The Impact of Genotype on Chemical Composition, Feeding Value and In Vitro Rumen Degradability of Fresh and Ensiled Forage of Native Maize (Zea mays L.) from Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Treatments
2.2. Forage Production and Silage
2.3. Chemical Composition and Feeding Value of the Fresh and Ensiled Forage
2.4. In Vitro Rumen Degradability of the Fresh and Ensiled Forage
2.5. Stability and Aerobic Deterioration of the Ensiled Forage
2.6. Statistical Analysis
3. Results
3.1. Chemical Composition and Feeding Value of the Fresh and Ensiled Forage
3.2. In Vitro Rumen Degradability of the Fresh and Ensiled Forage
3.3. Stability and Aerobic Deterioration of the Ensiled Forage
4. Discussion
4.1. Chemical Composition and Feeding Value of the Fresh and Ensiled Forage
4.2. In Vitro Rumen Degradability of the Fresh and Ensiled Forage
4.3. Stability and Aerobic Deterioration of the Ensiled Forage
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ocampo-Giraldo, V.; Camacho-Villa, C.; Costich, D.E.; Vidal, M.V.A.; Smale, M.; Jamora, N. Dynamic conservation of genetic resources: Rematriation of the maize landrace Jala. Food Secur. 2020, 12, 945–958. [Google Scholar] [CrossRef]
- Guzzon, F.; Arandia, R.L.W.; Caviedes, C.G.M.; Céspedes, P.M.; Chávez, C.A.; Muriel, F.J.; Medina, H.A.E.; Jara, C.T.V.; Molnar, T.L.; Narro, L.L.A.; et al. Conservation and use of Latin American maize diversity: Pillar of nutrition security and cultural heritage of humanity. Agronomy 2021, 11, 172. [Google Scholar] [CrossRef]
- McLean-Rodríguez, F.D.; Camacho-Villa, T.C.; Almekinders, C.J.M.; Pè, M.E.; Dell’Acqua, M.; Costich, D.E. The abandonment of maize landraces over the last 50 years in Morelos, Mexico: A tracing study using a multi-level perspective. Agric. Human Values 2019, 36, 651–668. [Google Scholar] [CrossRef]
- Janzen, G.M.; Aguilar-Rangel, M.R.; Cíntora-Martínez, C.; Blöcher-Juárez, K.A.; González-Segovia, E.; Studer, A.J.; Runcie, D.E.; Flint-Garcia, S.A.; Rellán-Álvarez, R.; Sawers, R.J.H.; et al. Demonstration of local adaptation in maize landraces by reciprocal transplantation. Evol. Appl. 2022, 15, 817–837. [Google Scholar] [CrossRef] [PubMed]
- Robles-Jimenez, L.E.; Rosas, D.M.; Osorio, A.J.; Chay-Canul, A.J.; Palacios, C.; Castelan, O.O.A.; González, R.M. Evaluation of mexican native and hybrid maize (Zea mays) silages for sustainable milk production. Trop. Subtrop. Agroecosyst. 2021, 24, 124. [Google Scholar] [CrossRef]
- Sánchez-Hernández, M.Á.; Morales-Terán, G.; Mendoza-Pedroza, S.I.; Hernández-Bautista, J.; Fraire-Cordero, S.; Rivas-Jacobo, M.A. Caracterización productiva de maíces nativos con aptitud forrajera en la cuenca baja del Papaloapan. Rev. Fitotec. Mex. 2021, 44, 755–764. [Google Scholar] [CrossRef]
