Influence of Transgenic (Bt) Cotton on the Productivity of Various Cotton-Based Cropping Systems in Pakistan
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Treatments
2.3. Crop Husbandry
2.4. Data Collection
2.4.1. Soil Properties
2.4.2. Nutrient Availability
2.4.3. Weed Infestation
2.5. Morphological and Yield-Related Traits
2.5.1. Cotton
2.5.2. Wheat
2.5.3. Canola
2.5.4. Egyptian Clover
2.6. Economic Analysis
2.7. Statistical Analysis
3. Results
3.1. Nutrient Availability
3.2. Weed Density
3.3. Yield-Related Attributes of Cotton
3.4. Yield-Related Attributes of Wheat
3.5. Yield-Related Attributes of Canola
3.6. Yield-Related Attributes of Egyptian Clover
3.7. Economic Returns/System Productivity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GOP Economic Survey of Pakistan; Economic Advisory Wing: Islamabad, Pakistan, 2021.
- Kouser, S.; Spielman, D.J.; Qaim, M. Transgenic Cotton and Farmers’ Health in Pakistan. PLoS ONE 2019, 14, e0222617. [Google Scholar] [CrossRef] [PubMed]
- Naeem-Ullah, U.; Ramzan, M.; Bokhari, S.H.M.; Saleem, A.; Qayyum, M.A.; Iqbal, N.; Habib ur Rahman, M.; Fahad, S.; Saeed, S. Insect Pests of Cotton Crop and Management Under Climate Change Scenarios. In Environment, Climate, Plant and Vegetation Growth; Springer International Publishing: Cham, Switzerland, 2020; pp. 367–396. [Google Scholar]
- Zehr, U.B. Cotton: Biotechnological Advances; Springer Science & Business Media: Cham, Switzerland, 2010; Volume 65, ISBN 3642047963. [Google Scholar]
- Kouser, S.; Qaim, M. Valuing Financial, Health, and Environmental Benefits of Bt Cotton in Pakistan. Agric. Econ. 2013, 44, 323–335. [Google Scholar] [CrossRef]
- Arshad, M.; Suhail, A.; Asghar, M.; Tayyib, M.; Hafeez, F. Factors Influencing the Adoption of Bt Cotton in the Punjab, Pakistan. J. Agric. Soc. Sci. 2007, 11, 19. [Google Scholar]
- Khan, M.; Mahmood, H.Z.; Damalas, C.A. Pesticide Use and Risk Perceptions among Farmers in the Cotton Belt of Punjab, Pakistan. Crop Prot. 2015, 67, 184–190. [Google Scholar] [CrossRef]
- Tooker, J.F.; Pearsons, K.A. Newer Characters, Same Story: Neonicotinoid Insecticides Disrupt Food Webs through Direct and Indirect Effects. Curr. Opin. Insect Sci. 2021, 46, 50–56. [Google Scholar] [CrossRef]
- Ziółkowska, E.; Topping, C.J.; Bednarska, A.J.; Laskowski, R. Supporting Non-Target Arthropods in Agroecosystems: Modelling Effects of Insecticides and Landscape Structure on Carabids in Agricultural Landscapes. Sci. Total Environ. 2021, 774, 145746. [Google Scholar] [CrossRef]
- Peshin, R.; Hansra, B.S.; Singh, K.; Nanda, R.; Sharma, R.; Yangsdon, S.; Kumar, R. Long-Term Impact of Bt Cotton: An Empirical Evidence from North India. J. Clean. Prod. 2021, 312, 127575. [Google Scholar] [CrossRef]
- Rana, M.A. When Seed Becomes Capital: Commercialization of Bt Cotton in Pakistan. J. Agrar. Chang. 2021, 21, 702–719. [Google Scholar] [CrossRef]
- Cheema, H.M.N.; Khan, A.A.; Noor, K. Bt Cotton in Pakistan. In Genetically Modified Crops in Asia Pacific; CSIRO Publishing: Clayton, Australia, 2021; p. 91. [Google Scholar]
- Lv, N.; Liu, Y.; Guo, T.; Liang, P.; Li, R.; Liang, P.; Gao, X. The Influence of Bt Cotton Cultivation on the Structure and Functions of the Soil Bacterial Community by Soil Metagenomics. Ecotoxicol. Environ. Saf. 2022, 236, 113452. [Google Scholar] [CrossRef]
- Smyth, S.J.; Kerr, W.A.; Phillips, P.W.B. Global Economic, Environmental and Health Benefits from GM Crop Adoption. Glob. Food Sec. 2015, 7, 24–29. [Google Scholar] [CrossRef]
