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Abstract: The objective of this study was to evaluate the impact of the genotype on the chemical
composition, feeding value and in vitro rumen degradability of fresh and ensiled forage of four
native maize varieties (Amarillo, Olotillo, Tampiqueño and Tuxpeño) from Tamaulipas, Mexico, and
a commercial hybrid, as well as the stability and aerobic deterioration of the silage. In all genotypes,
fresh forage consisted of whole plants of maize that were harvested when the grain reached a milky-
mass state, and silage was fresh forage chopped and ensiled in plastic bags, where it fermented for
120 days. The hybrid presented the highest content (p < 0.05) of dry matter (DM), organic matter
(OM), ether extract, non-fibrous carbohydrates (NFCs) and starch, as well as the lowest content
(p < 0.05) of fibers (NDF and ADF), acid detergent lignin and water-soluble carbohydrates (WSCs).
Furthermore, the hybrid and Amarillo genotypes obtained the lowest pH and ammoniacal nitrogen
content (p < 0.05), intermediate values (p < 0.05) of lactic and butyric acid, and the lowest and highest
acetic acid content (p < 0.05), respectively. Although OM did not differ (p > 0.05) between states of the
forage, the fresh forage presented a higher (p < 0.05) content of DM, crude protein, NDF, ADF, WSCs,
pH and butyric acid in all genotypes, while the rest of the parameters were higher (p < 0.05) in the
silage. However, Amarillo obtained the highest feeding value (p < 0.05) in terms of DM intake, relative
forage value, digestible energy, metabolizable energy and rumen degradability (DM, NDF and ADF),
and between states of the forage, ensiled obtained the highest feeding value (p < 0.05). During the
aerobic exposure, the Amarillo and hybrid silage showed greater (p < 0.05) stability (>38 h), and less
(p < 0.05) deterioration, pH increase and loss of DM and OM, while Tuxpeño obtained less stability
and greater deterioration. In conclusion, the genotype did influence the chemical composition of
fresh and ensiled forage, which affected the feeding value and in vitro rumen degradability, and the
Amarillo and hybrid genotypes presented the best values in the evaluated parameters.

Keywords: aerobic stability; native maize; nutritional quality; rumen degradability; silage

1. Introduction

Maize (Zea mays L.) is the second most cultivated cereal and the most important in
terms of grain production worldwide [1], and Mexico is considered to be one of the centers
of origin, domestication, and diversification of this crop, since it has 29% of the 220 native
maize breeds recognized in Latin America [2]. These breeds are constituted of varieties
known as local or criollas, and although they lack formal genetic improvement, they have
adapted to the instability of the agroecological conditions of their environment through
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evolutionary processes [3,4], which is why they have even been used to generate improved
varieties. The above evidence shows that native varieties play an important role for the
resilience of the agricultural sector facing climate change, and that they constitute a valuable
plant genetic resource not only for grain production, but also for forage production [5].
In this sense, it has been shown that there are native varieties of maize with potential for
forage production, and that they can respond better than improved varieties in terms of
dry-matter yield and nutritional value [6].

As a source of forage for livestock, maize has stood out for its high energy value,
potential for forage production and acceptance by livestock, but these factors are influenced
by the genotype of the variety, whether native or improved [7,8]. This is because the
genotype influences plant morphological traits and yield components, which in turn affects
the chemical composition and digestibility of fresh maize forage [6,9]. In addition to the
above, in some varieties digestibility is compromised by fibrosity, especially in varieties
from hot-climate regions, since fibrous carbohydrates are mainly composed of cellulose
and hemicellulose, and in the presence of lignin they can form recalcitrant lignocellulosic
complexes [10]. In turn, these complexes cause difficulties for rumen microorganisms and
enzymes to break down forage fiber and provide energy to animals [11], which decreases
degradation efficiency and increases greenhouse gas emissions. Silage, which is actually
an anaerobic fermentation, has traditionally been used for the conservation of forage
with high moisture content [12], but it can also be useful as an alternative to improve the
digestion of forage fibers, since during the transformation of water-soluble carbohydrates
to organic acids there is a separation of the lignocellulosic structures [13], which improves
the adhesion and colonization of the forage by ruminal microorganisms and, consequently,
increases digestibility. However, deficient forage fermentation can cause high nutrient
losses, low aerobic stability, and a reduction in silage quality [14], which negatively impacts
dry matter intake, carbohydrate digestion and animal productivity [15].

