The Antioxidant Potential of Grains in Selected Cereals Grown in an Organic and Conventional System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Design and Field Management
- -
- Winter wheat: N—100 kg ha−1 (40 kg pre-sowing, 40 kg dose in spring just after the start of vegetation (BBCH 21–24), 20 kg at the turn of the shooting and earing stages (BBCH 32–36), P—80 kg ha−1 (pre-sowing), K—120 kg ha−1 (pre-sowing).
- -
- Spring barley: N—60 kg ha−1 (20 kg pre-sowing, 40 kg in spring at the stalk shooting stage (BBCH 32–34), P—40 kg ha−1 (pre-sowing), K—80 kg ha−1 (pre-sowing);
- -
- Oat: N—40 kg ha−1, P—30 kg ha−1, K—50 kg ha−1 (all fertilizers pre-sowing).
- -
- Winter wheat: 400 kg (pre-sowing),
- -
- Spring barley: 350 kg (pre-sowing),
- -
- Oat: 300 kg (pre-sowing).
- -
- Winter wheat, spring barley and oat: herbicide Sekator 6.25 WG (amidosulfuron + iodosulfuron methyl sodium + mefenpyr diethyl)—0.25 kg ha−1 at the tillering stage BBCH 27–28; fungicide—Alert 375 SC (flusilasol + carbendazim)—1.0 L ha−1 (at the stalk shooting stage BBCH 31–32).
2.2. Plant Sampling and Measurement
- -
- Total polyphenols were determined by the method of Naczk et al. [32] using Folin–Ciocalteau reagent (Sigma-Aldrich). In a first step, polyphenols from the material were extracted with 80% methanol and, after centrifugation, with 70% acetone. The absorbance of the supernatant was read at 725 nm. Polyphenol concentration was expressed in catechin equivalents (±) (mg g−1 DM).
- -
- The antioxidant activity of the extracts analysed was assessed by:
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Mates, J.M.; Perez-Gomez, C.; Nunez de Castro, I. Antioxidant enzymes and human diseases. Clin. Bioch. 1999, 8, 595–603. [Google Scholar] [CrossRef]
- Abeysekera, W.K.S.M.; Jayawardana, S.A.S.; Abeysekera, W.P.K.M.; Yathursan, S.; Premakumara, G.A.S.; Ranasinghe, P. Antioxidant potential of selected whole grain cereals consumed by sri lankans: A comparative in vitro study. Sri Lankan J. Biol. 2017, 2, 12–24. [Google Scholar] [CrossRef]
- Tian, W.; Jaenisch, B.; Gui, Y.; Hu, R.; Chen, G.; Lollato, R.P.; Li, Y. Effect of environment and field management strategies on phenolic acid profiles of hard red winter wheat genotypes. J. Sci. Food Agric. 2021, 102, 2424–2431. [Google Scholar] [CrossRef]
- Emmons, C.L.; Peterson, D.M. Antioxidant activity and phenolic contents of oat groats and hulls. Cereal Chem. 1999, 76, 902–906. [Google Scholar] [CrossRef]
- Peterson, D.M.; Emmons, C.L.; Hibbs, A.H. Phenolic antioxidants and antioxidants activity in pearling fractions of oat groats. J. Cereal Sci. 2001, 3, 97–103. [Google Scholar] [CrossRef]
- Adom, K.K.; Liu, R.H. Antioxidant activity of grains. J. Agric. Food Chem. 2002, 50, 6182–6187. [Google Scholar] [CrossRef]
- Zieliński, H.; Troszyńska, A. Antioxidant capacity of raw and hydrothermal processed cereal grains. Pol. J. Food Nutr. Sci. 2000, 9/50, 79–83. (In Polish) [Google Scholar]
- Zieliński, H.; Kozłowska, H. Superoxide scavenging activity of cereal grains before and after hydrothermal processing. Pol. J. Food Nutr. Sci. 2000, 50, 85–90. (In Polish) [Google Scholar]
- Hollman, P.C.H. Evidence for health benefits of plant phenols: Local or systemic effects? J. Sci. Food Agric. 2001, 81, 842–852. [Google Scholar] [CrossRef]
- Michalska, A.; Ceglińska, A.; Zieliński, H. Bioactive compounds in rye flours with different extraction rates. Eur. Food Res. Technol. 2007, 225, 545–551. [Google Scholar] [CrossRef]
- Khan, J.; Khan, M.Z.; Ma, Y.; Meng, Y.; Mushtaq, S.Q.; Xue, Y. Overview of the Composition of Whole Grains’ Phenolic Acids and Dietary Fibre and Their Effect on Chronic Non-Communicable Diseases. Int. J. Environ. Res. Public Health 2022, 19, 3042. [Google Scholar] [CrossRef] [PubMed]
- Zieliński, H.; Lewczuk, B.; Kozłowska, H. Melatonin in cereal grains as a potential cancer prevention agent. In Dietary Anticarcinogens and Antimutagens. Chemical and Biological Aspects; Johnson, I.T., Fenwick, G.R., Eds.; The Royal Society of Chemistry, Athenaeum Press Ltd.: Gateshead, UK, 2000; pp. 266–273. [Google Scholar]
- Michalska, A.; Ceglińska, A.; Amarowicz, R.; Piskuła, M.K.; Szarawa-Nowak, D.; Zieliński, H. Antioxidant contents and antioxidative properties of traditional rye bread. J. Agric. Food Chem. 2007, 55, 734–740. [Google Scholar] [CrossRef] [PubMed]