- Hutchison, W.D.; Burkness, E.C.; Mitchell, P.D.; Moon, R.D.; Leslie, T.W.; Fleischer, S.J.; Abrahamson, M.; Hamilton, K.L.; Steffey, K.L.; Gray, M.E.; et al. Areawide Suppression of European Corn Borer with Bt Maize Reaps Savings to Non-Bt Maize Growers. Science 2010, 330, 222–225. [Google Scholar] [CrossRef]
- Kumar, K.; Gambhir, G.; Dass, A.; Tripathi, A.K.; Singh, A.; Jha, A.K.; Yadava, P.; Choudhary, M.; Rakshit, S. Genetically Modified Crops: Current Status and Future Prospects. Planta 2020, 251, 91. [Google Scholar] [CrossRef]
- Di Lelio, I.; Barra, E.; Coppola, M.; Corrado, G.; Rao, R.; Caccia, S. Transgenic Plants Expressing Immunosuppressive DsRNA Improve Entomopathogen Efficacy against Spodoptera littoralis Larvae. J. Pest Sci. 2022, 95, 1413–1428. [Google Scholar] [CrossRef]
- Katta, S.; Talakayala, A.; Reddy, M.K.; Addepally, U.; Garladinne, M. Development of Transgenic Cotton (Narasimha) Using Triple Gene Cry2Ab-Cry1F-Cry1Ac Construct Conferring Resistance to Lepidopteran Pest. J. Biosci. 2020, 45, 31. [Google Scholar] [CrossRef]
- Klümper, W.; Qaim, M. A Meta-Analysis of the Impacts of Genetically Modified Crops. PLoS ONE 2014, 9, e111629. [Google Scholar] [CrossRef]
- Kumar, S.; Chandra, A.; Pandey, K.C. Bacillus thuringiensis (Bt) Transgenic Crop: An Environment Friendly Insect-Pest Management Strategy. J. Environ. Biol. 2008, 29, 641–653. [Google Scholar]
- Tokel, D.; Genc, B.N.; Ozyigit, I.I. Economic Impacts of Bt (Bacillus thuringiensis) Cotton. J. Nat. Fibers 2022, 19, 4622–4639. [Google Scholar] [CrossRef]
- Halford, N.G.; Shewry, P.R. Genetically Modified Crops: Methodology, Benefits, Regulation and Public Concerns. Br. Med. Bull. 2000, 56, 62–73. [Google Scholar] [CrossRef]
- Kuzma, J.; Grieger, K. Community-Led Governance for Gene-Edited Crops. Science 2020, 370, 916–918. [Google Scholar] [CrossRef]
- Sendhil, R.; Nyika, J.; Yadav, S.; Mackolil, J.; Prashat, G.R.; Workie, E.; Ragupathy, R.; Ramasundaram, P. Genetically Modified Foods: Bibliometric Analysis on Consumer Perception and Preference. GM Crops Food 2022, 13, 65–85. [Google Scholar] [CrossRef]
- Liu, J.; Liang, Y.; Hu, T.; Zeng, H.; Gao, R.; Wang, L.; Xiao, Y. Environmental Fate of Bt Proteins in Soil: Transport, Adsorption/Desorption and Degradation. Ecotoxicol. Environ. Saf. 2021, 226, 112805. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Li, H.; Liu, D.; Hao, J.; Liu, H.; Lu, X. Effects of Toxin from Bacillus thuringiensis (Bt) on Sorption of Pb (II) in Red and Black Soils: Equilibrium and Kinetics Aspects. J. Hazard. Mater. 2018, 360, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Mandal, A.; Sarkar, B.; Owens, G.; Thakur, J.K.; Manna, M.C.; Niazi, N.K.; Jayaraman, S.; Patra, A.K. Impact of Genetically Modified Crops on Rhizosphere Microorganisms and Processes: A Review Focusing on Bt Cotton. Appl. Soil Ecol. 2020, 148, 103492. [Google Scholar] [CrossRef]
- Stotzky, G. Persistence and Biological Activity in Soil of the Insecticidal Proteins from Bacillus thuringiensis, Especially from Transgenic Plants. Plant Soil 2005, 266, 77–89. [Google Scholar] [CrossRef]
- Sarkar, B.; Patra, A.K.; Purakayastha, T.J.; Megharaj, M. Assessment of Biological and Biochemical Indicators in Soil under Transgenic Bt and Non-Bt Cotton Crop in a Sub-Tropical Environment. Environ. Monit. Assess. 2009, 156, 595–604. [Google Scholar] [CrossRef]