Currently, there are numerous studies that have evaluated the nutritional value of
ensiled maize forage, but most of them used improved varieties, which is why the in-
formation available for the use of native varieties in animal feed is limited, especially
with regard to nutritional quality. Under these circumstances, it is important to evaluate
local maize varieties so that livestock producers can have information that allows them
to implement actions to improve livestock productivity and lower production costs, and
thus obtain greater income. In addition, because these varieties are used mainly by small
producers, these types of studies contribute to goal 2.3 of Sustainable Development Goal
2 of the United Nations 2030 Agenda, which establishes the aim of doubling agricultural
productivity and the income of small-scale food producers, including those dedicated to
livestock [16]. For this reason, the objective of this study was to evaluate the impact of the
genotype on the chemical composition, feeding value and in vitro rumen degradability
of fresh and ensiled forage of four genotypes of native maize varieties from Tamaulipas,
Mexico, and a commercial hybrid, as well as the stability and aerobic deterioration of
the silage.

2. Materials and Methods
2.1. Experimental Treatments

Four genotypes of native maize varieties from Tamaulipas, Mexico, locally known as
Amarillo, Olotillo, Tampiqueño and Tuxpeño, and a commercial hybrid used as a control
were evaluated. These genotypes are grown in regions with a warm climate, are used
by livestock farmers who cannot acquire improved varieties and were chosen for their
morphological characteristics (abundance of leaves, tall size, proportion of cob, etc.) and/or
yield of forage. In addition to the comparison between genotypes, fresh forage was also
compared with ensiled forage, and hereinafter referred to as “state of the forage”.
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2.2. Forage Production and Silage

The forage was produced under rainfed conditions during the autumn/winter 2021
agricultural cycle, in Aldama, Tamaulipas, Mexico (22◦59’09” N and 98◦10’25” W, at
190 masl), and the climate of the site, according to the Köppen classification, is of the Aw0
type, which corresponds to the driest of warm subhumid types [17]. The sowing was carried
out manually in quadruplicate in plots of 240 m2, and from each one 10 complete plants
(leaf, stem, and cob) were harvested from the five central rows when the grain reached a
milky-mass state, which was when the plants were approximately 90 ± 5 days old. These
plants were chopped by plot in a hammer and knife mill (model THCF2000UK7, with
Ukura® engine, Valles, SLP, Mexico) to reduce the particle size to 2 or 3 cm, and a sample
(300 g) was obtained, which was called “fresh forage”. Likewise, 5 kg of chopped forage
from each plot was weighed and placed in black polyethylene bags (30 × 50 cm, diameter,
and height; caliber 500) that were vacuum sealed, and after 120 days of fermentation,
they were opened and a sample (300 g) was obtained from each one, which was called
“ensiled forage”.

2.3. Chemical Composition and Feeding Value of the Fresh and Ensiled Forage

At the time of taking the fresh and ensiled forage samples, the pH was measured
following the Cherney and Cherney [18] methodology and using a potentiometer with
a glass electrode (pH wireless electrode HALO® model HI11102, Hanna® Instruments,
Woonsocket, RI, USA). Before analysis, the collected samples were dehydrated at 60 ◦C
for 72 h and ground in a hammer mill (Thomas Wiley® Laboratory Mill model 4, Thomas
Scientific™, Swedesboro, NJ, USA) with a 1 mm sieve. All analyses were performed in
quadruplicate, and the content (g kg−1 DM) of dry matter (DM; method ID 934.01), ash
(method ID 942.05), crude protein (CP; Kjeldahl method ID 920.87) and ether extract (EE;
method ID 920.39) was determined according to the official methods of the Association of
Official Analytical Chemists [19]. The neutral detergent (NDF) and acid detergent (ADF)
fibers were analyzed in the ANKOM200 Fiber Analyzer Unit (ANKOM Technology Corp.,
Macedon, NY, USA) [20], while acid detergent lignin (method ID 973.18) agreed with the
AOAC [19]. Sodium sulfite and thermostable α-amylase were used in the NDF analysis, and
the NDF and ADF values were expressed without residual ash. The content (g kg−1 DM)
of organic matter (OM) and non-fibrous carbohydrates (NFCs) was calculated according to
the equations reported by Ferreira et al. [21] and Sniffen et al. [22]:

OM = 1000 − ash (1)

NFC = 1000 − (CP + NDF + EE + ash) (2)

The content (g kg−1 DM) of starch, water-soluble carbohydrates, ammoniacal nitrogen,
and organic acids (lactic, acetic and butyric acids) was estimated by near-infrared reflectance
spectroscopy (NIRS). Feeding value was evaluated based on dry matter intake (DMI; g kg−1

liveweight), total digestible nutrients (TDNs; g kg−1 DM), relative forage value (RFV; %),
and digestible (DE; Mcal kg−1 DM) and metabolizable energy (ME; Mcal kg−1 DM). These
variables were calculated on a dry basis with the equations reported by Horrocks and
Valentine [23], and Ravhuhali et al. [24] as follows:

DMI = (120/NDF) × 10 (3)

TDN = [(−1.291 × ADF) + 101.35] × 10 (4)

RFV = DMD × DMI × 0.775 (5)

DE = 0.27 + 0.0428 (DMD) (6)
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ME = 0.821 × DE (7)

In the cases of RVF and DE, the dry matter degradability (DMD) value obtained at 48 h
in the in vitro rumen degradability test described below was used, and when calculating,
the DMD and DMI were used in percentages.

