The Impact of Climate Change on California Rangelands and Livestock Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Determining Climate Exposure
2.2. Assessing Climatic Water Deficit
3. Results
3.1. Climatic Water Deficit
3.2. Climate Exposure
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- California Agricultural Statistics Review of 2019–2020; California Department of Food and Agriculture: Sacramento, CA, USA, 2020.
- Bartolome, J.W.; Allen-Diaz, B.H.; Barry, S.; Ford, L.D.; Hammond, M.; Hopkinson, P.; Ratcliff, F.; Spiegal, S.; White, M.D. Grazing for biodiversity in Californian Mediterranean grasslands. Rangelands 2014, 36, 36–43. [Google Scholar] [CrossRef]
- Stein, B.; Kutner, L.; Adams, J. Precious Heritage: The Status of Biodiversity in the United States; Oxford University Press: New York, NY, USA, 2000; p. 399. [Google Scholar]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; da Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef]
- Silver, W. Enhancing carbon sinks in natural and working lands. In Bending the Curve: Climate Change Solutions; Ramanathan, V., Millard-Ball, A., Niemann, M., Eds.; The Regents of the University of California: Oakland, CA, USA, 2019. [Google Scholar]
- Ferkovich, R.; Hartman, L.; Johnson, J.; Keithley, C.; Klaas-Schultz, M.; Larvie, K.; Marose, R.; Meriam, E.; Meyer, T.; Moody, T.; et al. California’s Forests and Rangelands: 2017 Assessment; The California Department of Forestry and Fire Protection’s Fire and Resource Assessment Program: Sacramento, CA, USA, 2017.
- Cayan, D.R.; Das, T.; Pierce, D.W.; Barnett, T.P.; Tyree, M.; Gershunov, A. Future dryness in the southwest US and the hydrology of the early 21st century drought. Proc. Natl. Acad. Sci. USA 2010, 107, 21271–21276. [Google Scholar] [CrossRef]
- Gonzalez, P.; Garfin, G.; Breshears, D.; Brooks, K.; Brown, H.; Elias, E.; Gunasekara, A.; Huntly, N.; Maldonado, J.; Mantua, N.; et al. Southwest. In Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment; Reidmiller, D., Avery, C., Easterling, D., Kunkel, K., Lewis, K., Maycock, T., Stewart, B., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2018; Volume 2, pp. 1101–1184. [Google Scholar]
- Berg, N.; Hall, A. Increased interannual precipitation extremes over California under climate change. J. Clim. 2015, 28, 6324–6334. [Google Scholar] [CrossRef]
- International Panel on Climate Change. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Blumenthal, D.M.; Kray, J.A.; Ortmans, W.; Ziska, L.H.; Pendall, E. Cheatgrass is favored by warming but not CO2 enrichment in a semi-arid grassland. Glob. Chang. Biol. 2016, 22, 3026–3038. [Google Scholar] [CrossRef] [PubMed]
- Holechek, J.L.; Geli, H.M.E.; Cibils, A.F.; Sawalhah, M.N. Climate change, rangelands, and the sustainability of ranching in the western United States. Sustainability 2020, 12, 4942. [Google Scholar] [CrossRef]
- Thorne, J.; Boynton, R.; Holguin, A.; Stewart, J.; Bjorkman, J. A Climate Change Vulnerability Assessment of California’s Terrestrial Vegetation; California Department of Fish and Wildlife: Sacramento, CA, USA, 2016.
- Thorne, J.H.; Choe, H.; Boynton, R.M.; Bjorkman, J.; Albright, W.; Nydick, K.; Flint, A.L.; Flint, L.E.; Schwartz, M.W. The impact of climate change uncertainty on California’s vegetation and adaptation management. Ecosphere 2017, 8, e02021. [Google Scholar] [CrossRef]
- Liu, Z.; Deng, Z.; Davis, S.J.; Giron, C.; Ciais, P. Monitoring global carbon emissions in 2021. Nat. Rev. Earth Environ. 2022, 3, 217–219. [Google Scholar] [CrossRef] [PubMed]
- Schwalm, C.R.; Glendon, S.; Duffy, P.B. RCP8.5 tracks cumulative CO2 emissions. Proc. Natl. Acad. Sci. USA 2020, 117, 19656–19657. [Google Scholar] [CrossRef]
- Flint, L.E.; Flint, A.L.; Stern, M.A. The Basin Characterization Model—A Monthly Regional Waterbalance Software Package (BCMv8) Data Release and Model Archive for Hydrologic California (ver. 3.0, June 2023); USGS California Water Science Center: Sacramento CA, USA, 2023.