- Fleming, D.; Musser, F.; Reisig, D.; Greene, J.; Taylor, S.; Parajulee, M.; Lorenz, G.; Catchot, A.; Gore, J.; Kerns, D.; et al. Effects of Transgenic Bacillus thuringiensis Cotton on Insecticide Use, Heliothine Counts, Plant Damage, and Cotton Yield: A Meta-Analysis, 1996–2015. PLoS ONE 2018, 13, e0200131. [Google Scholar] [CrossRef]
- Luo, J.; Zhang, S.; Zhu, X.; Lu, L.; Wang, C.; LI, C.; Cui, J.; Zhou, Z. Effects of Soil Salinity on Rhizosphere Soil Microbes in Transgenic Bt Cotton Fields. J. Integr. Agric. 2017, 16, 1624–1633. [Google Scholar] [CrossRef]
- Dunfield, K.E.; Germida, J.J. Impact of Genetically Modified Crops on Soil- and Plant-Associated Microbial Communities. J. Environ. Qual. 2004, 33, 806. [Google Scholar] [CrossRef]
- Sarkar, B.; Patra, A.K.; Purakayastha, T.J. Transgenic Bt-Cotton Affects Enzyme Activity and Nutrient Availability in a Sub-Tropical Inceptisol. J. Agron. Crop Sci. 2008, 194, 289–296. [Google Scholar] [CrossRef]
- Sun, C.X.; Chen, L.J.; Wu, Z.J.; Zhou, L.K.; Shimizu, H. Soil Persistence of Bacillus thuringiensis (Bt) Toxin from Transgenic Bt Cotton Tissues and Its Effect on Soil Enzyme Activities. Biol. Fertil. Soils 2007, 43, 617–620. [Google Scholar] [CrossRef]
- Noman, A.; Bashir, R.; Aqeel, M.; Anwer, S.; Iftikhar, W.; Zainab, M.; Zafar, S.; Khan, S.; Islam, W.; Adnan, M. Success of Transgenic Cotton (Gossypium hirsutum L.): Fiction or Reality? Cogent Food Agric. 2016, 2, 1207844. [Google Scholar] [CrossRef]
- Flachs, A. Transgenic cotton: High hopes and farming reality. Nat. Plants 2017, 3, 16212. [Google Scholar] [CrossRef]
- Smyth, S.J. The Human Health Benefits from GM Crops. Plant Biotechnol. J. 2020, 18, 887–888. [Google Scholar] [CrossRef]
- Matloob, A.; Aslam, F.; Rehman, H.U.; Khaliq, A.; Ahmad, S.; Yasmeen, A.; Hussain, N. Cotton-Based Cropping Systems and Their Impacts on Production. In Cotton Production and Uses; Springer: Singapore, 2020; pp. 283–310. ISBN 9789811514722. [Google Scholar]
- Kroetsch, D.; Wang, C. Particle Size Distribution. Soil Sampl. Methods Anal. 2008, 2, 713–725. [Google Scholar]
- Dellavalle, N.B. Determination of Soil-Paste PH and Conductivity of Saturation Extract. In Reference Methods for Soil Analysis; Soil and Plant Analysis Council, Inc.: Athens, GA, USA, 1992; pp. 40–43. [Google Scholar]
- Cunniff, P.; AOAC International. Official Methods of Analysis of AOAC International, 16th ed.; AOAC International: Gaithersburg, MD, USA, 1997. [Google Scholar]
- Hoogsteen, M.J.J.; Lantinga, E.A.; Bakker, E.J.; Groot, J.C.J.; Tittonell, P.A. Estimating Soil Organic Carbon through Loss on Ignition: Effects of Ignition Conditions and Structural Water Loss. Eur. J. Soil Sci. 2015, 66, 320–328. [Google Scholar] [CrossRef]
- Jafari, A.; Connolly, V.; Frolich, A.; Walsh, E.J. A Note on Estimation of Quality Parameters in Perennial Ryegrass by near Infrared Reflectance Spectroscopy. Ir. J. Agric. Food Res. 2003, 42, 293–299. [Google Scholar]
- CIMMYT. From Agronomic Data to Farmer Recommendations: An Economics Workbook; CIMMYT: Heroica Veracruz, Mexico, 1988; ISBN 9686127194. [Google Scholar]
- Shapiro, S.S.; Wilk, M.B. An Analysis of Variance Test for Normality (Complete Samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Steel, R.; Torrei, J.; Dickey, D. Principles and Procedures of Statistics a Biometrical Approach; McGraw-Hill College: New York, NY, USA, 1997. [Google Scholar]