- Horst, E.H.; López, S.; Neumann, M.; Giráldez, F.J.; Bumbieris Junior, V.H. Effects of Hybrid and Grain Maturity Stage on the Ruminal Degradation and the Nutritive Value of Maize Forage for Silage. Agriculture 2020, 10, 251. [Google Scholar] [CrossRef]
- Rivas-Jacobo, M.A.; Mendoza, P.S.I.; Sangerman-Jarquín, D.M.; Sánchez, H.M.Á.; Herrera, C.C.A.; Rojas, G.A.R. Evaluación forrajera de maíces de diversos orígenes de México en la región semiárida. REMEXCA 2020, 11, 93–104. [Google Scholar] [CrossRef]
- Joaquín, C.S.; Rocandio, R.M.; Álvarez, V.P.; Hernández, G.F.J.; Limas, M.A.G.; Garay, M.J.R. Rendimiento y valor nutritivo del forraje y ensilado de maíces nativos en condiciones subtropicales. REMEXCA 2022, 13, 873–881. [Google Scholar] [CrossRef]
- Bernardes, T.F.; Daniel, J.L.P.; Adesogan, A.T.; McAllister, T.A.; Drouin, P.; Nussio, L.G.; Cai, Y. Silage review: Unique challenges of silages made in hot and cold regions. J. Dairy Sci. 2018, 101, 4001–4019. [Google Scholar] [CrossRef]
- Jennings, J.S.; Lockard, C.L.; Tedeschi, L.O.; Lawrence, T.E. Effects of corn stalk inclusion rate on rumination and ruminal pH in finishing beef steers. AAS 2020, 36, 377–388. [Google Scholar] [CrossRef]
- Wilkinson, J.M.; Muck, R.E. Ensiling in 2050: Some challenges and opportunities. Grass Forage Sci. 2019, 74, 178–187. [Google Scholar] [CrossRef]
- Frydendal-Nielsen, S.; Hjorth, M.; Baby, S.; Felby, C.; Jørgensen, U.; Gislum, R. The effect of harvest time, dry matter content and mechanical pretreatments on anaerobic digestion and enzymatic hydrolysis of miscanthus. Bioresour. Technol. 2016, 218, 1008–1015. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, Y.; Wang, S.; Zhao, L.; Zhang, B.; Jia, W.; Zhai, Z.; Zhao, L.; Li, Y. Effects of antibacterial peptide-producing Bacillus subtilis, gallic acid, and cellulase on fermentation quality and bacterial community of whole-plant corn silage. Front. Microbiol. 2022, 13, 1028001. [Google Scholar] [CrossRef]
- Ferraretto, L.F.; Fonseca, A.C.; Sniffen, C.J.; Formigoni, A.; Shaver, R.D. Effect of corn silage hybrids differing in starch and neutral detergent fiber digestibility on lactation performance and total-tract nutrient digestibility by dairy cows. J. Dairy Sci. 2015, 98, 395–405. [Google Scholar] [CrossRef]
- UN (United Nations). The Sustainable Development Agenda. Available online: https://www.un.org/sustainabledevelopment/development-agenda/ (accessed on 15 September 2023).
- Vargas, T.V.; Hernández, R.M.E.; Gutiérrez, L.J.; Plácido, D.C.J.; Jiménez, C.A. Climatic classification of the state of Tamaulipas, México. CienciaUAT 2007, 2, 15–19. [Google Scholar]
- Cherney, J.H.; Cherney, D.J.R. Assessing silage quality. In Silage Science and Technology; Buxton, D.R., Muck, R.E., Harrison, J.H., Eds.; American Society of Agronomy Inc.: Madison, WI, USA; Crop Science Society of America Inc.: Madison, WI, USA; Soil Science Society of America Inc.: Madison, WI, USA, 2003; pp. 141–198. [Google Scholar] [CrossRef]