- Flint, L.E.; Flint, A.L.; Thorne, J.H.; Boynton, R. Fine-scale hydrologic modeling for regional landscape applications: The California Basin Characterization Model development and performance. Ecol. Process. 2013, 2, 25. [Google Scholar] [CrossRef]
- Thorne, J.H.; Boynton, R.M.; Flint, L.E.; Flint, A.L. The magnitude and spatial patterns of historical and future hydrologic change in California’s watersheds. Ecosphere 2015, 6, 1–30. [Google Scholar] [CrossRef]
- CALFIRE FRAP. California Vegetation by Wildlife Habitat Relationship Type 2015. 2015. Available online: https://frap.fire.ca.gov/ (accessed on 30 September 2019).
- Daly, C.; Halbleib, M.; Smith, J.I.; Gibson, W.P.; Doggett, M.K.; Taylor, G.H.; Curtis, J.; Pasteris, P.P. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol. 2008, 28, 2031–2064. [Google Scholar] [CrossRef]
- Fellmann, T. The assessment of climate change-related vulnerability in the agricultural sector: Reviewing conceptual frameworks. In Building Resilience for Adaptation to Climate Change in the Agricultural Sector: Proceedings of a Joint FAO/OECD Workshop; Maybeck, A., Lankoski, J., Redfern, S., Azzu, N., Gitz, V., Eds.; Food and Agriculture Organization of the United Nations Organization for Economic Cooperation and Development: Rome, Italy, 2012; pp. 37–61. [Google Scholar]
- Stephenson, N. Actual evapotranspiration and deficit: Biologically meaningful correlates of vegetation distribution across spatial scales. J. Biogeogr. 1998, 25, 855–870. [Google Scholar] [CrossRef]
- Williams, J.W.; Jackson, S.T. Novel climates, no-analog communities, and ecological surprises. Front. Ecol. Environ. 2007, 5, 475–482. [Google Scholar] [CrossRef]
- Choe, H.; Thorne, J.H. Climate exposure of East Asian temperate forests suggests transboundary climate adaptation strategies are needed. Clim. Chang. 2019, 156, 51–67. [Google Scholar] [CrossRef]
- Young, D.J.N.; Stevens, J.T.; Earles, J.M.; Moore, J.; Ellis, A.; Jirka, A.L.; Latimer, A.M. Long-term climate and competition explain forest mortality patterns under extreme drought. Ecol. Lett. 2017, 20, 78–86. [Google Scholar] [CrossRef]
- USDA. NASS County Data. In 2017 Census of Agriculture: California State and County Data; U.S. Department of Agriculture’s National Agricultural Statistics Service: Washington, DC, USA, 2019; Volume 1, pp. 359–378. [Google Scholar]
- Crop and Livestock Report (2020); Counties of Inyo and Mono Agricultural Commissioner’s Office: Bishop, CA, USA, 2020; Available online: https://www.inyocounty.us/sites/default/files/2021-08/Crop%20Report%202020_2.pdf (accessed on 30 September 2019).
- Reynolds, J.F.; Virginia, R.A.; Kemp, P.R.; de Soyza, A.G.; Tremmel, D.C. Impact of drought on desert shrubs: Effects of seasonality and degree of resource island development. Ecol. Monogr. 1999, 69, 69–106. [Google Scholar] [CrossRef]
- Stewart, W.; Cromwell, D.; Zimny, C.; Marose, R.; Henly, R.; Fischer, C.; Hucks, E.; Keithley, C.; Knott, P.; Lockwood, J.; et al. The Changing California: Forest and Range 2003 Assessment; The California Department of Forestry and Fire Protection’s Fire and Resource Assessment Program: Sacramento, CA, USA, 2003.