- IBM, Inc. SPSS Statistics for Windows (Version 20); IBM SPSS Inc.: Armonk, NY, USA, 2012; pp. 1–8. [Google Scholar]
- Kranthi, K.R.; Stone, G.D. Long-Term Impacts of Bt Cotton in India. Nat. Plants 2020, 6, 188–196. [Google Scholar] [CrossRef]
- Ahmad, I.; Zhou, G.; Zhu, G.; Ahmad, Z.; Song, X.; Hao, G.; Jamal, Y.; Ibrahim, M.E.H. Response of Leaf Characteristics of BT Cotton Plants to Ratio of Nitrogen, Phosphorus and Potassium. Pak. J. Bot. 2021, 53, 873–881. [Google Scholar] [CrossRef]
- Marschner, P. Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2011; ISBN 9780123849052. [Google Scholar]
- Jones, M.L.M.; Wallace, H.L.; Norris, D.; Brittain, S.A.; Haria, S.; Jones, R.E.; Rhind, P.M.; Reynolds, B.R.; Emmett, B.A. Changes in Vegetation and Soil Characteristics in Coastal Sand Dunes along a Gradient of Atmospheric Nitrogen Deposition. Plant Biol. 2004, 6, 598–605. [Google Scholar] [CrossRef]
- Marschner, P.; Fu, Q.; Rengel, Z. Manganese Availability and Microbial Populations in the Rhizosphere of Wheat Genotypes Differing in Tolerance to Mn Deficiency. J. Plant Nutr. Soil Sci. 2003, 166, 712–718. [Google Scholar] [CrossRef]
- Hu, H.; Xie, M.; Yu, Y.; Zhang, Q. Transgenic Bt Cotton Tissues Have No Apparent Impact on Soil Microorganisms. Plant Soil Environ. 2013, 59, 366–371. [Google Scholar] [CrossRef]
- O’Callaghan, M.; Glare, T.R.; Burgess, E.P.J.; Malone, L.A. Effects of Plants Genetically Modified for Insect Resistance on Nontarget Organisms. Annu. Rev. Entomol. 2005, 50, 271–292. [Google Scholar] [CrossRef]
- Beura, K.; Rakshit, A. Effect of Bt Cotton on Nutrient Dynamics under Varied Soil Type. Ital. J. Agron. 2011, 6, e35. [Google Scholar] [CrossRef]
- Kumari, S.; Manjhi, B.K.; Beura, K.S.; Rakshit, A. Decomposition Bt Cotton Residues Affecting Soil Microbial Activity under Varied Soils. Int. J. Agric. Environ. Biotechnol. 2015, 8, 359. [Google Scholar] [CrossRef]
- Shahzad, M.; Farooq, M.; Hussain, M. Weed Spectrum in Different Wheat-Based Cropping Systems under Conservation and Conventional Tillage Practices in Punjab, Pakistan. Soil Tillage Res. 2016, 163, 71–79. [Google Scholar] [CrossRef]
- Shahzad, M.; Hussain, M.; Jabran, K.; Farooq, M.; Farooq, S.; Gašparovič, K.; Barboricova, M.; Aljuaid, B.S.; El-Shehawi, A.M.; Zuan, A.T.K. The Impact of Different Crop Rotations by Weed Management Strategies’ Interactions on Weed Infestation and Productivity of Wheat (Triticum aestivum L.). Agronomy 2021, 11, 2088. [Google Scholar] [CrossRef]
- Tariq, M.; Abdullah, K.; Ahmad, S.; Abbas, G.; Rahman, M.H.; Khan, M.A. Weed Management in Cotton. In Cotton Production and Uses; Springer: Singapore, 2020; pp. 145–161. [Google Scholar]
- Farkas, A. Soil Management and Tillage Possibilities in Weed Control. Herbologia 2006, 7, 9–23. [Google Scholar]
- Mahajan, G.; Chauhan, B.S. The Role of Cultivars in Managing Weeds in Dry-Seeded Rice Production Systems. Crop Prot. 2013, 49, 52–57. [Google Scholar] [CrossRef]
- Rezakhanlou, A.; Mirshekari, B.; Zand, E.; Farahvash, F.; Baghestani, M.A. Evaluation of Competitiveness of Cotton Varieties to Cocklebur (Xanthium srumarium L.). J. Food Agric. Environ. 2013, 11, 308–311. [Google Scholar]
- Chandler, J.M.; Meredith, W.R. Yields of Three Cotton (Gossypium hirsutum) Cultivars as Influenced by Spurred Anoda (Anoda cristata) Competition. Weed Sci. 1983, 31, 303–307. [Google Scholar] [CrossRef]
