 16 November 2020).
- Dumanski, J.; Reicosky, D.; Peiretti, R. Pioneers in soil conservation and Conservation Agriculture. Special issue. Int. Soil Water Conserv. Res. 2014, 2, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Madden, N.; Southard, R.; Mitchell, J. Conservation tillage reduces PM10 emissions in dairy forage rotations. Atmos. Environ. 2008, 42, 3795–3808. [Google Scholar] [CrossRef]
- Pezzuolo, A.; Dumont, B.; Sartori, L.; Marinello, F.; Migliorati, M.D.A.; Basso, B. Evaluating the impact of soil conservation measures on soil organic carbon at the farm scale. Comput. Electron. Agric. 2017, 135, 175–182. [Google Scholar] [CrossRef] [Green Version]
- Sayed, A.; Sarker, A.; Kim, J.-E.; Rahman, M.; Mahmud, G.A. Environmental sustainability and water productivity on conservation tillage of irrigated maize in red brown terrace soil of Bangladesh. J. Saudi Soc. Agric. Sci. 2020, 19, 276–284. [Google Scholar] [CrossRef]
- Hobbs, P.R.; Sayre, K.; Gupta, R. The role of conservation agriculture in sustainable agriculture. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 543–555. [Google Scholar] [CrossRef] [PubMed]
- Knowler, D.; Bradshaw, B. Farmers’ adoption of conservation agriculture: A review and synthesis of recent research. Food Policy 2007, 32, 25–48. [Google Scholar] [CrossRef]
- Jat, H.S.; Datta, A.; Choudhary, M.; Sharma, P.C.; Jat, M.L. Conservation Agriculture: Factors and drivers of adoption and scalable innovative practices in Indo-Gangetic plains of India—A review. Int. J. Agric. Sustain. 2020, 19, 40–55. [Google Scholar] [CrossRef]
- Bell, R.W.; Haque, E.; Jahiruddin, M.; Rahman, M.; Begum, M.; Miah, M.A.M.; Islam, A.; Hossen, A.; Salahin, N.; Zahan, T.; et al. Conservation Agriculture for Rice-Based Intensive Cropping by Smallholders in the Eastern Gangetic Plain. Agriculture 2018, 9, 5. [Google Scholar] [CrossRef] [Green Version]
- Sarker, A.; Itohara, Y. Organic Farming and Poverty Elimination: A Suggested Model for Bangladesh. J. Org. Syst. 2008, 3, 68–79. [Google Scholar]
- Uddin, M.; Dhar, A.; Islam, M. Adoption of conservation agriculture practice in Bangladesh: Impact on crop profitability and productivity. J. Bangladesh Agric. Univ. 2016, 14, 101–112. [Google Scholar] [CrossRef] [Green Version]
- Uddin, M.T.; Dhar, A.R. Conservation agriculture practice in Bangladesh: Farmers’ socioeconomic status and soil environment perspective. Int. J. Econ. Manag. Eng. 2017, 11, 1272–1280. [Google Scholar]
- Ogieriakhi, M.O.; Woodward, R.T. Understanding why farmers adopt soil conservation tillage: A systematic review. Soil Secur. 2022, 9, 100077. [Google Scholar] [CrossRef]
- Dhar, A.R.; Islam, M.; Jannat, A.; Ahmed, J.U. Adoption prospects and implication problems of practicing conservation agriculture in Bangladesh: A socioeconomic diagnosis. Soil Tillage Res. 2018, 176, 77–84. [Google Scholar] [CrossRef]
- Parrott, N.; Olesen, J.E.; Høgh-Jensen, H. Certified and non-certified organic farming in the developing world. In Global Development of Organic Agriculture: Challenges and Prospects; CABI Publishing: Copenhagen, Denmark, 2006. [Google Scholar]
- Willer, H.; Menzler, M.Y.; Sorensen, N. The World of Organic Agriculture Statistics and Emerging Trends 2008; International Federation of Organic Agriculture Movements (IFOAM) Bonn, Germany and Research Institute of Organic Agriculture (FiBL): Frick, Switzerland, 2008. [Google Scholar]
- Akter, S.; Gathala, M.K.; Timsina, J.; Islam, S.; Rahman, M.; Hassan, M.K.; Ghosh, A.K. Adoption of conservation agriculture-based tillage practices in the rice-maize systems in Bangladesh. World Dev. Perspect. 2021, 21, 100297. [Google Scholar] [CrossRef]
- Kassam, A.; Friedrich, T.; Derpsch, R. Overview of the Global Spread of Conservation Agriculture. J. Field Actions 2018, 76, 29–51. [Google Scholar] [CrossRef]
- Miah, M.M.; Haque, M.E.; Bell, R.W.; Rouf, M.A.; Sarkar, M.A.R. Factors Affecting Conservation Agriculture Technologies at Farm Level in Bangladesh. Res. World Agric. Econ. 2020, 1, 50–59. [Google Scholar] [CrossRef]
- Tabriz, S.S.; Kader, M.A.; Rokonuzzaman, M.; Hossen, M.S.; Awal, M.A. Prospects and challenges of conservation agriculture in Bangladesh for sustainable sugarcane cultivation. Environ. Dev. Sustain. 2021, 23, 15667–15694. [Google Scholar] [CrossRef]
- Poddar, P.K.; Uddin, M.N.; Dev, D.S. Conservation agriculture: A farm level practice in Bangladesh. Agric. Sci. Dig.-A Res. J. 2017, 37, 197–202. [Google Scholar] [CrossRef]
- Fishbein, M.; Ajzen, I. Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research; Addison-Wesley, Reading: Boston, MA, USA, 1975. [Google Scholar]
- Davis, F.D.; Bagozzi, R.P.; Warshaw, P.R. User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Manag. Sci. 1989, 35, 982–1003. [Google Scholar] [CrossRef] [Green Version]