- AOAC. Association of Official Analytical Chemists, 16th ed.; Association of Official Analytical Chemists International: Arlington, VA, USA, 1997. [Google Scholar]
- Van Soest, P.V.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, D.; Bandeira, D.; Zanine, A.; Parente, H.; Parente, M.; Rodrigues, R.; Santos, E.M.; Lima, A.G.; Ribeiro, M.; Pinho, R.; et al. Effects of Adding Agro-Industrial By-Products of Babassu to Guinea Grass Silage. Agriculture 2023, 13, 1697. [Google Scholar] [CrossRef]
- Sniffen, C.J.; O’connor, J.D.; Van Soest, P.J.; Fox, D.G.; Russell, J.B. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. J. Anim. Sci. 1992, 70, 3562–3577. [Google Scholar] [CrossRef] [PubMed]
- Horrocks, R.D.; Valentine, J.F. Harvested Forages; Academic Press: San Diego, CA, USA, 1999. [Google Scholar] [CrossRef]
- Ravhuhali, K.E.; Msiza, N.H.; Mudau, H.S. Seasonal dynamics on nutritive value, chemical estimates and in vitro dry matter degradability of some woody species found in rangelands of South Africa. Agrofor. Syst. 2022, 96, 23–33. [Google Scholar] [CrossRef]
- Goering, M.K.; Van Soest, P.J. Forage Fibre Analysis (Apparatus, Reagents, Procedures and Some Applications); Agricultural Research Service USDA: Washington, DC, USA, 1970; pp. 1–24. [Google Scholar]
- Vega-Zúñiga, M.A.; Vázquez-Armijo, J.F.; Martínez-González, J.C.; Quintanilla-Medina, J.J.; Lucero-Magaña, F.A.; López-Aguirre, D. Cinnamon extract on the characteristics of ruminal fermentation in in-vitro systems. ERA 2021, 8, e2763. [Google Scholar] [CrossRef]
- Del Valle, T.A.; Zenatti, T.F.; Antonio, G.; Campana, M.; Gandra, J.R.; Zilio, E.M.C.; de Mattos, L.F.A.; de Morais, J.G.P. Effect of chitosan on the preservation quality of sugarcane silage. Grass Forage Sci. 2018, 73, 630–638. [Google Scholar] [CrossRef]
- Ranjit, N.K.; Kung Jr, L. The effect of Lactobacillus buchneri, Lactobacillus plantarum, or a chemical preservative on the fermentation and aerobic stability of corn silage. J. Dairy Sci. 2000, 83, 526–535. [Google Scholar] [CrossRef]
- McEniry, J.; O’kiely, P.; Clipson, N.J.W.; Forristal, P.D.; Doyle, E.M. The relative impacts of wilting, chopping, compaction and air infiltration on the conservation characteristics of ensiled grass. Grass Forage Sci. 2007, 62, 470–484. [Google Scholar] [CrossRef]
- SAS (Statistical Analysis System). Institute, Cary SAS; User’s Guide: Statistics, Version 9.0; SAS Institute: Cary, NC, USA, 2002. [Google Scholar]
- Da Silva, É.B.; Liu, X.; Mellinger, C.; Gressley, T.F.; Stypinski, J.D.; Moyer, N.A.; Kung, L., Jr. Effect of dry matter content on the microbial community and on the effectiveness of a microbial inoculant to improve the aerobic stability of corn silage. J. Dairy Sci. 2022, 105, 5024–5043. [Google Scholar] [CrossRef] [PubMed]
