Three-Way Top-Cross Hybrids to Enhance Production of Forage with Improved Quality in Pearl Millet (Pennisetum glaucum (L.) R. Br.)
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Field Evaluations
2.2.1. Experiment 1: Trials to Evaluate Three-Way Top-Cross Hybrids
2.2.2. Experiment 2: Comparison of Three-Way Top-Cross Hybrids, OPVs and Top-Cross Hybrids
2.3. Estimation of Forage Traits
2.3.1. Biomass Related Traits
2.3.2. Forage Quality Traits
2.4. Data Analysis
3. Results and Discussion
3.1. ANOVA of Forage-Related Traits for Multilocation Trial (Experiment 1)
3.2. Correlations among Forage Yield and Quality Traits
3.3. Performances of Different Forage Type Cultivars: OPVs, Top-Cross Hybrids and Three-Way Top-Cross Hybrids (Experiment 2)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baltensperger, D.D. Progress with Proso, Pearl and Other Millets. In Trends in New Crops and New Uses; Janick, J., Whipley, A., Eds.; ASHS Press: Alexandria, VA, USA, 2002; pp. 100–103. [Google Scholar]
- Burton, G. History of Hybrid Development in Pearl Millet in Tifton. In Proceedings of the First Grain Pearl Millet Symposium, Tifton, GA, USA, 17–18 January 1995; pp. 5–8. [Google Scholar]
- Davis, A.; Dale, N.; Ferreira, F. Pearl Millet as an Alternative Feed Ingredient in Broiler Diets. J. Appl. Poultry Res. 2003, 12, 137–144. [Google Scholar] [CrossRef]
- Reddy, A.; Dharmpal, M.; Singh, I.; Kundu, K.; Rao, P.; Gupta, S.; Rajan, S. Demand and Supply for Pearl Millet Grain and Fodder by 2020 in Western India. Agric. Situat. India 2012, 68, 635–646. [Google Scholar]
- Amarender Reddy, A.; Yadav, O.; Dharm Pal Malik, S.I.; Ardeshna, N.; Kundu, K.; Gupta, S.; Rajan Sharma, S.G.; Moses Shyam, D.; Sammi Reddy, K. Utilization Pattern, Demand and Supply of Pearl Millet Grain and Fodder in Western India; Working Paper Series No 37; ICRISAT: Patancheru, India, 2013. [Google Scholar]
- De Assis, R.L.; De Freitas, R.S.; Mason, S.C. Pearl Millet Production Practices in Brazil: A Review. Exp. Agric. 2018, 54, 699–718. [Google Scholar] [CrossRef]
- Dias-Martins, A.M.; Pessanha, K.L.F.; Pacheco, S.; Rodrigues, J.A.S.; Carvalho, C.W.P. Potential Use of Pearl Millet (Pennisetum glaucum (L.) R. Br.) in Brazil: Food Security, Processing, Health Benefits and Nutritional Products. Food Res. Int. 2018, 109, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Anonymous. Sorghum, Pearl Millet Show Promise as Alternative Crops in Kazakhstan. 2018. Available online: https://www.biosaline.org/news/2018-12-09-6714 (accessed on 28 July 2022).
- Sharma, T.R. Forage Security for Sustainable Livestock Development, 60th Foundation day lecture, (1 November 2021), ICAR-Indian Grassland and Fodder Research Institute. Available online: https://igfri.icar.gov.in/wp-content/uploads/2022/09/60th-Foundation-Day-Lecture-delivered-by-Dr.-T.R.-Sharma-DDG-CS-ICAR-on-01-Nov.-2021.pdf (accessed on 28 July 2022).
- NITI Aayog. Demand & Supply Projections towards 2033: Crops, Livestock, Fisheries and Agricultural Inputs; The Working Group Report February, NITI Aayog, Government of India. 2018. Available online: https://www.niti.gov.in/node/1558 (accessed on 28 July 2022).