- Borges, J.A.R.; Lansink, A.G.O.; Ribeiro, C.M.; Lutke, V. Understanding farmers’ intention to adopt improved natural grassland using the theory of planned behavior. Livest. Sci. 2014, 169, 163–174. [Google Scholar] [CrossRef]
- Lalani, B.; Dorward, P.; Holloway, G.; Wauters, E. Smallholder farmers’ motivations for using Conservation Agriculture and the roles of yield, labour and soil fertility in decision making. Agric. Syst. 2016, 146, 80–90. [Google Scholar] [CrossRef] [Green Version]
- Yazdanpanah, M.; Hayati, D.; Hochrainer-Stigler, S.; Zamani, G.H. Understanding farmers’ intention and behavior regarding water conservation in the Middle-East and North Africa: A case study in Iran. J. Environ. Manag. 2014, 135, 63–72. [Google Scholar] [CrossRef]
- Bouwman, H.; Carlsson, C.; Molina-Castillo, F.J.; Walden, P. Barriers and drivers in the adoption of current and future mobile services in Finland. Telemat. Inform. 2007, 24, 145–160. [Google Scholar] [CrossRef]
- Agarwal, R.; Prasad, J. A Conceptual and Operational Definition of Personal Innovativeness in the Domain of Information Technology. Inf. Syst. Res. 1998, 9, 204–215. [Google Scholar] [CrossRef]
- Koenig-Lewis, N.; Palmer, A.; Moll, A. Predicting young consumers’ take up of mobile banking services. Int. J. Bank Mark. 2010, 28, 410–432. [Google Scholar] [CrossRef]
- Lee, M.S.; McGoldrick, P.J.; Keeling, K.A.; Doherty, J. Using ZMET to explore barriers to the adoption of 3G mobile banking services. Int. J. Retail. Distrib. Manag. 2003, 31, 340–348. [Google Scholar] [CrossRef]
- Ahamed, A.F.M.J.; Limbu, Y.; Pham, L.; Van Nguyen, H. Understanding Vietnamese Consumer Intention to Use Online Retailer Websites: Application of the Extended Technology Acceptance Model. Int. J. E-Adopt. 2020, 12, 1–15. [Google Scholar] [CrossRef]
- Hua, L.; Wang, S. Antecedents of Consumers’ Intention to Purchase Energy-Efficient Appliances: An Empirical Study Based on the Technology Acceptance Model and Theory of Planned Behavior. Sustainability 2019, 11, 2994. [Google Scholar] [CrossRef] [Green Version]
- Sadiq, M.; Adil, M. Ecotourism related search for information over the internet: A technology acceptance model perspective. J. Ecotourism 2020, 20, 70–88. [Google Scholar] [CrossRef]
- Faridi, A.A.; Kavoosi-Kalashami, M.; El Bilali, H. Attitude components affecting adoption of soil and water conservation measures by paddy farmers in Rasht County, Northern Iran. Land Use Policy 2020, 99, 104885. [Google Scholar] [CrossRef]
- Rezaei, R.; Safa, L.; Ganjkhanloo, M.M. Understanding farmers’ ecological conservation behavior regarding the use of integrated pest management- an application of the technology acceptance model. Glob. Ecol. Conserv. 2020, 22, e00941. [Google Scholar] [CrossRef]
- Carreiro, H.; Oliveira, T. Impact of transformational leadership on the diffusion of innovation in firms: Application to mobile cloud computing. Comput. Ind. 2019, 107, 104–113. [Google Scholar] [CrossRef]
- Faisal, S.M.; Idris, S. Innovation factors influencing the supply chain technology (sct) adoption: Diffusion of innovation theory. Int. J. Soc. Sci. Res. 2020, 2, 128–145. [Google Scholar]
- Fisher, J.R.; Montambault, J.; Burford, K.P.; Gopalakrishna, T.; Masuda, Y.J.; Reddy, S.M.; Torphy, K.; Salcedo, A.I. Knowledge diffusion within a large conservation organization and beyond. PLoS ONE 2018, 13, e0193716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mascia, M.B.; Mills, M. When conservation goes viral: The diffusion of innovative biodiversity conservation policies and practices. Conserv. Lett. 2018, 11, e12442. [Google Scholar] [CrossRef] [Green Version]
- Al-Rahmi, W.M.; Yahaya, N.; Aldraiweesh, A.A.; Alamri, M.M.; Aljarboa, N.A.; Alturki, U.; Aljeraiwi, A.A. Integrating Technology Acceptance Model with Innovation Diffusion Theory: An Empirical Investigation on Students’ Intention to Use E-Learning Systems. IEEE Access 2019, 7, 26797–26809. [Google Scholar] [CrossRef]
- Bandara, U.; Amarasena, T. Impact of Relative Advantage, Perceived Behavioural Control and Perceived Ease of Use on Intention to Adopt with Solar Energy Technology in Sri Lanka. In Proceedings of the 2018 International Conference and Utility Exhibition on Green Energy for Sustainable Development (ICUE), Phuket, Thailand, 24–26 October 2018; IEEE: New York, NY, USA, 2018; pp. 1–9. [Google Scholar] [CrossRef]
- Min, S.; So, K.K.F.; Jeong, M. Consumer adoption of the Uber mobile application: Insights from diffusion of innovation theory and technology acceptance model. J. Travel Tour. Mark. 2019, 36, 770–783. [Google Scholar] [CrossRef]
- Taylor, S.; Todd, P.A. Assessing IT Usage: The Role of Prior Experience. MIS Q. 1995, 19, 561–570. [Google Scholar] [CrossRef] [Green Version]