- Tabashnik, B.E.; Carrière, Y.; Dennehy, T.J.; Morin, S.; Sisterson, M.S.; Roush, R.T.; Shelton, A.M.; Zhao, J.-Z. Insect Resistance to Transgenic Bt Crops: Lessons from the Laboratory and Field. J. Econ. Entomol. 2003, 96, 1031–1038. [Google Scholar] [CrossRef]
- Heckel, D.G. How Do Toxins from Bacillus thuringiensis Kill Insects? An Evolutionary Perspective. Arch. Insect Biochem. Physiol. 2020.
- Tapp, H.; Stotzky, G. Insecticidal Activity of the Toxins from Bacillus thuringiensis Subspecies Kurstaki and Tenebrionis Adsorbed and Bound on Pure and Soil Clays. Appl. Environ. Microbiol. 1995, 61, 1786–1790. [Google Scholar] [CrossRef]
- Rui, Y.-K.; Yi, G.-X.; Zhao, J.; Wang, B.-M.; Li, Z.-H.; Zhai, Z.-X.; He, Z.-P.; Li, Q.X. Changes of Bt Toxin in the Rhizosphere of Transgenic Bt Cotton and Its Influence on Soil Functional Bacteria. World J. Microbiol. Biotechnol. 2005, 21, 1279–1284. [Google Scholar] [CrossRef]
- Wei, X.-D.; Zou, H.-L.; Chu, L.-M.; Liao, B.; Ye, C.-M.; Lan, C.-Y. Field Released Transgenic Papaya Affects Microbial Communities and Enzyme Activities in Soil. Plant Soil 2006, 285, 347–358. [Google Scholar] [CrossRef]
- Fang, M.; Motavalli, P.P.; Kremer, R.J.; Nelson, K.A. Assessing Changes in Soil Microbial Communities and Carbon Mineralization in Bt and Non-Bt Corn Residue-Amended Soils. Appl. Soil Ecol. 2007, 37, 150–160. [Google Scholar] [CrossRef]
Soil Properties | Unit | 2016–2017 | 2017–2018 |
---|---|---|---|
Organic matter content | % | 0.59 | 0.56 |
Total nitrogen (N) | kg ha−1 | 22.12 | 22.23 |
Available phosphorus (P) | kg ha−1 | 18.02 | 18.08 |
Available potassium (K) | kg ha−1 | 245.15 | 249.15 |
pH | 8.17 | 8.19 | |
EC | dS m−1 | 4.96 | 5.00 |
Silt | % | 54.15 | 54.00 |
Sand | % | 25.75 | 26.10 |
Clay | % | 20.10 | 19.90 |
Crops Name | Genotype Name | Planting Time * | Seed Rate (kg ha−1) | Fertilizer NPK (kg ha−1) | R × R (cm) | P × P (cm) | Harvesting Time |
---|---|---|---|---|---|---|---|
Cotton | GH Mubarik and CIM-616 (Bt) CIM-620 and CIM-554 (non-Bt) | 08 and 10 May | 25 | 250-175-125 (Bt) 200-145-100 (non-Bt) | 75 | 20 | Last picking in October |
Wheat | Galaxy-2013 | 13 and 16 November | 125 | 130-100-62 | 25 | 21 and 23 April | |
Canola | Hyola-420 | 12 and 13 November | 5 | 90-60-50 | 30 | 4-5 | 6 and 10 April |
Egyptian clover | Anmol berseem | 9 and 11 November | 25 | 22-115-0 | Last cutting in April |
Treatments | 2016–2017 | 2017–2018 | ||||
---|---|---|---|---|---|---|
Wheat | Egyptian Clover | Canola | Wheat | Egyptian Clover | Canola | |
Available nitrogen (kg ha−1) | ||||||
CIM-616 (Bt1) | 0.17 ± 0.001 a–c | 0.15 ± 0.003 c–e | 0.14 ± 0.001 de | 0.18 ± 0.003 ab | 0.16 ± 0.005 b–d | 0.16 ± 0.001 b–d |
GH-Mubarik (Bt2) | 0.19 ± 0.003 a | 0.14 ± 0.002 de | 0.16 ± 0.001 b–d | 0.19 ± 0.002 a | 0.16 ± 0.004 b–d | 0.17 ± 0.003 a–c |
CIM-620 (NBt1) | 0.18 ± 0.002 ab | 0.15 ± 0.001 c–e | 0.14 ± 0.004 de | 0.18 ± 0.001 ab | 0.14 ± 0.003 cd | 0.14 ± 0.002 d |
N-414 (NBt2) | 0.16 ± 0.004 b–d | 0.15 ± 0.002 c–e | 0.13 ± 0.002 e | 0.18 ± 0.002 ab | 0.16 ± 0.002 b–d | 0.16 ± 0.002 b–d |
LSD (p ≤ 0.05) | 0.020 | 0.020 | ||||
Available phosphorous (kg ha−1) | ||||||
CIM-616 (Bt1) | 19.36 ± 0.02 a–e | 19.50 ± 0.03 a–c | 19.38 ± 0.02 a–e | 19.40 ± 0.01a–c | 19.59 ± 0.07 a | 19.28 ± 0.04 b–d |
GH-Mubarik (Bt2) | 19.20 ± 0.04 de | 19.52 ± 0.02 ab | 19.24 ± 0.05 de | 19.10 ± 0.02 de | 19.42 ± 0.04 ab | 19.14 ± 0.06 de |
CIM-620 (NBt1) | 19.28 ± 0.06 c–e | 19.58 ± 0.07 a | 19.30 ± 0.04 b–e | 19.18 ± 0.06 de | 19.48 ± 0.02 ab | 19.20 ± 0.05 c–e |