- Arya, R.; Kumar, S.; Yadav, A.K.; Kumar, A. Grain Quality Improvement in Pearlmillet: A Review. Forage Res. 2013, 38, 189–201. [Google Scholar]
- Blümmel, M.; Rai, K.N. Stover quality and grain yield relationships and heterosis effects in pearl millet. Int. Sorghum Millets Newsl. 2003, 44, 141–145. [Google Scholar]
- Hash, C.; Blümmel, M.; Bidinger, F. Genotype x environment interactions in food-feed traits in pearl millet cultivars. Int. Sorghum Millets Newsl. 2006, 47, 153–157. [Google Scholar]
- Blümmel, M.; Bidinger, F.; Hash, C. Management and Cultivar Effects on Ruminant Nutritional Quality of Pearl Millet (Pennisetum glaucum (L.) R. Br.) Stover: II. Effects of Cultivar Choice on Stover Quality and Productivity. Field Crops Res. 2007, 103, 129–138. [Google Scholar] [CrossRef]
- Bidinger, F.; Blummel, M.; Hash, C.; Choudhary, S. Genetic Enhancement for Superior Food-Feed Traits in a Pearl Millet (Pennisetum glaucum (L.) R. Br.) Variety by Recurrent Selection. Anim. Nutr. Feed Technol. 2010, 10, 61–68. [Google Scholar]
- Gupta, S.; Ghouse, S.; Atkari, D.; Blümmel, M. Pearl Millet with Higher Stover Yield and Better Forage Quality: Identification of New Germplasm and Cultivars. In Proceedings of the 3rd Conference of Cereal Biotechnology and Breeding/CBB3, Berlin, Germany, 2–4 November 2015. [Google Scholar]
- Gupta, S.K.; Nepolean, T.; Shaikh, C.G.; Rai, K.; Hash, C.T.; Das, R.R.; Rathore, A. Phenotypic and Molecular Diversity-Based Prediction of Heterosis in Pearl Millet (Pennisetum glaucum L. (R.) Br.). Crop J. 2018, 6, 271–281. [Google Scholar] [CrossRef]
- Rai, K.N.; Blummel, M.; Singh, A.K.; Rao, A.S. Variability and Relationships among Forage Yield and Quality Traits in Pearl Millet. Eur. J. Plant Sci. Biotechnol. 2012, 6, 118–124. [Google Scholar]
- Govintharaj, P.; Gupta, S.; Blummel, M.; Maheswaran, M.; Sumathi, P.; Atkari, D.; Kumar, V.A.; Rathore, A.; Raveendran, M.; Duraisami, V. Genotypic Variation in Forage Linked Morphological and Biochemical Traits in Hybrid Parents of Pearl Millet. Anim. Nutr. Feed Technol. 2018, 18, 163–175. [Google Scholar] [CrossRef]
- Govintharaj, P.; Maheswaran, M.; Blümmel, M.; Sumathi, P.; Vemula, A.K.; Rathore, A.; Sivasubramani, S.; Kale, S.M.; Varshney, R.K.; Gupta, S.K. Understanding Heterosis, Genetic Effects, and Genome Wide Associations for Forage Quantity and Quality Traits in Multi-Cut Pearl Millet. Front. Plant Sci. 2021, 12. [Google Scholar] [CrossRef]
- Ponnaiah, G.; Gupta, S.K.; Blümmel, M.; Marappa, M.; Pichaikannu, S.; Das, R.R.; Rathore, A. Utilization of Molecular Marker Based Genetic Diversity Patterns in Hybrid Parents to Develop Better Forage Quality Multi-Cut Hybrids in Pearl Millet. Agriculture 2019, 9, 97. [Google Scholar] [CrossRef]
- Wilson, J.; Hanna, W.; Bondari, K. Directed Use of Germplasm Resources for Breeding Rust Resistant Pearl Millet. Plant Pathol. Trends in Agri. Sci. 1993, 1, 67–74. [Google Scholar]
- Hanna, W.; Hill, G.; Gates, R.; Wilson, J.; Burton, G. Registration of ’Tifleaf 3’ pearl Millet. Crop Sci. 1997, 37. [Google Scholar] [CrossRef]