2.4. In Vitro Rumen Degradability of the Fresh and Ensiled Forage

The degradability test was performed in the ANKOM DaysiII incubator (ANKOM
Technology Corp., Macedon, NY, USA), which is equipped with four jars and simulates
the temperature and ruminal movements of the animals. The nutritive medium used was
prepared following the Goering and Van Soest [25] methodology, and the ruminal fluid
was obtained from the rumen content of four sheep (30 ± 2.5 kg liveweight) slaughtered in
a local slaughterhouse regulated by the Official Mexican Norm NOM-033-SAG/ZOO-2014,
which establishes the methods of killing domestic and wild animals. Before slaughter,
these animals were fed with commercial concentrate (Purina®, Victoria, Tam., Mexico) and
were maintained with a constant supply of fresh water. The rumen content obtained was
transferred to the laboratory in airtight thermoses, where it was filtered with four layers of
gauze to extract the rumen liquid and kept at 39 ◦C until use.

Before incubation, 500 mg of dehydrated sample of fresh and ensiled forage was
placed in ANKOM bags with 25 µm porosity (Filter bags F57, ANKOM Technology Corp.,
Macedon, NY, USA), and then heat sealed. In each jar of the incubator, 1600 mL of nutrient
medium and 400 mL of rumen liquid were added to obtain a 4:1 (v/v) ratio, and then the
ANKOM bags with the samples were placed as described by Vega-Zúñiga et al. [26]. The
incubation was carried out at a temperature of 39 ◦C, and at 6, 12, 24 and 48 h the bags of
each treatment with their repetitions were removed, rinsed with plenty of tap water and
dehydrated at 60 ◦C for 72 h. The percentage of in vitro rumen degradability of DM, NDF
and ADF was calculated as follows:

DMD = [(DMi − DMr)/DMi] × 100 (8)

where DMD is dry matter degradability, DMi is the initial dry matter and DMr is the
residual dry matter at time t (6, 12, 24 or 48 h).

NDFD = [(NDFi − NDFr)/NDFi] × 100 (9)

where NDFD is neutral detergent fiber degradability, NDFi is the initial neutral detergent
fiber, and NDFr is the residual neutral detergent fiber at time t (6, 12, 24, or 48 h).

ADFD = [(ADFi − ADFr)/ADFi] × 100 (10)

where ADFD is acid detergent fiber degradability, ADFi is the initial acid detergent fiber,
and ADFr is the residual acid detergent fiber at time t (6, 12, 24, or 48 h). The determinations
of DM, NDF and ADF in the residues of the samples were carried out following the
aforementioned methodologies.

2.5. Stability and Aerobic Deterioration of the Ensiled Forage

This evaluation was carried out following the methodology of Del Valle et al. [27],
which consists of placing 3 kg of ensiled forage in an expanded polystyrene container
(28 × 25 cm, diameter, and height), covering it with two layers of cheesecloth and keeping
it in a closed room with controlled temperature. The room temperature was maintained at
24 ± 0.5 ◦C during the 10 days of evaluation, every 8 h the temperature of the sample was
recorded with a digital thermometer and every 24 h a sample (100 g) was taken to determine
the pH, the DM and the OM. Aerobic stability was defined as the number of hours that the
temperature of the ensiled forage and the ambient temperature were maintained with a
difference of 2 ◦C or less [28], while deterioration was expressed as (i) increased maximum
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temperature, (ii) time to reach maximum temperature and (iii) the accumulation of daily
temperature increases up to 240 h of aerobic exposure [29].

2.6. Statistical Analysis

The experimental design was completely randomized with a bifactorial arrangement,
where factor 1 was the maize genotype and factor 2 the state of the forage, with four
repetitions. Data were analyzed using the GLM procedure of SAS version 9.2 [30], and
according to the following statistical model:

Yijk = µ + Gi + Sj + (G × S)ij + εijk (11)

where Yijk is the response variable, µ is the general mean, Gi is the effect of the maize
genotype (i = Amarillo, Olotillo, Tampico, Tuxpeño, Hybrid), Sj is the effect of the state
of the forage (j = fresh, ensiled), (G × S)ij is the effect of the interaction between maize
genotype and state of the forage, and εijk is the residual error. Means with statistical
difference were compared using Tukey’s test, and they were considered significantly
different when p < 0.05.