N-414 (NBt2) | 19.18 ± 0.04 e | 19.40 ± 0.03 a–d | 19.40 ± 0.03 a–d | 19.08 ± 0.05 e | 19.30 ± 0.03 a–d | 19.30 ± 0.04 a–d |
LSD (p ≤ 0.05) | 0.10 | 0.12 | ||||
Available potassium (kg ha−1) | ||||||
CIM-616 (Bt1) | 394 ± 6.1 b–d | 400 ± 4.3 ab | 394 ± 3.3 e | 402 ± 2.2 a–c | 404 ± 2.2 a–c | 406 ± 3.2 a–c |
GH-Mubarik (Bt2) | 388 ± 5.3 de | 396 ± 6.1 a–c | 394 ± 3.2 e | 408 ± 6.1 a | 402 ± 3.1 a–c | 404 ± 2.6 a–c |
CIM-620 (NBt1) | 390 ± 3.4 c–e | 398 ± 3.3 ab | 386 ± 8.3 de | 400 ± 3.4 bc | 402 ± 3.4 a–c | 402 ± 2.7 a–c |
N-414 (NBt2) | 392 ± 2.4 b–e | 402 ± 1.2 a | 390 ± 4.5 c–e | 400 ± 3.3 bc | 406 ± 4.3 ab | 400 ± 2.3 c |
LSD (p ≤ 0.05) | 7.58 | 6.30 | ||||
Available zinc (kg ha−1) | ||||||
CIM-616 (Bt1) | 1.46 ± 0.01 d | 1.60 ± 0.03 b | 1.44 ± 0.03 de | 1.56 ± 0.04 cd | 1.60 ± 0.02 bc | 1.48 ± 0.02 ef |
GH-Mubarik (Bt2) | 1.46 ± 0.02 d | 1.58 ± 0.02 bc | 1.40 ± 0.02 e | 1.50 ± 0.04 de | 1.62 ± 0.02 b | 1.42 ± 0.03 f |
CIM-620 (NBt1) | 1.58 ± 0.02 bc | 1.66 ± 0.01 a | 1.44 ± 0.04 c | 1.60 ± 0.03 bc | 1.68 ± 0.04 a | 1.56 ± 0.04 cd |
N-414 (NBt2) | 1.58 ± 0.01 bc | 1.68 ± 0.02 a | 1.56 ± 0.02 bc | 1.58 ± 0.02 bc | 1.68 ± 0.05 a | 1.58 ± 0.02 bc |
LSD (p ≤ 0.05) | 0.04 | 0.06 | ||||
Available iron (kg ha−1) | ||||||
CIM-616 (Bt1) | 7.62 ± 0.12 d–f | 7.42 ± 0.10 fg | 7.72 ± 0.09 c–e | 7.68 ± 0.11 de | 7.78 ± 0.13 c–e | 7.78 ± 0.10 c–e |
GH-Mubarik (Bt2) | 7.82 ± 0.14 b–e | 7.68 ± 0.11 de | 7.84 ± 0.11 b–d | 7.90 ± 0.12 bc | 8.04 ± 0.17 ab | 7.80 ± 0.14 c–e |
CIM-620 (NBt1) | 8.14 ± 0.19 a | 7.32 ± 0.09 g | 7.94 ± 0.11 a–c | 8.20 ± 0.16 a | 7.96 ± 0.11 bc | 7.80 ± 0.13 c–e |
N-414 (NBt2) | 8.04 ± 0.11 ab | 7.56 ± 0.14 ef | 7.60 ± 0.09 ef | 7.96 ± 0.10 bc | 7.84 ± 0.12 b–d | 7.62 ± 0.12 e |
LSD (p ≤ 0.05) | 0.24 | 0.20 | ||||
Soil organic matter (%) | ||||||
CIM-616 (Bt1) | 0.59 ± 0.02 a | 0.53 ± 0.04 c–e | 0.51 ± 0.02 de | 0.62 ± 0.01 ab | 0.62 ± 0.01 ab | 0.59 ± 0.01 cd |
GH-Mubarik (Bt2) | 0.58 ± 0.03 ab | 0.53 ± 0.04 c–e | 0.51 ± 0.02 de | 0.60 ± 0.02 bc | 0.63 ± 0.01 a | 0.60 ± 0.01 bc |
CIM-620 (NBt1) | 0.57 ± 0.04 a–c | 0.52 ± 0.03 de | 0.49 ± 0.01 ef | 0.59 ± 0.02 cd | 0.59 ± 0.01 cd | 0.57 ± 0.01 d |
N-414 (NBt2) | 0.58 ± 0.02 ab | 0.54 ± 0.04 b–d | 0.45 ± 0.02 f | 0.58 ± 0.01 cd | 0.58 ± 0.02 cd | 0.60 ± 0.01 bc |
LSD (p ≤ 0.05) | 0.04 | 0.03 |
Treatments | 2016–2017 | 2017–2018 | ||||
---|---|---|---|---|---|---|
Wheat | Egyptian Clover | Canola | Wheat | Egyptian Clover | Canola | |
Broadleaved weeds density (m−2) | ||||||
CIM-616 (Bt1) | 81.3 ± 3.1 b | 61.0 ± 3.1 f | 62.3 ± 2.8 f | 83.0 ± 3.4 cd | 66.7 ± 3.9 g | 65.0 ± 3.1 g |
GH-Mubarik (Bt2) | 68.7 ± 4.3 e | 60.3 ± 2.4 f | 64.0 ± 2.9 f | 74.3 ± 2.6 ef | 69.3 ± 5.2 fg | 72.7 ± 3.4 ef |
CIM-620 (NBt1) | 90.3 ± 3.4 a | 77.7 ± 2.8 bc | 75.3 ± 2.4 cd | 97.0 ± 6.3 a | 88.7 ± 2.8 b | 83.7 ± 5.1 bc |
N-414 (NBt2) | 76.0 ± 2.7 cd | 72.7 ± 3.3 de | 69.7 ± 1.4 e | 82.0 ± 4.7 cd | 81.0 ± 3.0 cd | 78.0 ± 3.1 de |
LSD (p ≤ 0.05) | 4.42 | 5.57 | ||||
Narrow-leaved weeds density (m−2) | ||||||
CIM-616 (Bt1) | 57.0 ± 2.2 a | 16.0 ± 3.6 e | 27.3 ± 2.1 c | 64.0 ± 4.6 a | 24.0 ± 3.4 e | 35.3 ± 4.4 c |
GH-Mubarik (Bt2) | 48.0 ± 3.3 b | 12.7 ± 3.4 ef | 20.3 ± 3.4d | 55.7 ± 3.3 b | 22.0 ±3.3 e | 28.0 ± 3.2 d |
CIM-620 (NBt1) | 56.0 ± 4.5 a | 11.7 ± 2.6 f | 24.3 ± 2.9 c | 66.3 ± 4.1 a | 21.7 ± 4.5 e | 34.3 ± 4.0 c |
N-414 (NBt2) | 46.7 ± 2.6 b | 20.0 ± 2.9 d | 14.3 ± 1.7 ef | 55.7 ± 4.8 b | 28.0 ± 3.7 d | 25.0 ± 4.2 de |
