Stimulation of Early Post-Emergence Growth of Alopecurus myosuroides and Apera spica-venti Following Spray Application of ACCase Inhibitors
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kraehmer, H.; Laber, B.; Rosinger, C.; Schulz, A. Herbicides as weed control agents: State of the art: I. weed control research and safener technology: The path to modern agriculture. Plant Physiol. 2014, 166, 1119–1139. [Google Scholar] [CrossRef] [PubMed]
- Stankiewicz-Kosyl, M.; Synowiec, A.; Haliniarz, M.; Wenda-Piesik, A.; Domaradzki, K.; Parylak, D.; Wrochna, M.; Pytlarz, E.; Gala-Czekaj, D.; Marczewska-Kolasa, K.; et al. Herbicide resistance and management options of Papaver rhoeas L. and Centaurea cyanus L. in Europe: A Review. Agronomy 2020, 10, 874. [Google Scholar] [CrossRef]
- Powles, S.B.; Yu, Q. Evolution in action: Plants resistant to herbicides. Ann. Rev. Plant Biol. 2010, 61, 317–347. [Google Scholar] [CrossRef] [PubMed]
- Bitarafan, Z.; Andreasen, C. Seed production and retention at maturity of blackgrass (Alopecurus myosuroides) and silky windgrass (Apera spica-venti) at wheat harvest. Weed Sci. 2020, 68, 151–156. [Google Scholar] [CrossRef]
- Hull, R.; Tatnell, L.V.; Cook, S.K.; Beffa, R.; Moss, S.R. Current status of herbicide-resistant weeds in the UK. Asp. App. Biol. 2014, 127, 261–272. [Google Scholar]
- Massa, D.; Gerhards, R. Investigation on herbicide resistance in European silky bentgrass (Apera spica-venti) populations. J. Plant Dis. Prot. 2011, 118, 31–39. [Google Scholar] [CrossRef]
- Melander, B. Population Dynamics of Apera spica-venti as Influenced by Cultural Methods. In Proceedings of the Brighton Crop Protection Conference—Weeds, Brighton, UK, 22–25 November 1993; pp. 107–112. [Google Scholar]
- Babineau, M.; Mahmood, K.; Mathiassen, S.K.; Kudsk, P.; Kristensen, M. De novo transcriptome assembly analysis of weed Apera spica-venti from seven tissues and growth stages. BMC Genom. 2017, 18, 128. [Google Scholar] [CrossRef]
- Hamouzová, K.; Soukup, J.; Jursik, M.; Hamouz, P.; Venclová, V.; Tumová, P. Cross-resistance to three frequently used sulfonylurea herbicides in populations of Apera spica-venti from the Czech Republic. Weed Res. 2011, 51, 113–122. [Google Scholar] [CrossRef]
- Adamczewski, K.; Kaczmarek, S.; Kierzek, R.; Matysiak, K. Significant increase of weed resistance to herbicides in Poland. J. Plant Prot. Res. 2019, 59, 139–150. [Google Scholar]
- Petersen, J.; Raffen, H. Evolution of herbicide resistance in Alopecurus myosuroides and Apera spica-venti in German cereal during the last 15 years. Jul.-Kühn-Arch. 2020, 464, 326–332. [Google Scholar]
- Massa, D.; Kaiser, Y.I.; Andújar-Sánchez, D.; Carmona-Alférez, R.; Mehrtens, J.; Gerhards, R. Development of a Geo-Referenced Database for Weed Mapping and Analysis of Agronomic Factors Affecting Herbicide Resistance in Apera spica-venti L. Beauv. (Silky Windgrass). Agronomy 2013, 3, 13–27. [Google Scholar] [CrossRef]
- Stankiewicz-Kosyl, M.; Wrochna, M.; Tołłoczko, M. Increase in resistance to sulfonylurea herbicides in Alopecurus myosuroides populations in north-eastern Poland. Zemdirbyste 2020, 107, 249–254. [Google Scholar] [CrossRef]