- Witcombe, J.R.; Hash, C.T. Resistance Gene Deployment Strategies in Cereal Hybrids Using Marker-Assisted Selection: Gene Pyramiding, Three-Way Hybrids, and Synthetic Parent Populations. Euphytica 2000, 112, 175–186. [Google Scholar] [CrossRef]
- Rai, K.; Chandra, S.; Rao, A. Potential Advantages of Male-Sterile F1 Hybrids for Use as Seed Parents of Three-Way Hybrids in Pearl Millet. Field Crops Res. 2000, 68, 173–181. [Google Scholar] [CrossRef]
- Arief, R.; Ratule, M.T. Strategi Penguatan Penangkaran Benih Jagung Berbasis Komunitas; Balitsereal: South Sulawesi, Indonesia, 2015; pp. 516–524. [Google Scholar]
- Jayalakshmi, V.; Narendra, B. Evaluation of Three Way Cross Hybrids in Sunflower. Agric. Sci. Dig. 2004, 24, 286–288. [Google Scholar]
- Bidinger, F.; Blümmel, M. Determinants of Ruminant Nutritional Quality of Pearl Millet [Pennisetum glaucum (L.) R. Br.] Stover: I. Effects of Management Alternatives on Stover Quality and Productivity. Field Crops Res. 2007, 103, 119–128. [Google Scholar] [CrossRef]
- Govintharaj, P.; Gupta, S.; Maheswaran, M.; Sumathi, P. Genetic Variability Studies in Forage Type Hybrid Parents of Pearl Millet. Electron. J. Plant Breed. 2017, 8, 1265–1274. [Google Scholar] [CrossRef]
- Kristjanson, P.; Zerbini, E.; Rao, K. Genetic Enhancement of Sorghum and Millet Residues Fed to Ruminants: An Ex Ante Assessment of Returns to Research; International Livestock Research Institute (aka ILCA and ILRAD): Nairobi, Kenya, 1999; Volume 3, ISBN 92-9146-053-2. [Google Scholar]
- Van Soest, P.J. Nutritional Ecology of the Ruminant; Cornell University Press: Ithaca, NY, USA, 1994; ISBN 0-8014-2772-X. [Google Scholar]
- Imran, M.; Hussain, A.; Khalid, R.; Khan, S.; Zahid, M.; Gurmani, Z.; Bakhsh, A.; Baig, D. Study of Correlation among Yield Contributing and Quality Parameters in Different Millet Varieties Grown under and Hwar Conditions. Sarhad J. Agric. 2010, 26, 365–368. [Google Scholar]
- Govintharaj, P.; Gupta, S.; Maheswaran, M.; Sumathi, P.; Atkari, D. Correlation and Path Coefficient Analysis of Biomass Yield and Quality Traits in Forage Type Hybrid Parents of Pearl Millet. Int. J. Pure Appl. Biosci. 2018, 6, 1056–1061. [Google Scholar] [CrossRef]
- Aruna, C.; Swarnalatha, M.; Kumar, P.P.; Devender, V.; Suguna, M.; Blümmel, M.; Patil, J. Genetic Options for Improving Fodder Yield and Quality in Forage Sorghum. Trop. Grassl. Forrajes Trop. 2015, 3, 49–58. [Google Scholar] [CrossRef][Green Version]
Experiment | Location | Year | Crop Season | Overall Rainfall (mm) | Temperature (°C) (Mean Values over the Crop Season) | |
---|---|---|---|---|---|---|
Maximum | Minimum | |||||
Experiment 1 | PAU, Ludhiana | 2017 | Rainy (July to October) | 177.8 | 38.0 | 26.5 |
Experiment 1 | PAU, Ludhiana | 2018 | Summer (February to May) | 122.6 | 34.8 | 21.0 |
Experiment 1 | ICRISAT, Patancheru | 2018 | Summer (February to May) | 49.4 | 36.1 | 19.8 |
Experiment 2 (Trial 1) | ICRISAT, Patancheru | 2018 | Rainy (July to October) | 336.2 | 30.8 | 21.6 |