- Medellín-Azuara, J.; Sumner, D.; Pan, Q.; Lee, H.; Espinoza, V.; Cole, S.; Bell, A.; Davila-Olivera, S.; Viers, J.; Herman, J.; et al. Economic and Environmental Implications of California Crop and Livestock, Adaptation to Climate Change; California Natural Resources Agency: Sacramento, CA, USA, 2018. [Google Scholar]
- Silanikove, N. Effects of heat stress on the welfare of extensively managed domestic ruminants. Livest. Prod. Sci. 2000, 67, 1–18. [Google Scholar] [CrossRef]
- Vidaller, C.; Dutoit, T.; Ramone, H.; Bischoff, A. Factors limiting early establishment of the Mediterranean grassland species Brachypodium retusum at disturbed sites. Basic Appl. Ecol. 2019, 37, 10–19. [Google Scholar] [CrossRef]
- Roche, L. Adaptive rangeland decision-making and coping with drought. Sustainability 2016, 8, 1334. [Google Scholar] [CrossRef]
- Briske, D.D.; Joyce, L.A.; Polley, H.W.; Brown, J.R.; Wolter, K.; Morgan, J.A.; McCarl, B.A.; Bailey, D.W. Climate change adaptation on rangelands: Linking regional exposure with diverse adaptive capacity. Front. Ecol. Environ. 2015, 13, 249–256. [Google Scholar] [CrossRef] [PubMed]
County Name | Rangeland Acres | 2017 Beef Cows | % High Exp, CNRM | % High Exp, MIROC |
---|---|---|---|---|
Northern and Central California Coast | ||||
SAN LUIS OBISPO | 1,866,859 | 22626 | 4.7% | 10.9% |
MONTEREY | 1,710,264 | 21,257 | 54.9% | 59.4% |
MENDOCINO | 400,991 | 16,556 | 91.8% | 42.7% |
HUMBOLDT | 330,646 | 17,412 | 100.0% | 99.9% |
SONOMA | 291,682 | 10,974 | 87.6% | 15.5% |
DEL NORTE | 55,645 | 793 | 98.4% | 100.0% |
Northern California Inland | ||||
MODOC | 1,588,850 | 34,625 | 28.9% | 31.9% |
SISKIYOU | 1,027,102 | 26,188 | 79.4% | 63.1% |
SHASTA | 778,870 | 16,342 | 91.5% | 66.0% |
PLUMAS | 261,707 | 8319 | 82.4% | 54.8% |
TRINITY | 238,901 | 1707 | 98.0% | 92.8% |
SIERRA | 131,664 | 3172 | 84.0% | 53.0% |
ALPINE | 195,596 | ND | 87.6% | 63.6% |
Sacramento Valley and Foothills | ||||
TEHAMA | 1,194,434 | 27,018 | 85.1% | 36.3% |
BUTTE | 349,327 | 6808 | 94.9% | 88.9% |
EL DORADO | 291,034 | 3139 | 99.8% | 82.2% |
PLACER | 205,792 | 8058 | 100.0% | 84.5% |
AMADOR | 199,307 | 7518 | 95.8% | 66.9% |
SACRAMENTO | 197,181 | 13,934 | 85.8% | 15.0% |
YUBA | 162,252 | 6422 | 100.0% | 93.4% |
NEVADA | 158,793 | 2183 | 99.3% | 87.9% |
SUTTER | 68,309 | 3500 | 81.2% | 25.1% |
San Joaquin Valley and Foothills | ||||
FRESNO | 1,053,439 | 16,301 | 47.6% | 48.6% |
TULARE | 972,322 | 72,778 | 56.3% | 52.1% |
MARIPOSA | 472,434 | ND | 54.9% | 59.4% |
MADERA | 429,705 | 12,701 | 82.1% | 82.1% |
TUOLUMNE | 406,485 | 4495 | 89.3% | 56.0% |
CALAVERAS | 374,672 | 10,801 | 95.3% | 62.6% |
KINGS | 204,963 | 4236 | 19.3% | 64.1% |
Southern California Inland and Desert | ||||
SAN BERNARDINO | 11,826,727 | 3679 | 41.9% | 39.4% |
RIVERSIDE | 3,539,618 | 1504 | 58.0% | 56.9% |
IMPERIAL | 1,754,542 | ND | 78.1% | 82.8% |
ORANGE | 200,730 | 17 | 18.3% | 74.2% |
MONO | 1,457,852 | 3700 | 36.7% | 26.5% |
INYO | 5,961,182 | 9356 | 23.4% | 28.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ostoja, S.M.; Choe, H.; Thorne, J.H.; Alvarez, P.; Kerr, A.; Balachowski, J.; Reyes, J. The Impact of Climate Change on California Rangelands and Livestock Management. Agriculture 2023, 13, 2095. https://doi.org/10.3390/agriculture13112095
Ostoja SM, Choe H, Thorne JH, Alvarez P, Kerr A, Balachowski J, Reyes J. The Impact of Climate Change on California Rangelands and Livestock Management. Agriculture. 2023; 13(11):2095. https://doi.org/10.3390/agriculture13112095
Chicago/Turabian StyleOstoja, Steven M., Hyeyeong Choe, James H. Thorne, Pelayo Alvarez, Amber Kerr, Jennifer Balachowski, and Julian Reyes. 2023. "The Impact of Climate Change on California Rangelands and Livestock Management" Agriculture 13, no. 11: 2095. https://doi.org/10.3390/agriculture13112095
APA StyleOstoja, S. M., Choe, H., Thorne, J. H., Alvarez, P., Kerr, A., Balachowski, J., & Reyes, J. (2023). The Impact of Climate Change on California Rangelands and Livestock Management. Agriculture, 13(11), 2095. https://doi.org/10.3390/agriculture13112095