- Maréchal, P.Y.; Henriet, F.; Vancutsem, F.; Bodson, B. Ecological review of black-grass (Alopecurus myosuroides Huds.) propagation abilities in relationship with herbicide resistance. Biotechnol. Agron. Soc. Environ. 2012, 16, 103–113. [Google Scholar]
- Synowiec, A.; Jop, B.; Domaradzki, K.; Podsiadło, C.; Gawęda, D.; Wacławowicz, R.; Wenda-Piesik, A.; Nowakowski, M.M.; Bocianowski, J.; Marcinkowska, K.; et al. Environmental Factors Effects on Winter Wheat Competition with Herbicide-Resistant or Susceptible Silky Bentgrass (Apera spica-venti L.) in Poland. Agronomy 2021, 11, 871. [Google Scholar] [CrossRef]
- Wenda-Piesik, A.; Synowiec, A.; Marcinkowska, K.; Wrzesińska, B.; Podsiadło, C.; Domaradzki, K.; Kuc, P.; Kwiecińska-Poppe, E. Intra- and interspecies competition of blackgrass and wheat in the context of herbicidal resistance and environmental conditions in Poland. Sci. Rep. 2022, 12, 8720. [Google Scholar] [CrossRef]
- Delye, C.; Michel, S.; Berard, A.; Chauvel, B.; Brunel, D.; Guillemin, J.-P.; Dessaint, F.; Le Corre, V. Geographical variation in resistance to acetyl-coenzyme A carboxylase inhibiting herbicides across the range of the arable weed Alopecurus myosuroides (black-grass). New Phytol. 2010, 186, 1005–1017. [Google Scholar] [CrossRef]
- Rosenhauer, M.; Jaser, B.; Felsenstein, F.; Petersen, J. Development of target-site resistance (TSR) in Alopecurus myosuroides in Germany between 2004–2012. J. Plant Dis. Prot. 2013, 120, 179–187. [Google Scholar] [CrossRef]
- Vila-Aiub, M.M.; Neve, P.; Powles, S.B. Fitness costs associated with evolved herbicide resistance alleles in plants. New Phytol. 2009, 184, 751–767. [Google Scholar] [CrossRef]
- Babineau, M.; Mathiassen, S.K.; Kristensen, M.; Kudsk, P. Fitness of ALS-inhibitors herbicide resistant population of loose silky bentgrass (Apera spica-venti). Front. Plant Sci. 2017, 8, 1660. [Google Scholar] [CrossRef]
- Belz, R.G.; Duke, S.O. Herbicides and plant hormesis. Pest Manag. Sci. 2014, 70, 698–707. [Google Scholar] [CrossRef]
- Pfleeger, T.; Blakeley-Smith, M.; King, G.; Lee, E.H.; Plocher, M.; Olszyk, D. The effects of glyphosate and aminopyralid on a multi-species plant, field trial. Ecotoxicology 2012, 21, 1771–1787. [Google Scholar] [CrossRef] [PubMed]
- Belgers, J.D.M.; Van Lieverlee, R.J.; Van der Plas, L.J.T.; Van den Brink, P.J. Effects of 2,4-D on the growth of nine aquatic macrophytes. Aquat. Bot. 2007, 86, 260–268. [Google Scholar] [CrossRef]
- Beltz, R.G.; Farooq, M.F.; Wagner, J. Does selective hormesis impact herbicide resistance evolution in weeds? ACCase-resistant populations of Alopecurus myosuroides Huds. as a case study. Pest Manag. Sci. 2018, 74, 1880–1891. [Google Scholar] [CrossRef] [PubMed]
- Belz, R.G.; Carbonari, C.A.; Duke, S.O. The potential influence of hormesis on evolution of resistance to herbicides. Curr. Opin. Environ. Sci. Health 2022, 27, 100360. [Google Scholar] [CrossRef]
- European Food Safety Authority. Conclusion on the peer review of fenoxaprop-P. EFSA Sci. Rep. 2007, 121, 1–76. [Google Scholar]
- European Food Safety Authority. Conclusion on the peer review of the pesticide risk assessment of the active substance pinoxaden. EFSA J. 2013, 11, 3269. [Google Scholar] [CrossRef]
- R Core Team. R. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 2 September 2022).