- Gefen, D.; Straub, D.W. Gender Differences in the Perception and Use of E-Mail: An Extension to the Technology Acceptance Model. MIS Q. 1997, 21, 389. [Google Scholar] [CrossRef] [Green Version]
- Koufaris, M. Applying the Technology Acceptance Model and Flow Theory to Online Consumer Behavior. Inf. Syst. Res. 2002, 13, 205–223. [Google Scholar] [CrossRef] [Green Version]
- Aldás-Manzano, J.; Ruiz-Mafé, C.; Sanz-Blas, S. Exploring individual personality factors as drivers of M-shopping acceptance. Ind. Manag. Data Syst. 2009, 109, 739–757. [Google Scholar] [CrossRef]
- Lu, J.; Yu, C.; Liu, C.; Yao, J.E. Technology acceptance model for wireless Internet. Internet Res. 2003, 13, 206–222. [Google Scholar] [CrossRef] [Green Version]
- Luarn, P.; Lin, H.-H. Toward an understanding of the behavioral intention to use mobile banking. Comput. Hum. Behav. 2005, 21, 873–891. [Google Scholar] [CrossRef]
- Tama, R.A.Z.; Ying, L.; Yu, M.; Hoque, M.; Adnan, K.M.; Sarker, S.A. Assessing farmers’ intention towards conservation agriculture by using the Extended Theory of Planned Behavior. J. Environ. Manag. 2021, 280, 111654. [Google Scholar] [CrossRef] [PubMed]
- Ward, P.S.; Bell, A.R.; Droppelmann, K.; Benton, T.G. Early adoption of conservation agriculture practices: Understanding partial compliance in programs with multiple adoption decisions. Land Use Policy 2017, 70, 27–37. [Google Scholar] [CrossRef]
- Hameed, M.A.; Counsell, S.; Swift, S. A conceptual model for the process of IT innovation adoption in organizations. J. Eng. Technol. Manag. 2012, 29, 358–390. [Google Scholar] [CrossRef]
- Rogers, E.M. Diffusion of Innovations, 5th ed.; Free Press: New York, NY, USA, 2003. [Google Scholar]
- Chang, H.-C. A new perspective on Twitter hashtag use: Diffusion of innovation theory. Proc. Am. Soc. Inf. Sci. Technol. 2010, 47, 1–4. [Google Scholar] [CrossRef]
- Green, L.W.; Ottoson, J.M.; García, C.; Hiatt, R.A. Diffusion Theory and Knowledge Dissemination, Utilization, and Integration in Public Health. Annu. Rev. Public Health 2009, 30, 151–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Nicolás, C.; Molina-Castillo, F.J.; Bouwman, H. An assessment of advanced mobile services acceptance: Contributions from TAM and diffusion theory models. Inf. Manag. 2008, 45, 359–364. [Google Scholar] [CrossRef]
- McGrath, C.; Zell, D. The Future of Innovation Diffusion Research and its Implications for Management: A Conversation with Everett Rogers. J. Manag. Inq. 2001, 10, 386–391. [Google Scholar] [CrossRef]
- Moore, G.C.; Benbasat, I. Development of an Instrument to Measure the Perceptions of Adopting an Information Technology Innovation. Inf. Syst. Res. 1991, 2, 192–222. [Google Scholar] [CrossRef] [Green Version]
- Karahanna, E.; Straub, D.W.; Chervany, N.L. Information technology adoption across time: A cross-sectional com-parison of pre-adoption and post-adoption beliefs. MIS Q. 1999, 23, 183–213. [Google Scholar]
- Adrian, A.M.; Norwood, S.H.; Mask, P.L. Producers’ perceptions and attitudes toward precision agriculture technologies. Comput. Electron. Agric. 2005, 48, 256–271. [Google Scholar] [CrossRef]
- Aubert, B.A.; Schroeder, A.; Grimaudo, J. IT as enabler of sustainable farming: An empirical analysis of farmers’ adoption decision of precision agriculture technology. Decis. Support Syst. 2012, 54, 510–520. [Google Scholar] [CrossRef] [Green Version]
- Flett, R.; Alpass, F.; Humphries, S.; Massey, C.; Morriss, S.; Long, N. The technology acceptance model and use of technology in New Zealand dairy farming. Agric. Syst. 2004, 80, 199–211. [Google Scholar] [CrossRef]
- Liao, C.; Zhao, D.; Zhang, S. Psychological and conditional factors influencing staff’s takeaway waste separation intention: An application of the extended theory of planned behavior. Sustain. Cities Soc. 2018, 41, 186–194. [Google Scholar] [CrossRef]
- Alambaigi, A.; Ahangari, I. Technology Acceptance Model (TAM) As a Predictor Model for Explaining Agricultural Experts Behavior in Acceptance of ICT. Int. J. Agric. Manag. Dev. 2016, 6, 235–247. [Google Scholar] [CrossRef]
- Rezaei-Moghaddam, K.; Salehi, S. Agricultural specialists’ intention toward precision agriculture technologies: Inte-grating innovation characteristics to technology acceptance model. Afr. J. Agric. Res. 2010, 5, 1191–1199. [Google Scholar] [CrossRef]
- Tohidyan Far, S.; Rezaei-Moghaddam, K. Determinants of Iranian agricultural consultants’ intentions toward precision agriculture: Integrating innovativeness to the technology acceptance model. J. Saudi Soc. Agric. Sci. 2017, 16, 280–286. [Google Scholar] [CrossRef] [Green Version]
- Verma, P.; Sinha, N. Integrating perceived economic wellbeing to technology acceptance model: The case of mobile based agricultural extension service. Technol. Forecast. Soc. Chang. 2018, 126, 207–216. [Google Scholar] [CrossRef]