Experiment 2 (Trial 2) | ICRISAT, Patancheru | 2019 | Rainy (July to October) | 679.4 | 30.4 | 21.8 |
Source of Variation | d.f. | Forage Quantity Related Traits (Three Environments) | Forage Quality Traits (Only for ICRISAT Location) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PH | GFY | DFY | TGFY | TDFY | CP | IVOMD | ||||||||||||
FC ‡ | SC † | TC ǂ | FC | SC | TC | FC | SC | TC | All Cuts | All Cuts | FC | SC | TC | FC | SC | TC | ||
Environment | 2 | 241405 *** | 119974.3 *** | 106008.75 *** | 6874.73 *** | 220.85 * | 722.32 *** | 411.50 *** | 4.7224 | 39.77 *** | 2030.56 *** | 350.86 *** | NA | NA | NA | NA | NA | NA |
Replication (Env.) | 3 (1) آ | 287.90 | 261 | 775.04 ** | 24.84 | 18.372 | 1.4673 | 2.20 | 1.431 | 0.31 ** | 66.6 | 1.25 | 0.5 | 9.57 ** | 17.46 * | 22.82 ** | 0.43 | 9.90 * |
Genotype | 29 | 554 *** | 475.4 *** | 398.54 *** | 47.5 ** | 36.79 *** | 2.99 *** | 4.21 *** | 1.82 *** | 0.17 *** | 132.2 *** | 8.27 * | 1.53 | 0.87 | 5.44 * | 2.29 | 5.56 | 6.49 ** |
Genotype × Environment | 58 | 359.9 *** | 462.3 *** | 214.91 *** | 49.24 *** | 21.66 *** | 2.99 *** | 3.26 *** | 2.10 *** | 0.16 *** | 104.52 *** | 9.07 *** | NA | NA | NA | NA | NA | NA |
Error | 87 (29) | 118 | 126 | 92.41 | 24.7 | 7.36 | 0.89 | 1.83 | 0.80 | 0.48 | 56.37 | 4.98 | 0.61 | 0.66 | 2.49 | 2.26 | 6.99 | 2.01 |
S. No. | Entry | Forage Quantity Related Traits (Three Environments) | Forage Quality Traits (at ICRISAT) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
First Cut | Second Cut | Third Cut | Combined of All Three Cuts | % Over PAC 981 for TDFY | First Cut | Second Cut | Third Cut | ||||||||||||
PH (cm) | GFY (t ha−1) | DFY (t ha−1) | PH (cm) | GFY (t ha−1) | DFY (t ha−1) | PH (cm) | GFY (t ha−1) | DFY (t ha−1) | TGFY (t ha−1) | TDFY (t ha−1) | CP (%) | IVOMD (%) | CP (%) | IVOMD (%) | CP (%) | IVOMD (%) | |||
1 | † TWTCH 01 | 119.0 | 19.9 | 3.7 | 146.0 | 21.1 | 4.9 | 104.0 | 6.8 | 1.4 | 47.8 | 10.0 | 4.2 | 8.3 | 54.6 | 7.1 | 50.3 | 12.9 | 58.4 |
2 | TWTCH 02 | 128.0 | 25.2 | 5.7 | 163.0 | 18.3 | 4.2 | 103.0 | 5.7 | 1.1 | 49.2 | 11.0 | 14.6 | 7.1 | 55.2 | 5.9 | 48.9 | 11.2 | 54.3 |
3 | TWTCH 03 | 131.0 | 19.8 | 4.8 | 159.0 | 18.5 | 4.3 | 92.0 | 5.2 | 1.2 | 43.5 | 10.3 | 7.3 | 7.1 | 54.0 | 5.8 | 54.0 | 10.0 | 56.0 |
4 | TWTCH 04 | 118.0 | 17.7 | 3.4 | 153.0 | 17.5 | 3.7 | 82.0 | 5.3 | 1.0 | 40.4 | 8.1 | −15.6 | 7.8 | 55.6 | 6.8 | 51.1 | 10.5 | 56.4 |
5 | TWTCH 05 | 110.0 | 21.3 | 5.9 | 140.0 | 22.2 | 4.9 | 82.0 | 5.2 | 1.2 | 48.7 | 12.0 | 25.0 | 8.3 | 55.5 | 8.5 | 51.4 | 9.6 | 56.5 |
6 | TWTCH 06 | 113.0 | 19.1 | 3.7 | 150.0 | 16.5 | 3.7 | 87.0 | 5.1 | 1.0 | 40.7 | 8.5 | −11.5 | 8.5 | 56.3 | 8.6 | 51.8 | 12.6 | 56.9 |
7 | TWTCH 07 | 115.0 | 18.6 | 3.8 | 136.0 | 17.4 | 4.5 | 89.0 | 6.3 | 1.2 | 42.3 | 9.5 | −1.0 | 6.5 | 55.7 | 6.4 | 49.3 | 9.9 | 54.1 |
8 | TWTCH 08 | 118.0 | 22.5 | 5.5 | 149.0 | 21.1 | 4.0 | 94.0 | 6.0 | 1.1 | 49.7 | 10.6 | 10.4 | 7.4 | 53.2 | 6.8 | 51.1 | 12.9 | 58.1 |