- Ávila, C.L.S.; Carvalho, B.F. Silage fermentation-updates focusing on the performance of micro-organisms. J. Appl. Microbiol. 2020, 128, 966–984. [Google Scholar] [CrossRef] [PubMed]
- Horst, E.H.; Bumbieris Junior, V.H.; Neumann, M.; López, S. Effects of the harvest stage of maize hybrids on the chemical composition of plant fractions: An analysis of the different types of silage. Agriculture 2021, 11, 786. [Google Scholar] [CrossRef]
- Guyader, J.; Baron, V.S.; Beauchemin, K.A. Corn forage yield and quality for silage in short growing season areas of the Canadian prairies. Agronomy 2018, 8, 164. [Google Scholar] [CrossRef]
- Bağcık, C.; Koç, F.; Erten, K.; Esen, S.; Palangi, V.; Lackner, M. Lentilactobacillus buchneri preactivation affects the mitigation of methane emission in corn silage treated with or without urea. Fermentation 2022, 8, 747. [Google Scholar] [CrossRef]
- Desta, S.T.; Yuan, X.; Li, J.; Shao, T. Ensiling characteristics, structural and nonstructural carbohydrate composition and enzymatic digestibility of Napier grass ensiled with additives. Bioresour. Technol. 2016, 221, 447–454. [Google Scholar] [CrossRef]
- Contreras-Govea, F.; Marsalis, M.; Angadi, S.; Smith, G.; Lauriault, L.M.; VanLeeuwen, D. Fermentability and nutritive value of corn and forage sorghum silage when in mixture with lablab bean. Crop Sci. 2011, 51, 1307–1313. [Google Scholar] [CrossRef]
- Esen, S.; Cabi, E.; Koç, F. Effect of freeze-dried kefir culture inoculation on nutritional quality, in vitro digestibility, mineral concentrations, and fatty acid composition of white clover silages. Biomass Convers. Biorefin. 2022, 1–12. [Google Scholar] [CrossRef]
- Chen, L.; Yuan, X.J.; Li, J.F.; Dong, Z.H.; Wang, S.R.; Guo, G.; Shao, T. Effects of applying lactic acid bacteria and propionic acid on fermentation quality, aerobic stability and in vitro gas production of forage-based total mixed ration silage in Tibet. Anim. Prod. Sci. 2019, 59, 376–383. [Google Scholar] [CrossRef]
- Kaewpila, C.; Khota, W.; Gunun, P.; Kesorn, P.; Kimprasit, T.; Sarnklong, C.; Cherdthong, A. Characterization of green manure sunn hemp crop silage prepared with additives: Aerobic instability, nitrogen value, and in vitro rumen methane production. Fermentation 2022, 8, 104. [Google Scholar] [CrossRef]
- Khota, W.; Pholsen, S.; Higgs, D.; Cai, Y. Natural lactic acid bacteria population of tropical grasses and their fermentation factor analysis of silage prepared with cellulase and inoculant. J. Dairy Sci. 2016, 99, 9768–9781. [Google Scholar] [CrossRef] [PubMed]
- Rivas, J.M.A.; Carballo, C.A.; Quero, C.A.; Hernández, G.A.; Vaquera, H.H.; Rivas, Z.E.C.; Rivas, Z.M.A.; Rivas, Z.E.J. Productive behaviour of twelve threelineal forage corn hybrids in a dry tropical region. Trop. Subtrop. Agroecosyst. 2018, 21, 579–586. [Google Scholar] [CrossRef]