3. Results
3.1. Chemical Composition and Feeding Value of the Fresh and Ensiled Forage

The dry matter (DM) content, chemical composition and pH differed (p < 0.05) between
genotypes and states of the forage, and there was an effect (p < 0.05) of the interaction of
both on acid detergent lignin (ADL), water-soluble carbohydrates (WSCs), starch, ammonia
nitrogen (NH3-N), and organic acids (Tables 1 and 2). The hybrid presented the highest
values (p < 0.05) of DM, ether extract (EE), non-fibrous carbohydrates (NFCs) and starch, as
well as the lowest (p < 0.05) of neutral detergent fiber (NDF), acid detergent fiber (ADF),
ADL and WSCs, and it did not differ (p > 0.05) from the rest in the crude protein (CP)
content. In addition, the hybrid and Amarillo genotypes obtained the lowest pH and NH3-
N content (p < 0.05), as well as the best organic acids profile in terms of lactic (LA), acetic
(AA) and butyric (BA) acids. Regardless of the genotype, the fresh forage presented higher
(p < 0.05) DM, CP, NDF, ADF, WSC, pH and BA content, while the rest of the parameters
were higher (p < 0.05) in the silage, with the exception of organic matter (OM), which did
not differ (p > 0.05) between states of the forage (Tables 1 and 2).

Table 1. Dry matter content and chemical composition of the fresh and ensiled forage of four
genotypes of native maize (Zea mays L.) from Mexico and a commercial hybrid.

Items 1 Genotypes
of Maize

States of the Forage
SEM 2

p-Value 3

Fresh Ensiled G S G × S

Dry matter
(g kg−1 FM)

Amarillo 319.24 BCa 305.37 Ba

6.011 <0.0001 0.0001 0.3171
Olotillo 307.57 Ca 290.72 Cb

Tampiqueño 321.14 Ba 284.07 Db

Tuxpeño 307.85 Ca 294.45 Cb

Hybrid 359.36 Aa 345.79 Ab

Organic matter
(g kg−1 DM)

Amarillo 920.60 ABb 927.60 Aa

4.166 0.0402 0.0656 0.2442
Olotillo 927.60 Aa 929.90 Aa

Tampiqueño 921.30 ABa 936.30 Aa

Tuxpeño 916.30 Ba 920.80 Aa

Hybrid 927.30 ABa 932.70 Aa

Crude protein
(g kg−1 DM)

Amarillo 108.00 Aa 83.10 Ab

2.199 0.8272 <0.0001 0.4153
Olotillo 102.90 Ba 83.50 Ab

Tampiqueño 104.90 ABa 85.60 Ab

Tuxpeño 102.60 Ba 85.80 Ab

Hybrid 105.40 ABa 82.90 Ab
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Table 1. Cont.

Items 1 Genotypes
of Maize

States of the Forage
SEM 2

p-Value 3

Fresh Ensiled G S G × S

Ether extract
(g kg−1 DM)

Amarillo 23.90 ABb 36.16 ABa

0.803 <0.0001 <0.0001 0.8443
Olotillo 26.40 Ab 38.08 Aa

Tampiqueño 21.90 Bb 34.12 Ba

Tuxpeño 24.50 ABb 36.47 ABa

Hybrid 25.90 Ab 39.28 Aa

Neutral detergent fiber
(g kg−1 DM)

Amarillo 597.10 BCa 475.60 Db

21.426 0.0004 <0.0001 0.2022
Olotillo 662.30 Aa 598.20 Ab

Tampiqueño 616.60 Ba 594.60 Ab

Tuxpeño 588.60 Ca 529.40 Bb

Hybrid 526.30 Da 503.50 Cb

Acid detergent fiber
(g kg−1 DM)

Amarillo 316.80 Ca 269.00 Db

14.280 <0.0001 0.0055 0.4668
Olotillo 363.70 Aa 360.80 Aa

Tampiqueño 350.50 Ba 323.10 Bb

Tuxpeño 305.20 CDa 288.80 Cb

Hybrid 302.70 Da 262.30 Db

Acid detergent lignin
(g kg−1 DM)

Amarillo 38.40 Bb 41.20 BCa

0.683 <0.0001 <0.0001 0.0063
Olotillo 44.10 Ab 48.90 Aa

Tampiqueño 42.50 Ab 48.60 Aa

Tuxpeño 37.00 Bb 42.10 Ba

Hybrid 36.70 Bb 38.90 Ca

Non-fibrous
carbohydrates
(g kg−1 DM)

Amarillo 191.60 BCb 332.90 Aa

22.891 0.0031 <0.0001 0.2297
Olotillo 136.00 Db 210.20 Ca

Tampiqueño 177.80 Ca 221.90 Cb

Tuxpeño 205.00 Bb 269.50 Ba

Hybrid 269.40 Ah 345.50 Aa

Water-soluble
carbohydrates
(g kg−1 DM)