9 | TWTCH 09 | 129.0 | 21.5 | 4.5 | 154.0 | 20.6 | 5.0 | 99.0 | 6.8 | 1.1 | 49.0 | 10.6 | 10.4 | 7.6 | 57.7 | 7.4 | 52.9 | 11.1 | 56.5 |
10 | TWTCH 10 | 134.0 | 20.8 | 4.8 | 162.0 | 23.5 | 5.4 | 99.0 | 6.4 | 1.2 | 50.8 | 11.5 | 19.8 | 5.8 | 54.4 | 7.4 | 50.6 | 11.5 | 56.6 |
11 | TWTCH 11 | 119.0 | 20.2 | 4.6 | 168.0 | 21.2 | 4.8 | 106.0 | 6.9 | 1.3 | 48.3 | 10.7 | 11.5 | 7.7 | 55.1 | 7.0 | 51.4 | 10.6 | 55.9 |
12 | TWTCH 12 | 127.0 | 20.6 | 4.3 | 157.0 | 23.0 | 5.3 | 92.0 | 6.6 | 1.1 | 50.2 | 10.7 | 11.5 | 7.5 | 55.1 | 7.2 | 48.2 | 11.8 | 54.6 |
13 | TWTCH 13 | 120.0 | 22.5 | 4.8 | 153.0 | 24.1 | 4.4 | 110.0 | 6.2 | 1.0 | 52.8 | 10.1 | 5.2 | 8.9 | 56.7 | 7.6 | 50.6 | 14.2 | 57.4 |
14 | TWTCH 14 | 110.0 | 20.8 | 3.7 | 150.0 | 19.4 | 3.7 | 101.0 | 6.0 | 1.1 | 46.3 | 8.5 | −11.5 | 7.2 | 55.1 | 6.2 | 52.2 | 10.6 | 57.3 |
15 | TWTCH 15 | 111.0 | 19.8 | 4.3 | 142.0 | 18.7 | 4.7 | 96.0 | 5.5 | 1.0 | 44.0 | 10.0 | 4.2 | 8.5 | 56.0 | 6.4 | 51.6 | 12.5 | 57.8 |
16 | TWTCH 16 | 123.0 | 18.1 | 4.4 | 142.0 | 22.3 | 4.7 | 96.0 | 4.6 | 0.9 | 45.0 | 10.0 | 4.2 | 8.5 | 55.6 | 6.5 | 49.8 | 11.6 | 58.1 |
17 | TWTCH 17 | 120.0 | 17.5 | 3.9 | 144.0 | 19.4 | 4.0 | 81.0 | 4.7 | 0.7 | 41.6 | 8.7 | −9.4 | 8.8 | 56.3 | 6.2 | 52.4 | 12.4 | 56.7 |
18 | TWTCH 18 | 115.0 | 15.7 | 3.3 | 143.0 | 15.2 | 3.9 | 83.0 | 4.6 | 0.9 | 35.6 | 8.2 | −14.6 | 6.9 | 54.8 | 7.2 | 53.1 | 10.3 | 56.0 |
19 | TWTCH 19 | 134.0 | 13.7 | 2.5 | 161.0 | 19.2 | 4.7 | 86.0 | 5.6 | 1.3 | 38.5 | 8.5 | −11.5 | 8.0 | 56.6 | 6.5 | 50.8 | 10.5 | 53.7 |
20 | TWTCH 20 | 129.0 | 15.4 | 3.0 | 145.0 | 18.1 | 3.8 | 110.0 | 5.0 | 0.9 | 38.6 | 7.7 | −19.8 | 7.8 | 55.0 | 6.3 | 49.8 | 8.5 | 55.1 |
21 | TWTCH 21 | 114.0 | 15.7 | 3.6 | 154.0 | 15.7 | 3.7 | 97.0 | 5.3 | 1.0 | 36.6 | 8.3 | −13.5 | 7.8 | 54.6 | 6.8 | 51.8 | 10.3 | 56.3 |
22 | TWTCH 22 | 134.0 | 14.5 | 3.1 | 160.0 | 16.2 | 3.2 | 94.0 | 5.4 | 1.0 | 36.1 | 7.3 | −24.0 | 7.5 | 57.2 | 6.5 | 50.3 | 10.2 | 54.9 |
23 | TWTCH 23 | 126.0 | 16.8 | 3.5 | 156.0 | 19.7 | 4.1 | 89.0 | 5.5 | 1.0 | 42.0 | 8.7 | −9.4 | 7.2 | 56.7 | 6.5 | 53.6 | 11.9 | 55.4 |
24 | TWTCH 24 | 128.0 | 15.7 | 3.8 | 157.0 | 16.6 | 3.6 | 99.0 | 6.1 | 1.4 | 38.5 | 8.7 | −9.4 | 7.2 | 54.8 | 6.8 | 49.8 | 13.2 | 58.0 |
25 | TWTCH 25 | 110.0 | 15.7 | 3.1 | 155.0 | 16.3 | 3.8 | 88.0 | 4.7 | 0.9 | 36.7 | 7.9 | −17.7 | 7.5 | 54.2 | 6.7 | 52.6 | 14.5 | 59.4 |
26 | TWTCH 26 | 119.0 | 15.6 | 3.6 | 149.0 | 15.5 | 3.7 | 98.0 | 5.8 | 1.2 | 36.9 | 8.4 | −12.5 | 8.2 | 55.9 | 7.0 | 54.5 | 12.2 | 54.5 |
27 | TWTCH 27 | 116.0 | 21.7 | 4.9 | 143.0 | 17.0 | 4.3 | 107.0 | 6.3 | 1.2 | 44.9 | 10.4 | 8.3 | 8.4 | 57.2 | 5.8 | 48.5 | 9.9 | 56.7 |
28 | TWTCH 28 | 134.0 | 21.8 | 5.0 | 154.0 | 17.6 | 4.0 | 90.0 | 5.3 | 1.0 | 44.8 | 10.1 | 5.2 | 7.3 | 54.6 | 6.3 | 52.9 | 9.9 | 55.2 |
29 | TWTCH 29 | 109.0 | 18.2 | 4.5 | 151.0 | 19.3 | 3.6 | 92.0 | 5.9 | 0.9 | 43.4 | 9.1 | −5.2 | 8.9 | 55.7 | 6.8 | 50.0 | 15.8 | 62.1 |
30 | Check (PAC 981) | 93.0 | 19.5 | 4.6 | 127.0 | 17.9 | 4.3 | 93.0 | 4.3 | 0.7 | 41.7 | 9.6 | 10.5 | 56.9 | 6.7 | 48.6 | 13.2 | 59.0 | |
Grand mean | 120.0 | 18.9 | 4.1 | 151.0 | 19.0 | 4.2 | 10.1 | 5.6 | 1.1 | 42.5 | 12 | 7.8 | 55.5 | 6.8 | 51.1 | 11.5 | 56.6 | ||