- Dong, Z.; Che, L.; Li, J.; Yuan, X.; Shao, T. Characterization of nitrogen transformation dynamics in alfalfa and red clover and their mixture silages. Grassl. Sci. 2019, 65, 109–115. [Google Scholar] [CrossRef]
- Gusmão, J.O.; Lima, L.M.; Ferraretto, L.F.; Casagrande, D.R.; Bernardes, T.F. Effects of hybrid and maturity on the conservation and nutritive value of snaplage. Anim. Feed Sci. Technol. 2021, 274, 114899. [Google Scholar] [CrossRef]
- Khan, N.A.; Cone, J.W.; Pellikaan, W.F.; Khan, M.A.; Struik, P.C.; Hendriks, W.H. Changes in fatty acid content and composition in silage maize during grain filling. J. Sci. Food Agric. 2011, 91, 1041–1049. [Google Scholar] [CrossRef] [PubMed]
- Bolton, P.; Harwood, J.L. Lipid metabolism in green leaves of developing monocotyledons. Planta 1978, 139, 267–272. [Google Scholar] [CrossRef]
- Jančík, F.; Kubelková, P.; Loučka, R.; Jambor, V.; Kumprechtová, D.; Homolka, P.; Koukolová, V.; Tyrolová, Y.; Viborná, A. Shredlage processing affects the digestibility of maize silage. Agronomy 2022, 12, 1164. [Google Scholar] [CrossRef]
- Zhao, J.; Tao, X.; Wang, S.; Li, J.; Shao, T. Effect of sorbic acid and dual-purpose inoculants on the fermentation quality and aerobic stability of high dry matter rice straw silage. J. Appl. Microbiol. 2021, 130, 1456–1465. [Google Scholar] [CrossRef] [PubMed]
- NRC (National Research Council). Nutrient Requirements of Dairy Cattle, 7th ed.; National Academy Press: Washington, DC, USA, 2001. [Google Scholar]
- Lithourgidis, A.S.; Vasilakoglou, I.B.; Dhima, K.V.; Dordas, C.A.; Yiakoulaki, M.D. 2006. Forage yield and quality of common vetch mixtures with oat and triticale in two seeding ratios. Field Crops Res. 2006, 99, 106–113. [Google Scholar] [CrossRef]
- Nazar, M.; Xu, Q.; Ullah, M.W.; Khan, N.A.; Iqbal, B.; Zhu, D. Integrated laccase delignification with improved lignocellulose recalcitrance for enhancing enzymatic saccharification of ensiled rice straw. Ind. Crops Prod. 2023, 202, 116987. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, L.; Li, X.; Bai, S.; Xue, Y.; Li, Z.; Shang-Wen, T.; Wang, Y.; Wang, Y.; Hu, Z.; et al. Distinctively altered lignin biosynthesis by site-modification of OsCAD2 for enhanced biomass saccharification in rice. GCB-Bioenergy 2021, 13, 305–319. [Google Scholar] [CrossRef]
- Dos Santos, A.P.M.; Santos, E.M.; Araújo, G.G.L.; De Oliveira, J.S.; Zanine, A.M.; Pinho, R.M.A.; Cruz, G.F.L.; Ferreira, D.J.; Perazzo, A.F.; Pereira, D.M.; et al. Effect of inoculation with preactivated Lactobacillus buchneri and urea on fermentative profile, aerobic stability and nutritive value in corn silage. Agriculture 2020, 10, 335. [Google Scholar] [CrossRef]
- Dai, T.; Dong, D.; Wang, S.; Zong, C.; Yin, X.; Xu, G.; Jia, Y.; Shao, T. Assessment of organic acid salts on fermentation quality, aerobic stability, and in vitro rumen digestibility of total mixed ration silage. Trop. Anim. Health Prod. 2022, 54, 261. [Google Scholar] [CrossRef]