- Davis, F.D. Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef] [Green Version]
- Amin, M.; Rezaei, S.; Abolghasemi, M. User satisfaction with mobile websites: The impact of perceived usefulness (PU), perceived ease of use (PEOU) and trust. Nankai Bus. Rev. Int. 2014, 5, 258–274. [Google Scholar] [CrossRef]
- Joo, J.; Sang, Y. Exploring Koreans’ smartphone usage: An integrated model of the technology acceptance model and uses and gratifications theory. Comput. Hum. Behav. 2013, 29, 2512–2518. [Google Scholar] [CrossRef]
- Kim, S.; Park, H. Effects of various characteristics of social commerce (s-commerce) on consumers’ trust and trust performance. Int. J. Inf. Manag. 2013, 33, 318–332. [Google Scholar] [CrossRef]
- Lee, K.C.; Chung, N. Understanding factors affecting trust in and satisfaction with mobile banking in Korea: A modified DeLone and McLean’s model perspective. Interact. Comput. 2009, 21, 385–392. [Google Scholar] [CrossRef]
- Venkatesh, V.; Davis, F.D. A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Manag. Sci. 2000, 46, 186–204. [Google Scholar] [CrossRef] [Green Version]
- Schuitema, G.; Anable, J.; Skippon, S.; Kinnear, N. The role of instrumental, hedonic and symbolic attributes in the intention to adopt electric vehicles. Transp. Res. Part A Policy Pract. 2013, 48, 39–49. [Google Scholar] [CrossRef]
- Legris, P.; Ingham, J.; Collerette, P. Why do people use information technology? A critical review of the technology acceptance model. Inf. Manag. 2003, 40, 191–204. [Google Scholar] [CrossRef]
- Emmann, C.H.; Arens, L.; Theuvsen, L. Individual acceptance of the biogas innovation: A structural equation model. Energy Policy 2013, 62, 372–378. [Google Scholar] [CrossRef]
- Jamshidi, D.; Hussin, N. An integrated adoption model for Islamic credit card: PLS-SEM based approach. J. Islam. Account. Bus. Res. 2018, 9, 308–335. [Google Scholar] [CrossRef]
- Ting, H.; Chuah, F.; Cheah, J.; Ali, M.; Yacob, Y. Revisiting Attitude towards Advertising, its Antecedent and Outcome: A Two-Stage Approach using PLS-SEM 21. Int. J. Econ. Manag. 2015, 9, 382–402. [Google Scholar]
- Sattler, C.; Nagel, U.J. Factors affecting farmers’ acceptance of conservation measures—A case study from north-eastern Germany. Land Use Policy 2010, 27, 70–77. [Google Scholar] [CrossRef]
- Eagly, A.H.; Chaiken, S. The Psychology of Attitudes; Harcourt brace Jovanovich College Publishers: San Diego, CA, USA, 1993. [Google Scholar]
- Tavousi, M.; Hidarnia, A.R.; Montazeri, A.; Taremian, F.; Hajizadeh, E.; Ghofranipour, F. Modification of reasoned action theory and comparison with the original version by path analysis for substance abuse prevention among adolescents. Hormozgan Med. J. 2010, 14, 45–54. [Google Scholar]
- Bagheri, A.; Bondori, A.; Allahyari, M.S.; Damalas, C.A. Modeling farmers’ intention to use pesticides: An expanded version of the theory of planned behavior. J. Environ. Manag. 2019, 248, 109291. [Google Scholar] [CrossRef]
- Ajzen, I. The theory of planned behaviour. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Narine, L.; Harder, A.; Roberts, G. Extension Officers’ Adoption of Modern Information Communication Technologies to Interact with Farmers of Trinidad. J. Int. Agric. Ext. Educ. 2019, 26, 17–34. [Google Scholar] [CrossRef]
- Rogers, E.M.; Shoemaker, F.F. Communication of Innovations: A Cross-Cultural Approach; The Free Press: New York, NY, USA, 1971. [Google Scholar]
- Beyene, A.D.; Kassie, M. Speed of adoption of improved maize varieties in Tanzania: An application of duration analysis. Technol. Forecast. Soc. Chang. 2015, 96, 298–307. [Google Scholar] [CrossRef]
- Reimer, A.P.; Weinkauf, D.K.; Prokopy, L.S. The influence of perceptions of practice characteristics: An examination of agricultural best management practice adoption in two Indiana watersheds. J. Rural. Stud. 2012, 28, 118–128. [Google Scholar] [CrossRef]
- Arriagada, R.A.; Sills, E.O.; Pattanayak, S.K.; Ferraro, P.J. Combining Qualitative and Quantitative Methods to Evaluate Participation in Costa Rica’s Program of Payments for Environmental Services. J. Sustain. For. 2009, 28, 343–367. [Google Scholar] [CrossRef]
- Hossain, M.I.; Sarker, M.; Haque, M.A. Status of conservation agriculture based tillage technology for crop production in Bangladesh. Bangladesh J. Agric. Res. 2015, 40, 235–248. [Google Scholar] [CrossRef]
- Nasrin, M.A.; Akteruzzaman, M. Adoption Status and Factors Influencing Adoption of Conservation Agriculture Technology In Bangladesh. Bangladesh J. Agric. Econ. 2018, 38, 73–83. [Google Scholar] [CrossRef]
- BBS. Statistical Year Book Bangladesh. 2018. Available online: http://www.bbs.gov.bd/site/page/29855dc1-f2b4-4dc0-9073-f692361112da/Statistical-Yearbook (accessed on 16 February 2022).