Coefficient of variation (%) | 9.0 | 26.3 | 32.6 | 7.4 | 14.3 | 21.2 | 9.6 | 16.7 | 20.5 | 17.7 | 25.4 | 11.5 | 2.7 | 12.0 | 5.2 | 13.7 | 2.5 | ||
Standard error | 10.9 | 5.0 | 1.4 | 11.2 | 2.7 | 0.9 | 9.6 | 0.9 | 0.2 | 7.5 | 2.2 | 0.9 | 1.5 | 0.8 | 2.6 | 1.6 | 1.4 |
S. No. | Entry | Days to 50% Bloom | Forage Quantity Related Traits | Forage Quality Traits | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rainy 2018 | Rainy 2019 | Across Years | CP (%) | IVOMD (%) | ||||||||||||||||
PH (cm) | PH (cm) | TGFY (t/ha) | TDFY (t/ha) | PH (cm) | PH (cm) | PH (cm) | TGFY (t/ha) | TDFY (t/ha) | TGFY (t/ha) | TDFY (t/ha) | % Over PAC 981 for TDFY | Across Years | Rainy 2019 | Across Years | Rainy 2019 | |||||
First Cut | Second Cut | All Two Cuts | All Two Cuts | First Cut | Second Cut | Third Cut | All Three Cuts | All Three Cuts | First Cut | Second Cut | Third Cut | First Cut | Second Cut | Third Cut | ||||||
Open-pollinated varieties | ||||||||||||||||||||
1 | ‡ ICMV 05222 | 89 | 111.9 | 226.8 | 33.7 | 6.9 | 190.5 | 136.0 | 129.0 | 55.5 | 3.0 | 44.6 | 4.9 | −26.9 | 11.7 | 11.0 | 8.8 | 51.1 | 54.0 | 49.2 |
2 | ICMV 05555 | 68 | 117.8 | 224.5 | 35.6 | 8.2 | 219.0 | 147.0 | 124.0 | 53.6 | 8.0 | 44.6 | 8.1 | 20.9 | 10.0 | 10.3 | 9.5 | 51.7 | 52.6 | 51.4 |
3 | ICMV 05777 | 88 | 142.2 | 247.0 | 42.3 | 8.1 | 203.0 | 143.0 | 132.0 | 66.1 | 6.6 | 54.2 | 7.3 | 9.0 | 10.8 | 9.7 | 8.9 | 51.0 | 53.3 | 49.3 |
4 | ICMV 15111 | 58 | 199.0 | 186.5 | 48.6 | 5.4 | 249.5 | 155.0 | 120.5 | 38.2 | 5.4 | 43.4 | 5.4 | −19.4 | 9.6 | 10.4 | 11.3 | 52.4 | 53.7 | 55.0 |
5 | ICMV 1602 | 77 | 153.5 | 235.0 | 37.8 | 8.0 | 213.0 | 146.5 | 123.0 | 33.3 | 7.5 | 35.6 | 7.7 | 14.9 | 10.4 | 11.1 | 9.4 | 51.6 | 52.2 | 50.9 |
6 | ICMV 1605 | 82 | 144.0 | 218.0 | 39.3 | 8.8 | 206.0 | 138.0 | 135.0 | 47.5 | 6.5 | 43.4 | 7.7 | 14.9 | 10.1 | 11.4 | 9.9 | 51.3 | 53.8 | 49.9 |
7 | ICMV 1608 | 79 | 140.5 | 248.0 | 45.5 | 9.5 | 215.0 | 137.0 | 129.5 | 62.6 | 6.0 | 54.1 | 7.7 | 14.9 | 11.2 | 11.1 | 9.6 | 51.7 | 54.9 | 53.5 |
8 | ICMV 1613 | 88 | 145.0 | 224.5 | 40.5 | 8.9 | 196.0 | 156.0 | 120.0 | 51.6 | 5.6 | 46.1 | 7.3 | 9.0 | 11.5 | 9.8 | 8.0 | 50.7 | 54.8 | 49.7 |
9 | ICMV 1617 | 70 | 146.0 | 233.8 | 38.2 | 10.0 | 214.0 | 150.0 | 139.5 | 56.3 | 6.7 | 47.2 | 8.3 | 23.9 | 10.1 | 10.4 | 12.5 | 51.6 | 54.2 | 54.9 |
10 | ICMV 1701 | 74 | 134.0 | 237.5 | 37.8 | 9.6 | 224.0 | 151.5 | 134.5 | 57.8 | 6.9 | 47.8 | 8.3 | 23.9 | 11.4 | 10.8 | 11.2 | 51.0 | 53.0 | 50.6 |
11 | ICMV 1707 | 69 | 145.0 | 251.0 | 43.2 | 8.8 | 245.0 | 142.0 | 126.0 | 68.0 | 7.0 | 55.6 | 7.9 | 17.9 | 11.7 | 9.7 | 8.5 | 52.1 | 54.0 | 49.8 |
12 | ICMV 1708 | 87 | 149.5 | 260.0 | 45.7 | 12.2 | 207.0 | 174.0 | 128.5 | 53.6 | 6.2 | 49.6 | 9.2 | 37.3 | 11.4 | 9.1 | 9.1 | 51.7 | 51.9 | 50.1 |
Mean | 77 | 144.0 | 232.7 | 40.7 | 8.7 | 215.2 | 148 | 128.5 | 53.7 | 6.3 | 47.2 | 7.5 | 11.0 | 10.4 | 9.8 | 51.5 | 53.5 | 51.2 | ||
Top-cross hybrids | ||||||||||||||||||||