- Tabacco, E.; Righi, F.; Quarantelli, A.; Borreani, G. Dry matter and nutritional losses during aerobic deterioration of corn and sorghum silages as influenced by different lactic acid bacteria inocula. J. Dairy Sci. 2011, 94, 1409–1419. [Google Scholar] [CrossRef]
- Danner, H.; Holzer, M.; Mayrhuber, E.; Braun, R. Acetic acid increases stability of silage under aerobic conditions. Appl. Environ. Microbiol. 2003, 69, 562–567. [Google Scholar] [CrossRef]
- Shan, G.; Buescher, W.; Maack, C.; Lipski, A.; Acir, I.H.; Trimborn, M.; Kuellmer, F.; Wang, Y.; Grantz, D.A.; Sun, Y. Dual sensor measurement shows that temperature outperforms pH as an early sign of aerobic deterioration in maize silage. Sci. Rep. 2021, 11, 8686. [Google Scholar] [CrossRef]
- Borreani, G.; Tabacco, E.; Schmidt, R.J.; Holmes, B.J.; Muck, R.E. Silage review: Factors affecting dry matter and quality losses in silages. J. Dairy Sci. 2018, 101, 3952–3979. [Google Scholar] [CrossRef] [PubMed]
Items 1 | Genotypes of Maize | States of the Forage | SEM 2 | p-Value 3 | |||
---|---|---|---|---|---|---|---|
Fresh | Ensiled | G | S | G × S | |||
Dry matter (g kg−1 FM) | Amarillo | 319.24 BCa | 305.37 Ba | 6.011 | <0.0001 | 0.0001 | 0.3171 |
Olotillo | 307.57 Ca | 290.72 Cb | |||||
Tampiqueño | 321.14 Ba | 284.07 Db | |||||
Tuxpeño | 307.85 Ca | 294.45 Cb | |||||
Hybrid | 359.36 Aa | 345.79 Ab | |||||
Organic matter (g kg−1 DM) | Amarillo | 920.60 ABb | 927.60 Aa | 4.166 | 0.0402 | 0.0656 | 0.2442 |
Olotillo | 927.60 Aa | 929.90 Aa | |||||
Tampiqueño | 921.30 ABa | 936.30 Aa | |||||
Tuxpeño | 916.30 Ba | 920.80 Aa | |||||
Hybrid | 927.30 ABa | 932.70 Aa | |||||
Crude protein (g kg−1 DM) | Amarillo | 108.00 Aa | 83.10 Ab | 2.199 | 0.8272 | <0.0001 | 0.4153 |
Olotillo | 102.90 Ba | 83.50 Ab | |||||
Tampiqueño | 104.90 ABa | 85.60 Ab | |||||
Tuxpeño | 102.60 Ba | 85.80 Ab | |||||
Hybrid | 105.40 ABa | 82.90 Ab | |||||
Ether extract (g kg−1 DM) | Amarillo | 23.90 ABb | 36.16 ABa | 0.803 | <0.0001 | <0.0001 | 0.8443 |
Olotillo | 26.40 Ab | 38.08 Aa | |||||
Tampiqueño | 21.90 Bb | 34.12 Ba | |||||
Tuxpeño | 24.50 ABb | 36.47 ABa | |||||
Hybrid | 25.90 Ab | 39.28 Aa | |||||
Neutral detergent fiber (g kg−1 DM) | Amarillo | 597.10 BCa | 475.60 Db | 21.426 | 0.0004 | <0.0001 | 0.2022 |
Olotillo | 662.30 Aa | 598.20 Ab | |||||
Tampiqueño | 616.60 Ba | 594.60 Ab | |||||
Tuxpeño | 588.60 Ca | 529.40 Bb | |||||
Hybrid | 526.30 Da | 503.50 Cb | |||||
Acid detergent fiber (g kg−1 DM) | Amarillo | 316.80 Ca | 269.00 Db | 14.280 | <0.0001 | 0.0055 | 0.4668 |
Olotillo | 363.70 Aa | 360.80 Aa | |||||
Tampiqueño | 350.50 Ba | 323.10 Bb | |||||
Tuxpeño | 305.20 CDa | 288.80 Cb | |||||
Hybrid | 302.70 Da | 262.30 Db | |||||