Amarillo 50.70 Ba 41.44 Db

0.703 <0.0001 0.0258 <0.0001
Olotillo 32.32 Db 60.30 Ca

Tampiqueño 51.22 Bb 67.26 Ba

Tuxpeño 73.95 Aa 75.96 Aa

Hybrid 39.68 Ca 33.97 Eb

Starch
(g kg−1 DM)

Amarillo 132.01 Bb 171.46 Ba

0.839 <0.0001 <0.0001 <0.0001
Olotillo 36.88 Db 90.30 Da

Tampiqueño 61.05 Cb 125.39 Ca

Tuxpeño 37.22 Db 53.04 Ea

Hybrid 215.36 Ab 271.53 Aa

1 FM: fresh matter; DM: dry matter. 2 SEM: standard error of the mean. 3 G: genotypes of maize; S: states of the
forage; G × S: interaction between genotypes of maize and states of the forage. Means within the same row (A–E)
or within the same column (a, b) with different superscript letters are significantly different (p < 0.05).

Table 2. pH, ammonia nitrogen and organic acids of the fresh and ensiled forage of four genotypes of
native maize (Zea mays L.) from Mexico and a commercial hybrid.

Items 1 Genotypes
of Maize

States of the Forage
SEM 2

p-Value 3

Fresh Ensiled G S G × S

pH

Amarillo 6.00 Ba 3.60 Bb

0.032 0.0048 <0.0001 0.0973
Olotillo 6.19 Aa 3.80 Ab

Tampiqueño 6.12 ABa 3.76 Ab

Tuxpeño 6.21 Aa 3.80 Ab

Hybrid 6.02 Ba 3.62 Bb
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Table 2. Cont.

Items 1 Genotypes
of Maize

States of the Forage
SEM 2

p-Value 3

Fresh Ensiled G S G × S

Ammonia nitrogen
(g kg−1 TN)

Amarillo 19.71 Cb 27.06 Ca

0.517 <0.0001 <0.0001 <0.0001
Olotillo 21.01 Cb 46.16 Aa

Tampiqueño 27.56 Ab 44.05 Aa

Tuxpeño 25.00 Bb 41.19 Ba

Hybrid 16.26 Db 21.11 Da

Lactic acid
(g kg−1 DM)

Amarillo 2.65 Db 37.39 Ca

0.424 <0.0001 <0.0001 <0.0001
Olotillo 9.81 Ab 49.95 Aa

Tampiqueño 6.34 Bb 44.73 Ba

Tuxpeño 2.52 Db 20.10 Da

Hybrid 3.51 Cb 22.26 Da

Acetic acid
(g kg−1 DM)

Amarillo 2.56 Ab 27.17 Aa

0.235 <0.0001 <0.0001 <0.0001
Olotillo 2.54 Ab 26.48 ABa

Tampiqueño 2.55 Ab 25.34 Ba

Tuxpeño 2.49 Ab 12.52 Ca

Hybrid 2.62 Ab 9.26 Da

Butyric acid
(g kg−1 DM)

Amarillo 0.70 Aa 0.20 Bb

0.034 <0.0001 <0.0001 <0.0001
Olotillo 0.20 Ca 0.20 Ba

Tampiqueño 0.40 Ba 0.10 Bb

Tuxpeño 0.70 Ab 1.11 Aa

Hybrid 0.61 Aa 0.10 Bb

1 TN, total nitrogen; DM, dry matter. 2 SEM: standard error of the mean. 3 G: genotypes of maize; S: states of the
forage; G × S: interaction between genotypes of maize and states of the forage. Means within the same row (A–D)
or within the same column (a, b) with different superscript letters are significantly different (p < 0.05).

The feeding value was also influenced (p < 0.05) by the genotype and the state of
the forage, and their interaction was significant (p < 0.05) in the relative forage value,
digestible energy and metabolizable energy (Table 3). The Amarillo genotype obtained the
highest values (p < 0.05) in all the parameters, except in total digestible nutrients, which
corresponded to Olotillo, and between states of the forage, the ensiled was the one with the
highest quality (p < 0.05; Table 3).

Table 3. Feeding value of the fresh and ensiled forage of four genotypes of native maize (Zea mays L.)
from Mexico and a commercial hybrid.

Items Genotypes
of Maize

States of the Forage
SEM 1

p-Value 2

Fresh Ensiled G S G × S

Dry matter intake
(g kg−1 liveweight)

Amarillo 20.10 BCb 25.25 Aa

0.809 0.0004 <0.0001 0.0876
Olotillo 20.04 Db 21.98 Ca

Tampiqueño 18.13 Cb 20.11 Da

Tuxpeño 19.56 Bb 20.27 Da

Hybrid 20.39 Ab 23.53 Ba

Total digestible nutrients
(g kg−1 DM)

Amarillo 604.44 Bb 674.86 Aa

18.436 <0.0001 0.0055 0.4667
Olotillo 619.47 Ab 640.65 Aa

Tampiqueño 543.90 Cb 547.67 Ca

Tuxpeño 560.97 ABb 596.34 Ba

Hybrid 622.68 Da 666.23 Da
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Table 3. Cont.