13 | ǂ TCH 01 | 89 | 216.0 | 225.0 | 44.5 | 10.7 | 245.0 | 167.0 | 122.0 | 67.0 | 7.2 | 55.7 | 8.9 | 32.8 | 9.6 | 9.7 | 8.9 | 50.7 | 51.1 | 50.3 |
14 | TCH 02 | 47 | 219.0 | 189.5 | 45.3 | 11.7 | 227.0 | 162.5 | 126.0 | 51.2 | 6.1 | 48.3 | 8.9 | 32.8 | 9.1 | 10.0 | 12.6 | 51.2 | 52.0 | 55.6 |
15 | TCH 03 | 77 | 191.0 | 252.0 | 43.8 | 10.2 | 238.0 | 161.0 | 125.5 | 54.0 | 5.6 | 48.9 | 7.9 | 17.9 | 10.4 | 9.7 | 8.3 | 50.9 | 52.2 | 49.5 |
16 | TCH 04 | 71 | 200.5 | 223.0 | 48.3 | 10.1 | 244.5 | 176.5 | 136.0 | 64.4 | 5.0 | 56.3 | 7.6 | 13.4 | 8.1 | 9.5 | 10.3 | 49.1 | 52.3 | 52.2 |
Mean | 71 | 206.6 | 222.4 | 45.5 | 10.7 | 238.6 | 166.8 | 127.4 | 59.2 | 6.0 | 52.3 | 8.3 | 9.3 | 9.7 | 10.0 | 50.5 | 51.9 | 51.9 | ||
Three−way top-cross hybrids | ||||||||||||||||||||
17 | † TWTCH 01 | 63 | 176.5 | 209.0 | 41.8 | 10.1 | 255.5 | 147.0 | 128.5 | 61.8 | 5.5 | 51.8 | 7.8 | 16.4 | 10.2 | 11.7 | 11.4 | 52.7 | 53.6 | 53.1 |
18 | TWTCH 02 | 63 | 179.5 | 227.5 | 38.0 | 8.0 | 259.5 | 164.5 | 128.0 | 47.9 | 9.6 | 43.0 | 8.8 | 31.3 | 10.7 | 10.2 | 10.6 | 50.7 | 53.6 | 53.6 |
19 | TWTCH 03 | 64 | 214.0 | 220.5 | 46.0 | 8.5 | 253.0 | 166.0 | 132.0 | 55.6 | 10.6 | 50.8 | 9.5 | 41.8 | 11.3 | 10.2 | 9.4 | 50.8 | 54.3 | 53.3 |
20 | TWTCH 04 | 64 | 181.0 | 252.5 | 42.8 | 9.6 | 236.0 | 158.0 | 143.0 | 64.5 | 6.2 | 53.6 | 7.9 | 17.9 | 11.3 | 10.1 | 10.6 | 52.2 | 52.7 | 52.9 |
21 | TWTCH 05 | 58 | 191.0 | 213.5 | 38.1 | 8.4 | 252.0 | 158.5 | 114.5 | 51.5 | 10.0 | 44.8 | 9.2 | 37.3 | 10.8 | 11.2 | 9.1 | 52.6 | 54.1 | 50.1 |
22 | TWTCH 06 | 73 | 178.0 | 229.0 | 39.7 | 10.0 | 235.0 | 144.5 | 121.0 | 55.0 | 6.8 | 47.4 | 8.4 | 25.4 | 10.5 | 9.2 | 11.0 | 51.9 | 52.0 | 54.1 |
23 | TWTCH 07 | 61 | 185.0 | 242.0 | 42.2 | 9.3 | 253.0 | 175.0 | 133.5 | 66.0 | 10.0 | 54.1 | 9.6 | 43.3 | 10.6 | 12.2 | 10.8 | 51.4 | 53.8 | 53.8 |
Mean | 64 | 186.4 | 227.7 | 41.2 | 9.1 | 249.1 | 159.1 | 128.6 | 57.5 | 8.4 | 49.4 | 8.8 | 10.8 | 10.7 | 10.4 | 51.8 | 53.5 | 53.0 | ||
24 | PAC 981 | 71 | 116.6 | 239.9 | 36.6 | 8.2 | 207.0 | 162.0 | 127.0 | 56.5 | 5.5 | 46.5 | 6.7 | 9.6 | 10.5 | 9.4 | 49.6 | 52.7 | 49.1 |
S. No. | Cultivars | Total Dry Forage Yield (t ha−1) | Crude Protein (CP, %) | In Vitro Organic Matter Digestibility (IVOMD, %) | |||||
---|---|---|---|---|---|---|---|---|---|
Across Two Years (Rainy Seasons of 2018 and 2019) | % Over PAC 981 for TDFY | Across Two Years (Rainy Seasons of 2018 and 2019) | Rainy 2019 | Across Two Years (Rainy Seasons of 2018 and 2019) | Rainy 2019 | ||||
First Cut | Second Cut | Third Cut | First Cut | Second Cut | Third Cut | ||||
(a) | |||||||||
Open-pollinated varieties | |||||||||
1 | ICMV † 1708 | 9.2 | 37.6 | 11.4 | 9.1 | 9.1 | 51.7 | 51.9 | 50.1 |
2 | ICMV 1617 | 8.3 | 23.9 | 10.1 | 10.4 | 12.5 | 51.6 | 54.2 | 54.9 |
3 | ICMV 1701 | 8.3 | 23.9 | 11.4 | 10.8 | 11.2 | 51.0 | 53.0 | 50.6 |
4 | ICMV 05555 | 8.1 | 20.9 | 10.0 | 10.3 | 9.5 | 51.7 | 52.6 | 51.4 |
Mean | 8.5 | 10.7 | 10.2 | 10.6 | 51.5 | 53.0 | 51.7 | ||
Top-cross hybrids | |||||||||
5 | TCH ǂ 01 | 8.9 | 32.8 | 9.6 | 9.7 | 8.9 | 50.7 | 51.1 | 50.3 |