- Krejcie, R.V.; Morgan, D.W. Determining Sample Size for Research Activities. Educ. Psychol. Meas. 1970, 30, 607–610. [Google Scholar] [CrossRef]
- Marcoulides, G.A.; Saunders, C. Editor’s Comments: PLS: A Silver Bullet? MIS Q. 2006, 30, 3–9. [Google Scholar] [CrossRef]
- Bagozzi, R.P.; Heatherton, T.F. A general approach to representing multifaceted personality constructs: Application to state self-esteem. Struct. Equ. Model. A Multidiscip. J. 1994, 1, 35–67. [Google Scholar] [CrossRef]
- Jarvis, C.B.; MacKenzie, S.B.; Podsakoff, P.M. A Critical Review of Construct Indicators and Measurement Model Misspecification in Marketing and Consumer Research. J. Consum. Res. 2003, 30, 199–218. [Google Scholar] [CrossRef] [Green Version]
- Henseler, J.; Ringle, C.M.; Sinkovics, R.R. The Use of Partial Least Squares Path Modeling in International Marketing; Sinkovics, R.R., Ghauri, P.N., Eds.; Advances in International Marketing; Emerald Group Publishing Limited: Bingley, UK, 2009; pp. 277–319. [Google Scholar] [CrossRef] [Green Version]
- Simkin, M.G.; McLeod, A. Why Do College Students Cheat? J. Bus. Ethicas 2010, 94, 441–453. [Google Scholar] [CrossRef]
- Abas, N.A.H.; Lin, M.-H.; Otto, K.; Idris, I.; Ramayah, T. Academic incivility on job satisfaction and depressivity: Can supervisory support be the antidote? J. Appl. Res. High. Educ. 2021, 13, 1198–1212. [Google Scholar] [CrossRef]
- Reyes, G. Agribusiness Entrepreneurship Intention: Insights from a Philippine Agricultural University. Philipp. Academy of Management E-J. 3. 2020. Available online: https://www.researchgate.net/publication/344994626 (accessed on 15 October 2022).
- Barroso, C.; Carrión, G.C.; Roldán, J.L. Applying Maximum Likelihood and PLS on Different Sample Sizes: Studies on SERVQUAL Model and Employee Behavior Model. In Handbook of Partial Least Squares; Esposito Vinzi, V., Chin, W.W., Henseler, J., Wang, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 427–447. [Google Scholar] [CrossRef]
- Urbach, N.; Ahlemann, F. Structural Equation Modeling in Information Systems Research Using Partial Least Squares. J. Inf. Technol. Theory Appl. (JITTA) 2010, 11, 2. [Google Scholar]
- Anderson, J.C.; Gerbing, D.W. Structural equation modeling in practice: A review and recommended two-step approach. Psychol. Bull. 1988, 103, 411–423. [Google Scholar] [CrossRef]
- Ringle, C.M.; Wende, S.; Becker, J.M. SmartPLS 3. Boenningstedt: SmartPLS. 2015 Bönningstedt, Germany. Available online: https://www.smartpls.com/ (accessed on 15 November 2022).
- Chin, W.W.; Marcolin, B.L.; Newsted, P.R. A Partial Least Squares Latent Variable Modeling Approach for Measuring Interaction Effects: Results from a Monte Carlo Simulation Study and an Electronic-Mail Emotion/Adoption Study. Inf. Syst. Res. 2003, 14, 189–217. [Google Scholar] [CrossRef] [Green Version]
- Sarstedt, M.; Becker, J.-M.; Ringle, C.M.; Schwaiger, M. Uncovering and Treating Unobserved Heterogeneity with FIMIX-PLS: Which Model Selection Criterion Provides an Appropriate Number of Segments? Schmalenbach Bus. Rev. 2011, 63, 34–62. [Google Scholar] [CrossRef]
- Park, S.; Gupta, S. Handling Endogenous Regressors by Joint Estimation Using Copulas. Mark. Sci. 2012, 31, 567–586. [Google Scholar] [CrossRef]
- Sarstedt, M.; Mooi, E. A Concise Guide to Market Research: The Process, Data, and Methods Using IBM SPSS Statistics, 2nd ed.; Springer: New York, NY, USA, 2014. [Google Scholar]
- Hair, J.F.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), 2nd ed.; Sage Publications Limited Inc.: London, UK; Thousand Oaks, CA, USA, 2017. [Google Scholar]
- Chin, W.W. The partial least squares approach to structural equation modeling. In Modern Methods for Business Research; Lawrence Erlbaum Associates: Mahwah, NJ, USA; London, UK, 1998. [Google Scholar]
- Diamantopoulos, A.; Siguaw, J.A. Formative Versus Reflective Indicators in Organizational Measure Development: A Comparison and Empirical Illustration. Br. J. Manag. 2006, 17, 263–282. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2015, 43, 115–135. [Google Scholar] [CrossRef] [Green Version]
- Chin, W.W. How to Write Up and Report PLS Analyses. In Handbook of Partial Least Squares: Concepts, Methods and Applications, Springer Handbooks of Computational Statistics; Esposito Vinzi, V., Chin, W.W., Henseler, J., Wang, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 655–690. [Google Scholar] [CrossRef]
- Wong, K.K.-K. Partial Least Squares Structural Equation Modeling (PLS-SEM) Techniques Using SmartPLS. Mark. Bull. 2013, 24, 32. [Google Scholar]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. PLS-SEM: Indeed a Silver Bullet. J. Mark. Theory Pract. 2011, 19, 139–152. [Google Scholar] [CrossRef]
- Stone, M. Cross-Validatory Choice and Assessment of Statistical Predictions. J. R. Stat. Soc. Ser. B (Methodol.) 1974, 36, 111–133. [Google Scholar] [CrossRef]
- Friedrich, T.; Derpsch, R.; Kassam, A. Overview of the global spread of conservation agriculture. Field Actions Sci. Rep. J. Field Action 2012. Available online: https://journals.openedition.org/factsreports/1941 (accessed on 15 November 2022).