Items Genotypes
of Maize

States of the Forage
SEM 1

p-Value 2

Fresh Ensiled G S G × S

Relative forage value (%)

Amarillo 94.47 Bb 130.48 Aa

3.569 <0.0001 <0.0001 0.0132
Olotillo 88.80 Db 113.99 Ea

Tampiqueño 71.58 Cb 86.12 Da

Tuxpeño 85.15 Bb 96.08 Ca

Hybrid 91.99 Ab 112.53 Ba

Digestible energy
(Mcal kg−1 DM)

Amarillo 2.86 Ab 3.12 Aa

0.015 <0.0001 <0.0001 0.0249
Olotillo 2.72 Db 2.89 Ca

Tampiqueño 2.45 Cb 2.63 Ba

Tuxpeño 2.67 Bb 2.89 Ba

Hybrid 2.76 BCb 2.92 Ba

Metabolizable energy
(Mcal kg−1 DM)

Amarillo 2.35 Ab 2.57 Aa

0.013 <0.0001 <0.0001 0.0267
Olotillo 2.23 Db 2.38 Ca

Tampiqueño 2.01 Cb 2.16 Ba

Tuxpeño 2.20 Bb 2.37 Ba

Hybrid 2.27 Cb 2.39 Ba

1 SEM: standard error of the mean. 2 G: genotypes of maize; S: states of the forage; G × S: interaction between
genotypes of maize and states of the forage. Means within the same row (A–D) or within the same column (a, b)
with different superscript letters are significantly different (p < 0.05).

3.2. In Vitro Rumen Degradability of the Fresh and Ensiled Forage

The interaction (p < 0.05) of the genotype and the state of the forage with the incubation
time was significant in the degradability of DM, NDF and ADF, and although there were
variations during incubation, in the end the Amarillo genotype presented the highest
values (p < 0.05) of degradability; it even surpassed the hybrid by up to 13.0% (Figure 1). In
addition, the silage presented higher (p < 0.05) degradability compared to fresh forage in
all genotypes (Figure 1).

3.3. Stability and Aerobic Deterioration of the Ensiled Forage

The genotype influenced the stability and aerobic deterioration of the ensiled forage,
and the Amarillo and hybrid genotypes showed higher (p < 0.05) aerobic stability, and
lower (p < 0.05) maximum temperature and accumulation of daily temperature increases to
240 h. However, these genotypes did not differ significantly (p > 0.05) from the rest in time
taken to reach the maximum temperature (Table 4).

Table 4. Indices of stability and aerobic deterioration of the ensiled forage of four genotypes of native
maize (Zea mays L.) from Mexico and a commercial hybrid, at 240 h of exposure aerobic.

Items 1
Genotype of Maize

SEM 2 p-Value
Amarillo Olotillo Tampiqueño Tuxpeño Hybrid

Aerobic stability (h) 34.0 B 28.0 C 30.0 C 28.0 C 40.0 A 2.70 0.0346
Max. temperature in 240 h (◦C) 37.7 B 39.5 B 38.8 B 44.6 A 35.6 C 1.14 0.0008

TRMT (h) 48.0 A 40.0 A 48.0 A 40.0 A 58.0 A 4.70 0.0873
ADTI at 240 h (◦C) 25.3 CD 28.5 B 26.1 BC 32.1 A 23.8 D 1.73 0.0333

1 TRMT: time to reach maximum temperature; ADTI: accumulation of daily temperature increases to 240 h.
2 SEM: standard error of the mean. Means in the same column (A–D) with different superscript letters are
significantly different (p < 0.05).
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Figure 1. In vitro rumen degradability of dry matter (DMD); (a), neutral detergent fiber (NDFD);
(b) and acid detergent fiber (ADFD); (c) of the fresh and ensiled forage of four genotypes of native
maize (Zea mays L.) from Mexico and a commercial hybrid, at 6, 12, 24 and 48 h of incubation.
1 G: genotypes of maize; S: states of the forage; T: incubation time; G × S: interaction between geno-
types of maize and states of forage; G × T: interaction between genotypes of maize and incubation
time; S × T: interaction between states of the forage and incubation time; G × S × T: interaction
genotypes of maize, states of the forage and incubation time; SEM: standard error of the mean.