6 | TCH 02 | 8.9 | 32.8 | 9.1 | 10.0 | 12.6 | 51.2 | 52.0 | 55.6 |
7 | TCH 03 | 7.9 | 17.9 | 10.4 | 9.7 | 8.3 | 50.9 | 52.2 | 49.5 |
8 | TCH 04 | 7.6 | 13.4 | 8.1 | 9.5 | 10.3 | 49.1 | 52.3 | 52.2 |
Mean | 8.3 | 9.3 | 9.7 | 10.0 | 50.5 | 51.9 | 51.9 | ||
Three−way top-cross hybrids | |||||||||
9 | TWTCH ‡ 07 | 9.6 | 43.3 | 10.6 | 12.2 | 10.8 | 51.4 | 53.8 | 53.8 |
10 | TWTCH 03 | 9.5 | 41.8 | 11.3 | 10.2 | 9.4 | 50.8 | 54.3 | 53.3 |
11 | TWTCH 05 | 9.2 | 37.3 | 10.8 | 11.2 | 9.1 | 52.6 | 54.1 | 50.1 |
12 | TWTCH 02 | 8.8 | 31.3 | 10.7 | 10.2 | 10.6 | 50.7 | 53.6 | 53.6 |
Mean | 9.3 | 10.9 | 11.0 | 10.0 | 51.4 | 54.0 | 52.7 | ||
Check (PAC 981) | 6.7 | 9.6 | 10.5 | 9.4 | 49.6 | 52.7 | 49.1 | ||
(b) | |||||||||
Open-pollinated varieties | |||||||||
1 | † ICMV 1708 | 9.2 | 37.3 | 11.4 | 9.1 | 9.1 | 51.7 | 51.9 | 50.1 |
2 | ICMV 1617 | 8.3 | 23.9 | 10.1 | 10.4 | 12.5 | 51.6 | 54.2 | 54.9 |
3 | ICMV 1701 | 8.3 | 23.9 | 11.4 | 10.8 | 11.2 | 51.0 | 53.0 | 50.6 |
4 | ICMV 05555 | 8.1 | 20.9 | 10.0 | 10.3 | 9.5 | 51.7 | 52.6 | 51.4 |
5 | ICMV 1707 | 7.9 | 17.9 | 11.7 | 9.7 | 8.5 | 52.1 | 54.0 | 49.8 |
6 | ICMV 1602 | 7.7 | 14.9 | 10.4 | 11.1 | 9.4 | 51.6 | 52.2 | 50.9 |
7 | ICMV 1605 | 7.7 | 14.9 | 10.2 | 11.4 | 9.9 | 51.3 | 53.8 | 49.9 |
Mean | 8.2 | 10.7 | 10.4 | 10.0 | 51.6 | 53.1 | 51.1 | ||
Three−way top-cross hybrids | |||||||||
8 | ‡ TWTCH 07 | 9.6 | 43.3 | 10.6 | 12.2 | 10.8 | 51.4 | 53.8 | 53.8 |
9 | TWTCH 03 | 9.5 | 41.8 | 11.3 | 10.2 | 9.4 | 50.8 | 54.3 | 53.3 |
10 | TWTCH 05 | 9.2 | 37.3 | 10.8 | 11.2 | 9.1 | 52.6 | 54.1 | 50.1 |
11 | TWTCH 02 | 8.8 | 31.3 | 10.7 | 10.2 | 10.6 | 50.7 | 53.6 | 53.6 |
12 | TWTCH 06 | 8.4 | 25.4 | 10.5 | 9.2 | 11.0 | 51.9 | 52.0 | 54.1 |
13 | TWTCH 04 | 7.9 | 17.9 | 11.3 | 10.1 | 10.6 | 52.2 | 52.7 | 52.9 |
14 | TWTCH 01 | 7.8 | 16.4 | 10.2 | 11.7 | 11.4 | 52.7 | 53.6 | 53.1 |
Mean | 8.8 | 10.8 | 10.7 | 10.4 | 51.8 | 53.5 | 53.0 | ||
Check (PAC 981) | 6.7 | 9.6 | 10.5 | 9.4 | 49.6 | 52.7 | 49.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, S.K.; Govintharaj, P.; Bhardwaj, R. Three-Way Top-Cross Hybrids to Enhance Production of Forage with Improved Quality in Pearl Millet (Pennisetum glaucum (L.) R. Br.). Agriculture 2022, 12, 1508. https://doi.org/10.3390/agriculture12091508
Gupta SK, Govintharaj P, Bhardwaj R. Three-Way Top-Cross Hybrids to Enhance Production of Forage with Improved Quality in Pearl Millet (Pennisetum glaucum (L.) R. Br.). Agriculture. 2022; 12(9):1508. https://doi.org/10.3390/agriculture12091508
Chicago/Turabian StyleGupta, Shashi Kumar, Ponnaiah Govintharaj, and Ruchika Bhardwaj. 2022. "Three-Way Top-Cross Hybrids to Enhance Production of Forage with Improved Quality in Pearl Millet (Pennisetum glaucum (L.) R. Br.)" Agriculture 12, no. 9: 1508. https://doi.org/10.3390/agriculture12091508
APA StyleGupta, S. K., Govintharaj, P., & Bhardwaj, R. (2022). Three-Way Top-Cross Hybrids to Enhance Production of Forage with Improved Quality in Pearl Millet (Pennisetum glaucum (L.) R. Br.). Agriculture, 12(9), 1508. https://doi.org/10.3390/agriculture12091508