- Akteruzzaman, M.; Jahan, H.; Haque, M.E. Practices of conservation agricultural technologies in diverse cropping systems in Bangladesh. Bangladesh J. Agric. Econ. 2012, 35, 143–153. [Google Scholar]
- Alam, M.M.; Ladha, J.; Faisal, M.; Sharma, S.; Saha, A.; Noor, S.; Rahman, M. Improvement of cereal-based cropping systems following the principles of conservation agriculture under changing agricultural scenarios in Bangladesh. Field Crop. Res. 2015, 175, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Dhar, A.R. Adoption of Conservation Agriculture in Bangladesh: Problems and Prospects. Agric. Res. Technol. Open Access J. 2017, 11, 265–272. [Google Scholar] [CrossRef]
- Cheung, R.; Vogel, D. Predicting user acceptance of collaborative technologies: An extension of the technology acceptance model for e-learning. Comput. Educ. 2013, 63, 160–175. [Google Scholar] [CrossRef]
- Ducey, A.J.; Coovert, M.D. Predicting tablet computer use: An extended Technology Acceptance Model for physicians. Health Policy Technol. 2016, 5, 268–284. [Google Scholar] [CrossRef]
- Verma, S.; Bhattacharyya, S.S.; Kumar, S. An extension of the technology acceptance model in the big data analytics system implementation environment. Inf. Process. Manag. 2018, 54, 791–806. [Google Scholar] [CrossRef]
- Adnan, N.; Nordin, S.M.; bin Abu Bakar, Z. Understanding and facilitating sustainable agricultural practice: A comprehensive analysis of adoption behaviour among Malaysian paddy farmers. Land Use Policy 2017, 68, 372–382. [Google Scholar] [CrossRef]
- Aypay, A.; Çelik, H.C.; Aypay, A.; Sever, M. Technology Acceptance in Education: A Sudy of Pre-Service Teachers in Turkey. Turk. Online J. Educ. Technol.-TOJET 2012, 11, 264–272. [Google Scholar]
- Corrigan, J.A. The implementation of e-tutoring in secondary schools: A diffusion study. Comput. Educ. 2012, 59, 925–936. [Google Scholar] [CrossRef]
- Wu, J.-H.; Wang, S.-C.; Lin, L.-M. Mobile computing acceptance factors in the healthcare industry: A structural equation model. Int. J. Med Informatics 2007, 76, 66–77. [Google Scholar] [CrossRef]
- Sharifzadeh, M.S.; Damalas, C.A.; Abdollahzadeh, G.; Ahmadi-Gorgi, H. Predicting adoption of biological control among Iranian rice farmers: An application of the extended technology acceptance model (TAM2). Crop. Prot. 2017, 96, 88–96. [Google Scholar] [CrossRef]
- Bruque, S.; Moyano, J. Organisational determinants of information technology adoption and implementation in SMEs: The case of family and cooperative firms. Technovation 2007, 27, 241–253. [Google Scholar] [CrossRef]
- Premkumar, G. A Meta-Analysis of Research on Information Technology Implementation in Small Business. J. Organ. Comput. Electron. Commer. 2003, 13, 91–121. [Google Scholar] [CrossRef]
- Ayodele, A.A.; Nwatu, C.B.; Olise, M.C. Extending the Diffusion of Innovation Theory to Predict Smartphone Adoption Behaviour Among Higher Education Institutions’ Lecturers in Nigeria. Eur. J. Bus. Manag. 2020, 12, 14–21. [Google Scholar] [CrossRef] [Green Version]
- Senger, I.; Borges, J.A.R.; Machado, J.A.D. Using the theory of planned behavior to understand the intention of small farmers in diversifying their agricultural production. J. Rural. Stud. 2017, 49, 32–40. [Google Scholar] [CrossRef]
- Wauters, E.; Bielders, C.; Poesen, J.; Govers, G.; Mathijs, E. Adoption of soil conservation practices in Belgium: An examination of the theory of planned behaviour in the agri-environmental domain. Land Use Policy 2010, 27, 86–94. [Google Scholar] [CrossRef]
- Yu, C.-S.; Tao, Y.-H. Understanding business-level innovation technology adoption. Technovation 2009, 29, 92–109. [Google Scholar] [CrossRef]
- Sarcheshmeh, E.E.; Bijani, M.; Sadighi, H. Adoption behavior towards the use of nuclear technology in agriculture: A causal analysis. Technol. Soc. 2018, 55, 175–182. [Google Scholar] [CrossRef]
- Fathema, N.; Shannon, D.; Ross, M. Expanding The Technology Acceptance Model (TAM) to Examine Faculty Use of Learning Management Systems (LMSs) In Higher Education Institutions. J. Online Learn. Teach. 2015, 11, 23. [Google Scholar]