During aerobic exposure, the genotype presented interaction (p < 0.05) with time, and
the Amarillo and hybrid genotypes presented the lowest pH increases and DM and OM
reductions (p < 0.05), while Tuxpeño obtained the highest values (p < 0.05; Figure 2).
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Figure 2. pH (a) and dry matter (DM); (b) and organic matter (OM); (c) content of the ensiled forage
of four genotypes of native maize (Zea mays L.) from Mexico and a commercial hybrid, at different
times of aerobic exposure. 1 G: genotypes of maize; T: aerobic exposure time; G × T: interaction
between genotypes of maize and aerobic exposure time; SEM: standard error of the mean.

4. Discussion
4.1. Chemical Composition and Feeding Value of the Fresh and Ensiled Forage

The dry matter (DM) content in fresh forage results from the proportion of each
component, and generally, the stem provides a greater amount of DM than the cob and the
leaves [6], which explains the variations between genotypes. Despite this, the DM content
of the fresh forage was higher than recommended (300.0 g kg−1) for ensiling [31], and
although there is a loss of DM that is inevitable during silage fermentation, in the current
study it was relatively low (3.8 to 5.5%) in all genotypes, except in Tampiqueño, where it
was 11.5%. In this case, the fermentation was probably dominated by heterolactic bacteria,
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since in addition to lactic acid (LA) they produce other compounds and generate gases [32],
which implies greater degradation of DM. The organic matter (OM) content did not differ
between states of the forage, but between genotypes, and in plants it accumulates mainly
in the stem [33], so it can be assumed that the differences between genotypes in fresh
forage were caused by the proportion of its components (stem, leaf, and cob), as in DM.
Furthermore, in fresh forage the high content of crude protein (CP), ether extract (EE), non-
fibrous carbohydrates (NFCs) and water-soluble carbohydrates (WSCs) is associated with a
higher leaf: stem and cob: stem ratio, while a lower ratio of these components is associated
with the high content of neutral detergent fiber (NDF), acid detergent fiber (ADF) and
acid detergent lignin (ADL) [34]. However, the silage goes through a fermentation process
that generates chemical changes in the forage, including the deamination of proteins, also
called proteolysis [35], which justifies the lower CP content in silage. Although the exact
reason for the increase in EE in silage is unknown, it is speculated that it is due to the loss
of other nutrients since this causes the concentration of EE to increase if it does not present
degradation. Furthermore, changes in fibrous carbohydrates are attributed to the acidic
conditions of the forage, which causes acid hydrolysis [36], which mainly reduces the NDF
content and, to a lesser extent, also the ADF content [37]. In Olotillo and Tampiqueño, the
high ADL content could have acted as a protective layer and decreased the degradation
rate of these carbohydrates [38], while in Tuxpeño it can be attributed to a low enzymatic
activity. Consequently, the degradation of these fibers led to an increase in NFCs, including
WSCs [39,40], which explains the increase in NFCs in all genotypes and WSCs in Olotillo,
Tampiqueño and Tuxpeño. However, there are variations in the production of LA and
WSCs between epiphytic strains of lactic acid bacteria (LAB) [41], so it cannot be ruled
out that this also influenced the increase in NFC and WSC. The starch was lowest in the
fresh forage and high in the ensiled, and the hybrid presented the highest amount, which
is consistent because hybrids are bred to increase grain production, and it is in this part
of the plant where it is found starch accumulates [42,43]. In native maize, variations are
attributed to grain characteristics, since starch content is influenced by grain percentage
and accumulation rate [44].

As expected, the pH was higher in the fresh forage and lower in the silage, while
ammonia nitrogen (NH3-N) and organic acids (OAs) were higher in the silage and lower in
the fresh forage. It is known that the pH depends on the content of organic acids, and that
in the case of fresh forage the OA content is determined by epiphytic bacteria, especially
LA, since fatty acids (FAs) such as acetic (AA) and butyric (BA) acids are constituted from
lipids in the leaves, stems and grains of maize [45]. In addition, the FAs have a high positive
correlation with chlorophyll content [46], which allows us to assume that the genotypes
with higher FA content not only had a larger population of epiphytic bacteria, but also a
greater quantity of green leaves at harvest time. Instead, in silage these acids are formed
from the homolactic and/or heterolactic fermentation of the WSCs by epiphytic LAB, and
although at the end of the fermentation the pH can be the same in several genotypes, the
microbial populations involved in the acidification and fermentative pathways may differ,
leading to variations in the final products [47], as is believed to have occurred in the current
study. In the case of Tuxpeño, the low amount of LA and AA, and high BA, are attributed to
a slow production of LA and acidification of the forage in the initial stage of silage, which
was possibly caused by a low population of epiphytic LAB (<103 cfu g−1 FM) [40], since it
presented a greater amount of WSCs than other genotypes such as Olotillo and Tampiqueño.
As for NH3-N, as previously indicated, it is formed from the deamination of proteins, so
its presence in the fresh forage and variations between genotypes are probably due to
physiological processes of the plants, such as protein formation and nutrient translocation.
Instead, in silage it is associated with the degradation of proteins by protease enzymes
and proteolytic microorganisms [37], which explains the higher content of NH3-N in silage
and the differences between genotypes. Furthermore, in the current study no genotype
exceeded the maximum threshold (100 g kg−1 N) for good quality silage [48], indicating
correct forage conservation.
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The silage and the Amarillo and hybrid genotypes presented higher dry matter intake
(DMI) and total digestible nutrient (TDN) values compared to the fresh forage and the rest
of the genotypes, which is attributed to the NDF and ADF content they presented, since
these components are negatively associated with the DMI and TDNs, respectively [23,37].
Although the TDN value improved in the silage, all genotypes, including the hybrid,
were below the value (688 g kg−1 DM) reported by the National Research Council for
maize silage [49]. However, the DM degradability (DMD) and DMI favorably impacted
on the relative forage value (RFV), since it is derived from them and, therefore, increasing
these parameters also increases the RFV [50]. In all genotypes, digestible energy and
metabolizable energy were higher in silage, which is attributed to the increase in DMD,
and remained within the range (0.57–2.78 Mcal kg−1) necessary for maintenance and high
activity in ruminants [49].