Acid detergent lignin (g kg−1 DM) | Amarillo | 38.40 Bb | 41.20 BCa | 0.683 | <0.0001 | <0.0001 | 0.0063 |
Olotillo | 44.10 Ab | 48.90 Aa | |||||
Tampiqueño | 42.50 Ab | 48.60 Aa | |||||
Tuxpeño | 37.00 Bb | 42.10 Ba | |||||
Hybrid | 36.70 Bb | 38.90 Ca | |||||
Non-fibrous carbohydrates (g kg−1 DM) | Amarillo | 191.60 BCb | 332.90 Aa | 22.891 | 0.0031 | <0.0001 | 0.2297 |
Olotillo | 136.00 Db | 210.20 Ca | |||||
Tampiqueño | 177.80 Ca | 221.90 Cb | |||||
Tuxpeño | 205.00 Bb | 269.50 Ba | |||||
Hybrid | 269.40 Ah | 345.50 Aa | |||||
Water-soluble carbohydrates (g kg−1 DM) | Amarillo | 50.70 Ba | 41.44 Db | 0.703 | <0.0001 | 0.0258 | <0.0001 |
Olotillo | 32.32 Db | 60.30 Ca | |||||
Tampiqueño | 51.22 Bb | 67.26 Ba | |||||
Tuxpeño | 73.95 Aa | 75.96 Aa | |||||
Hybrid | 39.68 Ca | 33.97 Eb | |||||
Starch (g kg−1 DM) | Amarillo | 132.01 Bb | 171.46 Ba | 0.839 | <0.0001 | <0.0001 | <0.0001 |
Olotillo | 36.88 Db | 90.30 Da | |||||
Tampiqueño | 61.05 Cb | 125.39 Ca | |||||
Tuxpeño | 37.22 Db | 53.04 Ea | |||||
Hybrid | 215.36 Ab | 271.53 Aa |
Items 1 | Genotypes of Maize | States of the Forage | SEM 2 | p-Value 3 | |||
---|---|---|---|---|---|---|---|
Fresh | Ensiled | G | S | G × S | |||
pH | Amarillo | 6.00 Ba | 3.60 Bb | 0.032 | 0.0048 | <0.0001 | 0.0973 |
Olotillo | 6.19 Aa | 3.80 Ab | |||||
Tampiqueño | 6.12 ABa | 3.76 Ab | |||||
Tuxpeño | 6.21 Aa | 3.80 Ab | |||||
Hybrid | 6.02 Ba | 3.62 Bb | |||||
Ammonia nitrogen (g kg−1 TN) | Amarillo | 19.71 Cb | 27.06 Ca | 0.517 | <0.0001 | <0.0001 | <0.0001 |
Olotillo | 21.01 Cb | 46.16 Aa | |||||
Tampiqueño | 27.56 Ab | 44.05 Aa | |||||
Tuxpeño | 25.00 Bb | 41.19 Ba | |||||
Hybrid | 16.26 Db | 21.11 Da | |||||
Lactic acid (g kg−1 DM) | Amarillo | 2.65 Db | 37.39 Ca | 0.424 | <0.0001 | <0.0001 | <0.0001 |
Olotillo | 9.81 Ab | 49.95 Aa | |||||
Tampiqueño | 6.34 Bb | 44.73 Ba | |||||
Tuxpeño | 2.52 Db | 20.10 Da | |||||
Hybrid | 3.51 Cb | 22.26 Da | |||||
Acetic acid (g kg−1 DM) | Amarillo | 2.56 Ab | 27.17 Aa | 0.235 | <0.0001 | <0.0001 | <0.0001 |
Olotillo | 2.54 Ab | 26.48 ABa | |||||
Tampiqueño | 2.55 Ab | 25.34 Ba | |||||
Tuxpeño | 2.49 Ab | 12.52 Ca | |||||
Hybrid | 2.62 Ab | 9.26 Da | |||||
Butyric acid (g kg−1 DM) | Amarillo | 0.70 Aa | 0.20 Bb | 0.034 | <0.0001 | <0.0001 | <0.0001 |
Olotillo | 0.20 Ca | 0.20 Ba | |||||
Tampiqueño | 0.40 Ba | 0.10 Bb | |||||
Tuxpeño | 0.70 Ab | 1.11 Aa | |||||
Hybrid | 0.61 Aa | 0.10 Bb |
Items | Genotypes of Maize | States of the Forage | SEM 1 | p-Value 2 | |||
---|---|---|---|---|---|---|---|
Fresh | Ensiled | G | S | G × S | |||
Dry matter intake (g kg−1 liveweight) | Amarillo | 20.10 BCb | 25.25 Aa | 0.809 | 0.0004 | <0.0001 | 0.0876 |
Olotillo | 20.04 Db | 21.98 Ca | |||||
Tampiqueño | 18.13 Cb | 20.11 Da | |||||
Tuxpeño | 19.56 Bb | 20.27 Da | |||||
Hybrid | 20.39 Ab | 23.53 Ba | |||||
Total digestible nutrients (g kg−1 DM) | Amarillo | 604.44 Bb | 674.86 Aa | 18.436 | <0.0001 | 0.0055 | 0.4667 |