LSD (p ≤ 0.05) | 3.47 | 3.53 | ||||
Total weeds density (m−2) | ||||||
CIM-616 (Bt1) | 138 ± 6 b | 77.0 ± 8 h | 89.7 ± 3 f | 147 ± 10 b | 90.7 ± 5 h | 100 ± 5 g |
GH-Mubarik (Bt2) | 116 ± 5 d | 73.0 ± 11 i | 84.3 ± 2 g | 130 ± 11 d | 91.3 ± 6 h | 100 ± 6 g |
CIM-620 (NBt1) | 146 ± 10 a | 89.3 ± 4 f | 99.7 ± 8 e | 163 ± 19 a | 110 ± 8 f | 118 ± 11 e |
N-414 (NBt2) | 122 ± 4 c | 92.7 ± 5 f | 84.0 ± 4 g | 137 ± 6 c | 109 ± 7 f | 103 ± 5 g |
LSD (p ≤ 0.05) | 3.84 | 5.43 |
Treatments | 2016 | 2017 | 2016 | 2017 | 2016 | 2017 |
---|---|---|---|---|---|---|
Monopodial Branches (Plant−1) | Sympodial Branches (Plant−1) | Boll Weight (g) | ||||
CIM-616 (Bt1) | 1.78 ± 0.2 | 1.78 ± 0.3 | 23.6 ± 0.9 b | 26.0 ± 1.1 a | 3.2 ± 0.1 a | 3.2 ± 0.04 a |
GH-Mubarik (Bt2) | 1.67 ± 0.3 | 1.67 ± 0.4 | 22.3 ± 0.8 b | 25.6 ± 1.2 a | 3.1 ± 0.1 ab | 3.1 ± 0.02 b |
CIM-620 (NBt1) | 1.89 ± 0.3 | 1.89 ± 0.2 | 25.0 ± 1.4 a | 23.0 ± 0.8 b | 3.0 ± 0.05 bc | 3.0 ± 0.08 b |
N-414 (NBt2) | 1.67 ± 0.4 | 1.67 ± 0.3 | 22.0 ± 1.1 bc | 24.0 ± 1.2 b | 2.9 ± 0.04 c | 2.9 ± 005 c |
LSD (p ≤ 0.05) | NS | NS | 1.49 | 1.29 | 0.15 | 0.07 |
Seed cotton yield (kg ha−1) | Harvest index (%) | |||||
CIM-616 (Bt1) | 2892 ± 141 a | 2832 ± 221 | 32.7 ± 2.12 | 32.4 ± 1.9 | ||
GH-Mubarik (Bt2) | 2685 ± 123 b | 2635 ± 213 | 29.5 ± 2.21 | 29.4 ± 3.1 | ||
CIM-620 (NBt1) | 2645 ± 129 b | 2563 ± 303 | 33.9 ± 2.39 | 31.2 ± 2.2 | ||
N-414 (NBt2) | 2613 ± 147 b | 2570 ± 309 | 32.3 ± 2.53 | 31.1 ± 2.6 | ||
LSD (p ≤ 0.05) | 150.14 | NS | NS | NS |
Treatments | 2016–2017 | 2017–2018 | 2016–2017 | 2017–2018 | 2016–2017 | 2017–2018 |
---|---|---|---|---|---|---|
Productive Tillers (m−2) | Grains (Spike−1) | 1000-Grain Weight (g) | ||||
CIM-616 (Bt1) | 189 ± 15 ab | 191 ± 17 ab | 55.7 ± 1.9 b | 56.0 ± 2.0 b | 36.2 ± 1.8 c | 36.8 ± 1.4 c |
GH-Mubarik (Bt2) | 181 ± 11 b | 176 ± 14 b | 53.3 ± 1.7 b | 53.9 ± 1.8 c | 37.9 ± 1.7 bc | 37.9 ± 1.6 bc |
CIM-620 (NBt1) | 197 ± 10 a | 201 ± 14 a | 59.5 ± 1.2 a | 58.8 ± 1.4 a | 40.2 ± 1.5 a | 40.7 ± 1.3 a |
N-414 (NBt2) | 202 ± 12 a | 202 ± 16 a | 59.1 ± 1.4 a | 58.1 ± 1.6 a | 39.8 ± 1.6 ab | 39.6 ± 2.3 ab |
LSD (p ≤ 0.05) | 14.4 | 14.4 | 2.4 | 1.7 | 2.0 | 1.8 |
Grain yield (t ha−1) | Biological yield (t ha−1) | Harvest index (%) | ||||
CIM-616 (Bt1) | 5.82 ± 0.8 | 5.95 ± 0.2 b | 17.6 ± 0.5 bc | 15.7 ± 0.4 bc | 33.1 ± 1.2 | 37.8 ± 2.1 |
GH-Mubarik (Bt2) | 5.98 ± 0.7 | 5.92 ± 0.1 b | 17.1 ± 0.6 c | 15.3 ± 0.5 c | 34.9 ± 1.6 | 38.8 ± 2.2 |
CIM-620 (NBt1) | 6.30 ± 0.7 | 6.26 ± 0.2 a | 18.2 ± 0.6 ab | 16.4 ± 0.6 ab | 34.6 ± 1.8 | 38.2 ± 2.1 |
N-414 (NBt2) | 6.21 ± 0.8 | 6.31 ± 0.2 a | 18.7 ± 0.5 a | 16.9 ± 0.5 a | 33.2 ± 2.0 | 37.4 ± 2.4 |
LSD (p ≤ 0.05) | NS | 0.25 | 0.86 | 0.86 | NS | NS |
Treatments | 2016–2017 | 2017–2018 | 2016–2017 | 2017–2018 | 2016–2017 | 2017–2018 |
---|---|---|---|---|---|---|
Siliques (Plant−1) | Seeds (Silique−1) | 1000-Seed Weight (g) | ||||
CIM-616 (Bt1) | 106 ± 22 | 105 ± 7 ab | 26.7 ± 2.3 | 26.9 ± 3.7 | 2.77 ± 0.3 | 2.73 ± 0.4 |
GH-Mubarik (Bt2) | 103 ± 12 | 102 ± 9 b | 24.0 ± 3.4 | 25.0 ± 4.0 | 2.90 ± 0.4 | 2.85 ± 0.3 |
CIM-620 (NBt1) | 109 ± 6 | 109 ± 7 ab | 25.2 ± 3.6 | 25.8 ± 3.1 | 2.87 ± 0.6 | 2.90 ± 0.2 |
N-414 (NBt2) | 112 ± 16 | 113 ± 8 a | 26.3 ± 4.1 | 27.0 ± 3.3 | 2.83 ± 0.5 | 2.93 ± 0.5 |
LSD (p ≤ 0.05) | NS | 8.4 | NS | NS | NS | NS |
Biological yield (kg ha−1) | Seed yield (kg ha−1) | Harvest index (%) | ||||
CIM-616 (Bt1) | 4800 ± 343 | 5271 ± 234 | 1650 ± 212 b | 1797 ± 158 | 34.4 ± 2.2 | 34.1 ± 3.4 |