4.2. In Vitro Rumen Degradability of the Fresh and Ensiled Forage

The degradability of forage is normally influenced by the carbohydrate and lignin
content [24], and in this study the silage of all the genotypes, especially Amarillo, presented
greater degradation than the fresh forage, which in the case of DMD could be related to
the higher content of NFCs and lower content of NDF and ADF in the silage. Instead,
the NDF and ADF degradability is attributed to a reduction in the complexity of the
physicochemical structure of lignocellulose, which is possibly caused by acid hydrolysis
during silage fermentation [51]. In turn, this provides greater accessibility to rumen
microorganisms and enzymes and, consequently, there is greater degradation of NDF and
ADF during rumen fermentation, as in the current study. However, in the silage of the
genotypes in which the increase in degradability was low, lignin possibly influenced, since
its structure is recalcitrant, branched, and dense [52], which limits degradation, especially
of the fibers.

4.3. Stability and Aerobic Deterioration of the Ensiled Forage

In the current study, the pH and temperature increased rapidly in the Olotillo, Tampiqueño
and Tuxpeño silage, which caused them to present less stability and a higher degree of dete-
rioration and loss of DM and OM than the Amarillo and hybrid silage. Considering that the
genotypes with less stability and greater spoilage presented high WSC and/or LA content,
it is possible to suppose that they had a high yeast activity, since these microorganisms are
the initiators of aerobic spoilage because they can oxidize WSCs and LA to carbon dioxide
and water [53], which raises the pH and temperature [54]. Moreover, the oxidation of these
carbohydrates and LA generates adequate conditions for the growth of aerobic bacteria and
molds [55], and although AA has antifungal properties and is negatively correlated with
yeasts [56], in the current study it possibly had little influence on stability, since it varied
little between genotypes, and, since it is a weak gas, it is not ruled out that a part volatilized
during aerobic exposure [57]. Instead, in more stable genotypes with less deterioration,
such as Amarillo and the hybrid, the content of WSCs and LA did not compromise aerobic
stability, and this was reflected in a lower pH and MT than the rest of the genotypes.

In relation to time to reach maximum temperature (TRMT) and accumulation of
daily temperature increases (ADTI), both reflect the intensity of the activity of aerobic
microorganisms, including molds and yeasts [58], which allows us to assume that when
the TRMT was lower and ADTI higher, the microorganisms had a greater quantity of
substrates for their activities, while when the TRMT was higher and ADTI lower, the
opposite occurred. This may also be the origin of the higher DM and OM losses in the
Olotillo, Tampiqueño and Tuxpeño genotypes compared to the Amarillo and the hybrid.
It should be noted that, in the present study, the aerobic stability of the silage of all the
genotypes was higher at 12 and 24 h, the time it that would possibly be exposed to air in
the feeder.
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5. Conclusions

It is concluded that all the genotypes, including the hybrid, and both states of the
forage presented variability among themselves in chemical composition, the profile of
organic acids and other compounds, which influenced the feeding value and in vitro
ruminal degradability of the forage. Furthermore, of all the genotypes, the Amarillo and
the hybrid are the ones that presented the best values, while between the states of the
forage the ensiled was the best. However, the aerobic stability of the silage differed between
genotypes, and although it depended on the chemical composition of the fresh forage, all
presented acceptable stability. Therefore, native maize varieties have the potential to match
the quality of improved ones, and silage is not only useful in forage conservation, but also
as a pre-ingestive treatment to improve digestibility, especially of fiber.
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