- EFSA PPR Panel (EFSA Panel on Plant Protection Products and their Residues). Scientific Opinion addressing the state of the science on risk assessment of plant protection products for non-target terrestrial plants. EFSA J. 2014, 12, 3800. [Google Scholar] [CrossRef]
- Warne, M.S.J.; Van Dam, R. NOEC and LOEC data should no longer be generated or used. Australas. J. Ecotoxicol. 2008, 14, 1–5. [Google Scholar]
- Azimonti, G.; Galimberti, F.; Marchetto, F.; Menaballi, L.; Ullucci, S.; Pellicioli, F.; Caffi, A.; Ceriani, L.; Ippolito, A.; Moretto, A.; et al. Comparison of NOEC values to EC10/EC20 values, including confidence intervals, in aquatic and terrestrial ecotoxicological risk assessment. EFSA Support. Publ. 2015, 12, 906E. [Google Scholar] [CrossRef]
- Vila-Aiub, M.M.; Gundel, P.E.; Preston, C. Experimental methods for estimation of plant fitness costs associated with herbicide-resistance genes. Weed Sci. 2015, 63, 203–216. [Google Scholar] [CrossRef]
- Arena, M.; Auteri, D.; Barmaz, S.; Brancato, A.; Brocca, D.; Bura, L.; Carrasco Cabrera, L.; Chiusolo, A.; Court Marques, D.; Crivellente, F.; et al. Conclusion on the peer review of the pesticide risk assessment of the active substance azadirachtin (Margosa extract). EFSA J. 2018, 16, e05234. [Google Scholar]
Population | Fenoxaprop-P-ethyl | Pinoxaden | ||||
---|---|---|---|---|---|---|
ER50 | ER25 | ER10 | ER50 | ER25 | ER10 | |
AMI | >662.40 (>8 N) | 101.56 | 27.54 | 36.82 | 23.04 | 5.88 |
AMII | >662.40 | 52.24 | 8.59 | 351.03 | 55.25 | 42.92 |
AMIII | >662.40 | 65.69 | 59.71 | 203.74 | 188.41 | 174.23 |
AMIV | >662.40 | >662.40 | >662.40 | 312.78 | 182.08 | 146.13 |
AMV | >662.40 | >662.40 | 642.61 | 129.34 | 75.62 | 44.88 |
AMVI | >662.40 | 396.71 | 246.34 | 50.20 | 29.40 | 10.26 |
AMVII | 600.69 | 583.5 | 536.31 | 86.75 | 62.47 | 44.99 |
APSI | 341.38 | 337.75 | 148.97 | 36.80 | 24.30 | 10.90 |
APSII | >662.40 | >662.40 | >662.40 | 291.22 | 160.29 | 88.23 |
APSIII | 82.51 | 74.33 | 68.97 | 22.32 | 12.94 | 5.26 |
Population | Fenoxaprop-P-ethyl | Pinoxaden | ||
---|---|---|---|---|
ER10 (Biomass) | ERrepro10 | ER10 (Biomass) | ERrepro10 | |
AMI | 27.54 | 9.18 | 5.88 | 1.96 |
AMII | 8.59 | 2.86 | 42.92 | 14.31 |
AMIII | 59.71 | 19.90 | 174.23 | 58.08 |
AMIV | >662.40 | 220.80 | 146.13 | 48.71 |
AMV | 642.61 | 214.20 | 44.88 | 14.96 |
AMVI | 246.34 | 82.11 | 10.26 | 3.42 |
AMVII | 536.31 | 178.77 | 44.99 | 15.00 |
APSI | 148.97 | 49.66 | 10.90 | 3.63 |
APSII | >662.40 | 220.80 | 88.23 | 29.41 |
APSIII | 68.97 | 22.99 | 5.26 | 1.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wrochna, M.; Stankiewicz-Kosyl, M.; Wińska-Krysiak, M. Stimulation of Early Post-Emergence Growth of Alopecurus myosuroides and Apera spica-venti Following Spray Application of ACCase Inhibitors. Agriculture 2023, 13, 483. https://doi.org/10.3390/agriculture13020483
Wrochna M, Stankiewicz-Kosyl M, Wińska-Krysiak M. Stimulation of Early Post-Emergence Growth of Alopecurus myosuroides and Apera spica-venti Following Spray Application of ACCase Inhibitors. Agriculture. 2023; 13(2):483. https://doi.org/10.3390/agriculture13020483
Chicago/Turabian StyleWrochna, Mariola, Marta Stankiewicz-Kosyl, and Marzena Wińska-Krysiak. 2023. "Stimulation of Early Post-Emergence Growth of Alopecurus myosuroides and Apera spica-venti Following Spray Application of ACCase Inhibitors" Agriculture 13, no. 2: 483. https://doi.org/10.3390/agriculture13020483
APA StyleWrochna, M., Stankiewicz-Kosyl, M., & Wińska-Krysiak, M. (2023). Stimulation of Early Post-Emergence Growth of Alopecurus myosuroides and Apera spica-venti Following Spray Application of ACCase Inhibitors. Agriculture, 13(2), 483. https://doi.org/10.3390/agriculture13020483