GH-Mubarik (Bt2) | 5132 ± 412 | 5070 ± 267 | 1700 ± 223 b | 1833 ± 123 | 33.2 ± 3.1 | 36.2 ± 2.1 |
CIM-620 (NBt1) | 5233 ± 345 | 5345 ± 312 | 1950 ± 201 a | 1850 ± 112 | 37.4 ± 2.6 | 34.7 ± 3.3 |
N-414 (NBt2) | 4876 ± 321 | 5478 ± 434 | 1900 ± 198 a | 1900 ± 121 | 39.1 ± 2.8 | 34.7 ± 3.1 |
LSD (p ≤ 0.05) | NS | NS | 197.7 | NS | NS | NS |
Treatments | Fresh Forage Yield (t ha−1) | Dry forage Yield (t ha−1) | Crude Protein (%) | |||
---|---|---|---|---|---|---|
2016–2017 | 2017–2018 | 2016–2017 | 2017–2018 | 2016–2017 | 2017–2018 | |
CIM-616 (Bt1) | 28.3 ± 1.21 b | 30.7 ± 1.98 b | 2.91±0.11 b | 3.62 ± 0.09 b | 21.0 ± 1.2 b | 20.6 ± 1.7 b |
GH-Mubarik (Bt2) | 28.2 ± 1.26 b | 32.0 ± 2.02 b | 2.97 ± 0.17 b | 3.72 ± 0.16 ab | 20.2 ± 1.6 b | 20.3 ± 2.4 b |
CIM-620 (NBt1) | 34.1 ± 2.34 a | 34.8 ± 1.12 a | 3.50 ± 0.21 a | 3.87 ± 0.11 a | 24.0 ± 2.1 a | 22.3 ± 1.6 ab |
N-414 (NBt2) | 32.3 ± 2.31 a | 33.2 ± 1.63 ab | 3.35 ± 0.18 a | 3.76 ± 0.12 ab | 23.7 ± 1.9 a | 23.6 ± 1.2 a |
LSD (p ≤ 0.05) | 1.96 | 2.63 | 0.18 | 0.17 | 2.44 | 2.52 |
Treatments | 2016–2017 | 2017–2018 | ||||||
---|---|---|---|---|---|---|---|---|
TE | GI | NI | BCR | TE | GI | NI | BCR | |
Bt1 × Wheat | 1563.59 | 2607.75 | 1044.16 | 1.67 | 1563.59 | 2531.58 | 967.99 | 1.62 |
Bt2 × Wheat | 1563.59 | 2516.55 | 952.96 | 1.61 | 1563.59 | 2423.59 | 860.00 | 1.55 |
NBt1 × Wheat | 1629.85 | 2572.23 | 942.38 | 1.58 | 1629.85 | 2466.93 | 837.09 | 1.51 |
NBt2 × Wheat | 1629.85 | 2564.07 | 934.22 | 1.57 | 1629.85 | 2491.97 | 862.12 | 1.53 |
Bt1 × Canola | 1500.76 | 1979.11 | 478.35 | 1.32 | 1500.76 | 2009.13 | 508.37 | 1.34 |
Bt2 × Canola | 1500.76 | 1910.59 | 409.83 | 1.27 | 1500.76 | 1923.63 | 422.87 | 1.28 |
NBt1 × Canola | 1567.02 | 1966.87 | 399.85 | 1.26 | 1567.02 | 1904.60 | 337.59 | 1.22 |
NBt2 × Canola | 1567.02 | 1925.86 | 358.85 | 1.23 | 1567.02 | 1926.66 | 359.65 | 1.23 |
Bt1 × Egyptian clover | 1621.02 | 1989.23 | 368.21 | 1.23 | 1621.02 | 2016.24 | 395.22 | 1.24 |
Bt2 × Egyptian clover | 1621.02 | 1893.59 | 272.57 | 1.17 | 1621.02 | 1957.23 | 336.21 | 1.21 |
NBt1 × Egyptian clover | 1687.28 | 2010.18 | 322.90 | 1.19 | 1687.28 | 1987.73 | 300.45 | 1.18 |
NBt2 × Egyptian clover | 1687.28 | 1953.95 | 266.68 | 1.16 | 1687.28 | 1954.70 | 267.42 | 1.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marral, M.W.R.; Ahmad, F.; Ul-Allah, S.; Atique-ur-Rehman; Farooq, S.; Hussain, M. Influence of Transgenic (Bt) Cotton on the Productivity of Various Cotton-Based Cropping Systems in Pakistan. Agriculture 2023, 13, 276. https://doi.org/10.3390/agriculture13020276
Marral MWR, Ahmad F, Ul-Allah S, Atique-ur-Rehman, Farooq S, Hussain M. Influence of Transgenic (Bt) Cotton on the Productivity of Various Cotton-Based Cropping Systems in Pakistan. Agriculture. 2023; 13(2):276. https://doi.org/10.3390/agriculture13020276
Chicago/Turabian StyleMarral, Muhammad Waseem Riaz, Fiaz Ahmad, Sami Ul-Allah, Atique-ur-Rehman, Shahid Farooq, and Mubshar Hussain. 2023. "Influence of Transgenic (Bt) Cotton on the Productivity of Various Cotton-Based Cropping Systems in Pakistan" Agriculture 13, no. 2: 276. https://doi.org/10.3390/agriculture13020276
APA StyleMarral, M. W. R., Ahmad, F., Ul-Allah, S., Atique-ur-Rehman, Farooq, S., & Hussain, M. (2023). Influence of Transgenic (Bt) Cotton on the Productivity of Various Cotton-Based Cropping Systems in Pakistan. Agriculture, 13(2), 276. https://doi.org/10.3390/agriculture13020276