Olotillo | 619.47 Ab | 640.65 Aa | |||||
Tampiqueño | 543.90 Cb | 547.67 Ca | |||||
Tuxpeño | 560.97 ABb | 596.34 Ba | |||||
Hybrid | 622.68 Da | 666.23 Da | |||||
Relative forage value (%) | Amarillo | 94.47 Bb | 130.48 Aa | 3.569 | <0.0001 | <0.0001 | 0.0132 |
Olotillo | 88.80 Db | 113.99 Ea | |||||
Tampiqueño | 71.58 Cb | 86.12 Da | |||||
Tuxpeño | 85.15 Bb | 96.08 Ca | |||||
Hybrid | 91.99 Ab | 112.53 Ba | |||||
Digestible energy (Mcal kg−1 DM) | Amarillo | 2.86 Ab | 3.12 Aa | 0.015 | <0.0001 | <0.0001 | 0.0249 |
Olotillo | 2.72 Db | 2.89 Ca | |||||
Tampiqueño | 2.45 Cb | 2.63 Ba | |||||
Tuxpeño | 2.67 Bb | 2.89 Ba | |||||
Hybrid | 2.76 BCb | 2.92 Ba | |||||
Metabolizable energy (Mcal kg−1 DM) | Amarillo | 2.35 Ab | 2.57 Aa | 0.013 | <0.0001 | <0.0001 | 0.0267 |
Olotillo | 2.23 Db | 2.38 Ca | |||||
Tampiqueño | 2.01 Cb | 2.16 Ba | |||||
Tuxpeño | 2.20 Bb | 2.37 Ba | |||||
Hybrid | 2.27 Cb | 2.39 Ba |
Items 1 | Genotype of Maize | SEM 2 | p-Value | ||||
---|---|---|---|---|---|---|---|
Amarillo | Olotillo | Tampiqueño | Tuxpeño | Hybrid | |||
Aerobic stability (h) | 34.0 B | 28.0 C | 30.0 C | 28.0 C | 40.0 A | 2.70 | 0.0346 |
Max. temperature in 240 h (°C) | 37.7 B | 39.5 B | 38.8 B | 44.6 A | 35.6 C | 1.14 | 0.0008 |
TRMT (h) | 48.0 A | 40.0 A | 48.0 A | 40.0 A | 58.0 A | 4.70 | 0.0873 |
ADTI at 240 h (°C) | 25.3 CD | 28.5 B | 26.1 BC | 32.1 A | 23.8 D | 1.73 | 0.0333 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alvarado-Ramírez, E.R.; Ballesteros-Rodea, G.; Salem, A.Z.M.; Reyes-Hernández, J.; Herrera-Corredor, C.A.; Hernández-Meléndez, J.; Limas-Martínez, A.G.; López-Aguirre, D.; Rivas-Jacobo, M.A. The Impact of Genotype on Chemical Composition, Feeding Value and In Vitro Rumen Degradability of Fresh and Ensiled Forage of Native Maize (Zea mays L.) from Mexico. Agriculture 2023, 13, 2161. https://doi.org/10.3390/agriculture13112161
Alvarado-Ramírez ER, Ballesteros-Rodea G, Salem AZM, Reyes-Hernández J, Herrera-Corredor CA, Hernández-Meléndez J, Limas-Martínez AG, López-Aguirre D, Rivas-Jacobo MA. The Impact of Genotype on Chemical Composition, Feeding Value and In Vitro Rumen Degradability of Fresh and Ensiled Forage of Native Maize (Zea mays L.) from Mexico. Agriculture. 2023; 13(11):2161. https://doi.org/10.3390/agriculture13112161
Chicago/Turabian StyleAlvarado-Ramírez, Edwin Rafael, Gilberto Ballesteros-Rodea, Abdelfattah Zeidan Mohamed Salem, José Reyes-Hernández, Camelia Alejandra Herrera-Corredor, Javier Hernández-Meléndez, Andrés Gilberto Limas-Martínez, Daniel López-Aguirre, and Marco Antonio Rivas-Jacobo. 2023. "The Impact of Genotype on Chemical Composition, Feeding Value and In Vitro Rumen Degradability of Fresh and Ensiled Forage of Native Maize (Zea mays L.) from Mexico" Agriculture 13, no. 11: 2161. https://doi.org/10.3390/agriculture13112161