- Rezaei, R.; Ghofranfarid, M. Rural households’ renewable energy usage intention in Iran: Extending the unified theory of acceptance and use of technology. Renew. Energy 2018, 122, 382–391. [Google Scholar] [CrossRef]
- Ataei, P.; Sadighi, H.; Aenis, T.; Chizari, M.; Abbasi, E. Challenges of Applying Conservation Agriculture in Iran: An Overview on Experts and Farmers’ Perspectives. Air Soil Water Res. 2021, 14, 117862212098002. [Google Scholar] [CrossRef]
- Probst, L.; Ndah, H.T.; Rodrigues, P.; Basch, G.; Coulibaly, K.; Schuler, J. From adoption potential to Transformative Learning around Conservation Agriculture. J. Agric. Educ. Ext. 2018, 25, 25–45. [Google Scholar] [CrossRef]
Construct | Scale | Number of Items | Sources |
---|---|---|---|
Intention | Reflective | 5 | [33,84,85,86] |
Attitude | Reflective | 3 | [33,68,85,86] |
Relative Advantage (RA) | Reflective | 4 | [68,85,87] |
Low Complexity (LC) level | Formative | 3 | [33,68,85,87] |
Compatibility (COMP) | Formative | 3 | [63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84] |
Code | Hypotheses |
---|---|
Hypothesis 1 (H1) | Relative Advantage (RA) has a positive influence on attitudes towards CA farming. |
Hypothesis 2 (H2) | There is a positive relationship between the Less Complexity (LC) level and attitude. |
Hypothesis 3 (H3) | Compatibility (COMP) has a positive influence on attitude. |
Hypothesis 3 (H4) | Farmers’ attitudes have a positive influence on their intentions toward CA farming. |
Path | Coefficient | PCI | p-Value | f2 |
---|---|---|---|---|
QE_ATTonINT | −0.065 | [−0.185; 0.051] | 0.281 | 0.004 |
QE_LConATT | −0.023 | [−0.198; 0.019] | 0.090 | 0.005 |
QE_RAonATT | 0.068 | [−0.059; 0.187] | 0.272 | 0.002 |
QE_COMPonATT | 0.050 | [−0.029; 0.130] | 0.212 | 0.000 |
Criteria | Segment1 | Segment2 | Segment3 | Segment4 |
---|---|---|---|---|
AIC (Akaike’s Information Criterion) | 953.7 | 807.551 | 842.638 | 800.921 |
AIC3 (Modified AIC with Factor 3) | 959.7 | 827.551 | 855.638 | 827.921 |
AIC4 (Modified AIC with Factor 4) | 965.7 | 847.551 | 868.638 | 854.921 |
BIC (Bayesian Information Criteria) | 973.52 | 873.617 | 885.581 | 890.110 |
CAIC (Consistent AIC) | 979.52 | 893.617 | 898.581 | 917.110 |
HQ (Hannan Quinn Criterion) | 961.72 | 834.284 | 860.014 | 837.011 |
MDL5 (Min Description Length with Factor 5) | 1280.799 | 1107.882 | 1161.353 | 1462.867 |
LnL (LogLikelihood) | −470.85 | −383.776 | −408.319 | −373.46 |
EN (Entropy Statistic (Normed)) | N/A | 0.641 | 0.545 | 0.567 |
NFI (Non-Fuzzy Index) | N/A | 0.611 | 0.555 | 0.586 |
NEC (Normalized Entropy Criterion) | N/A | 87.067 | 91.482 | 72.114 |
No. of Segments | 1 | 2 | 3 | 4 |
---|---|---|---|---|
1 | 1.000 | |||
2 | 0.707 | 0.293 | ||
3 | 0.552 | 0.311 | 0.137 | |
4 | 0.540 | 0.301 | 0.102 | 0.057 |
Criterion | Guideline |
---|---|
Assessment of reflective measurement model | |
Composite Reliability (CR) | CR > 0.70 |
Indicator Loadings | Outer loadings >0.60 |
Average Variance Extracted (AVE) | AVE ≥ 0.50 |
Fornell–Larcker Discriminant Validity | AVE should be higher than the highest squared correlation with any other construct |
Heterotrait–Monotrait Ratio (HTMT) | Value should be smaller than 1 |
Cross Loadings | The loadings of each indicator on its construct are higher than cross-loadings on other constructs |
Assessment of formative measurement model | |
Convergent Validity (Redundancy analysis) | ≥0.70 Correlation value |
Collinearity assessment (VIF) | Ideal VIF value <3.3 |
Outer weights | Should be statistically Significant |
Factor | Notation | Items | Factor Loading | Composite Reliability (CR) | Cronbach’s Alpha | AVE |
---|---|---|---|---|---|---|
Continuance | INT 1 | Continue the practice next year | 0.716 | 0.872 | 0.872 | 0.577 |
Intention | INT 2 | Adopt in the near future | 0.755 | |||
INT 3 | Continue the practice by himself or herself | 0.755 | ||||
INT 4 | Interested in the practice for the betterment of future generations | 0.766 | ||||
INT 5 | Inspire friends, relatives, and neighbors to adopt the practice | 0.804 | ||||
Attitude | Att 1 | Good for soil health | 0.690 | 0.783 | 0.782 | 0.547 |
Att 2 | Requires less input cost | 0.779 | ||||
Att 3 | Decreases pest infestation | 0.748 | ||||
Relative | RA 1 | Higher return on investment | 0.806 | 0.812 | 0.814 | 0.523 |
Advantage | RA 2 | Higher yield after certain period | 0.656 | |||
RA 3 | Environmentally friendly approach | 0.615 | ||||
RA 4 | Less labor required | 0.796 | ||||
Less | LC 1 | Less complex procedures | 0.827 | |||
Complexity | LC 2 | Machineries available on time | 0.691 | |||
LC 3 | Availability of labor on time | 0.847 | ||||
Compatibility | COMP 1 | Fits with social norm | 0.811 | |||
COMP 2 | Takes less efforts | 0.822 | ||||
COMP 3 | Compatible with current practices | 0.862 |
Constructs | ATT | INT | RA |
---|---|---|---|
ATT | 0.740 | ||
INT | 0.699 | 0.760 | |
RA | 0.633 | 0.666 | 0.723 |
Constructs | ATT | INT |
---|---|---|
INT | 0.698 | |
RA | 0.729 | 0.814 |
ATT | INT | RA | |
---|---|---|---|
Att 1 | 0.690 | 0.476 | 0.473 |
Att 2 | 0.779 | 0.573 | 0.571 |
Att 3 | 0.748 | 0.500 | 0.579 |
Int 1 | 0.501 | 0.716 | 0.605 |
Int 2 | 0.528 | 0.755 | 0.607 |
Int 3 | 0.528 | 0.755 | 0.714 |
Int 4 | 0.536 | 0.766 | 0.581 |
Int 5 | 0.562 | 0.804 | 0.663 |
RA 1 | 0.591 | 0.700 | 0.806 |
RA 2 | 0.481 | 0.532 | 0.656 |
RA 3 | 0.451 | 0.600 | 0.615 |
RA 4 | 0.583 | 0.666 | 0.796 |
Item | VIF |
---|---|
LC1 | 1.336 |
LC2 | 1.372 |
LC3 | 1.554 |
COMP1 | 1.712 |
COMP2 | 1.723 |
COMP3 | 1.507 |
Items | Outer Weight | Std. Error | T-Value | p-Value |
---|---|---|---|---|
LC1 -> LC level | 0.502 ** | 0.112 | 4.495 | 0.000 |
LC2 -> LC level | 0.275 * | 0.120 | 2.283 | 0.022 |
LC3 -> LC level | 0.466 ** | 0.110 | 4.245 | 0.000 |
COMP 1 -> COMP | 0.337 * | 0.118 | 2.862 | 0.004 |
COMP 2 -> COMP | 0.359 * | 0.113 | 3.192 | 0.001 |
COMP 3 -> COMP | 0.500 ** | 0.113 | 4.439 | 0.000 |
Construct | ATT | INT |
---|---|---|
ATT | 1.000 | |
LC | 2.531 | |
RA | 3.218 | |
COMP | 3.011 |
Criterion | Guideline |
---|---|
Coefficient of determination (R2) | 0.25—Weak 0.50—Moderate 0.75—Substantial |
Path Coefficient | between −1 and +1 |
Effect Size (f2) | 0.02—Small effect 0.15—Medium effect 0.35—Large effect |
Predictive relevance (Q2) | Above zero |
Constructs | ATT (f2) | INT (f2) | Effect Size | Predictive Relevance (Q2) | R Square (R2) |
---|---|---|---|---|---|
INT | 0.433 | 0.489 | |||
ATT | 0.956 | large | 0.420 | 0.592 | |
LC | 0.049 | small | |||
RA | 0.163 | medium | |||
COMP | 0.079 | small |
Relationship | Std. β | Std. Error | t-Value | p-Value | Decision |
---|---|---|---|---|---|
ATT -> INT | 0.699 ** | 0.071 | 9.878 | 0.000 | Supported |
LLC -> ATT | 0.225 * | 0.100 | 2.256 | 0.024 | Supported |
RA -> ATT | 0.337 * | 0.145 | 2.325 | 0.020 | Supported |
COMP -> ATT | 0.273 * | 0.131 | 2.085 | 0.037 | Supported |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tama, R.A.Z.; Hoque, M.M.; Liu, Y.; Alam, M.J.; Yu, M. An Application of Partial Least Squares Structural Equation Modeling (PLS-SEM) to Examining Farmers’ Behavioral Attitude and Intention towards Conservation Agriculture in Bangladesh. Agriculture 2023, 13, 503. https://doi.org/10.3390/agriculture13020503
Tama RAZ, Hoque MM, Liu Y, Alam MJ, Yu M. An Application of Partial Least Squares Structural Equation Modeling (PLS-SEM) to Examining Farmers’ Behavioral Attitude and Intention towards Conservation Agriculture in Bangladesh. Agriculture. 2023; 13(2):503. https://doi.org/10.3390/agriculture13020503
Chicago/Turabian StyleTama, Riffat Ara Zannat, Md Mahmudul Hoque, Ying Liu, Mohammad Jahangir Alam, and Mark Yu. 2023. "An Application of Partial Least Squares Structural Equation Modeling (PLS-SEM) to Examining Farmers’ Behavioral Attitude and Intention towards Conservation Agriculture in Bangladesh" Agriculture 13, no. 2: 503. https://doi.org/10.3390/agriculture13020503
APA StyleTama, R. A. Z., Hoque, M. M., Liu, Y., Alam, M. J., & Yu, M. (2023). An Application of Partial Least Squares Structural Equation Modeling (PLS-SEM) to Examining Farmers’ Behavioral Attitude and Intention towards Conservation Agriculture in Bangladesh. Agriculture, 13(2), 503. https://doi.org/10.3390/agriculture13020503