- Gong, L.; Huang, L.; Zhang, Y. Effect of Steam Explosion Treatment on Barley Bran Phenolic Compounds and Antioxidant Capacity. J. Agric. Food Chem. 2012, 60, 7177–7184. [Google Scholar] [CrossRef] [PubMed]
- Phillippy, B.Q.; Graf, E. Antioxidant functions of inositol 1,2,3-trisphosphate and inositol 1,2,3,6-tetrakisphosphate. Free Rad. Biol. Med. 1997, 22, 939–946. [Google Scholar] [CrossRef]
- Weider, S.; Amarowicz, R.; Karamać, M.; Frączek, E. Changes in endogenus phenolic acids during development of Secale cereale caryopses and after dehydratation treatment of unripe rye. Plant Physiol. Biochem. 2000, 38, 595–602. [Google Scholar] [CrossRef]
- Zieliński, H.; Kozłowska, H. Antioxidant Activity and Total Phenolics in Selected Cereal Grains and Their Different Morphological Fractions. J. Agric. Food Chem. 2000, 48, 2008–2016. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.G.; Tian, C.R.; Hu, Q.P.; Luo, J.Y.; Wang, X.D.; Tian, X.D. Dynamic Changes in Phenolic Compounds and Antioxidant Activity in Oats (Avena nuda L.) during Steeping and Germination. J. Agric. Food Chem. 2009, 57, 10392–10398. [Google Scholar] [CrossRef]
- Shewry, P.R.; Hey, S. Do ‘ancient’ wheat species differ from modern bread wheat in their contents of bioactive components? J. Cereal Sci. 2015, 65, 236–243. [Google Scholar] [CrossRef]
- Zieliński, H.; Michalska, A.; Amigo-Benavent, M.; del Castillo, M.D.; Piskula, M.K. Changes in protein quality and antioxidant properties of buckwheat seeds and groats induced by roasting. J. Agric. Food Chem. 2009, 57, 771–4776. [Google Scholar] [CrossRef]
- Karamać, M.; Amarowicz, R.; Weidner, S. Anioxidant activity of rye caryopses and embroyes extracts. Czech. J. Food Sci. 2001, 20, 209–214. [Google Scholar] [CrossRef]
- Baublis, A.J.; Lu, C.; Clydesdale, F.M.; Decker, E.A. Potential of wheat-based cereals as a source of dietary antioxidants. J. Am. Coll. Nutr. 2000, 19, 308S–311S. [Google Scholar] [CrossRef] [PubMed]
- Żuchowski, J.; Jończyk, K.; Pecio, L.; Oleszek, W. Phenolic acid concentrations in organically and conventionally cultivated spring and winter wheat. J. Sci. Food Agric. 2011, 91, 1089–1095. [Google Scholar] [CrossRef] [PubMed]
- Barański, M.; Średnicka-Tober, D.; Volakakis, N.; Seal, C.; Sanderson, R.; Stewart, G.B.; Benbrook, C.; Biavati, B.; Marellou, E.; Giotis, C.; et al. Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: A systematic literature review and meta-analyses. Br. J. Nutr. 2014, 112, 794–811. [Google Scholar] [CrossRef]
- Knap, M.; Ogrinc, N.; Potočnik, K.; Vidrih, R. Antioxidant activity in selected Slovenian organic and conventional crops. Acta Agri. Slovenica 2014, 103, 281–289. [Google Scholar] [CrossRef]
- Kwiatkowski, C.A.; Haliniarz, M.; Tomczyńska-Mleko, M.; Mleko, S.; Kawecka-Radomska, M. The content of dietary fiber, amino acids, dihydroxyphenols and some macro- and micronutrients in grain of conventionally and organically grown common wheat, spelt wheat and proso millet. Agri. Food Sci. 2015, 24, 195–205. Available online: https://www.researchgate.net/publication/284887043 (accessed on 1 August 2022). [CrossRef]
- Kwiatkowski, C.A.; Harasim, E. The Effect of Fertilization with Spent Mushroom Substrate and Traditional Methods of Fertilization of Common Thyme (Thymus vulgaris L.) on Yield Quality and Antioxidant Properties of Herbal Material. Agronomy 2021, 11, 329. [Google Scholar] [CrossRef]
- Kwiatkowski, C.A.; Harasim, E.; Klikocka-Wiśniewska, O. Effect of Catch Crops and Tillage Systems on the Content of Selected Nutrients in Spring Wheat Grain. Agronomy 2022, 12, 1054. [Google Scholar] [CrossRef]
- Capouchová, I.; Burešová, B.; Paznocht, L.; Eliášová, M.; Pazderů, K.; Konvalina, P.; Satranský, M.; Dvořáček, V. Antioxidant activity and content of selected antioxidant compounds in grain of different oat cultivars. Plant Soil Environ. 2020, 66, 327–333. [Google Scholar] [CrossRef]
- Kesarwani, A.; Mahapatra, S.S.; Chen, S.S. Impact of Organic Farming on Agronomic CropsProductivity, Grain Quality and Antioxidant Activity. In New Ideas Concerning Science and Technology; Book Publisher International: Hooghly, India, 2021; Volume 4, ISBN 978-81-949988-0-8. [Google Scholar] [CrossRef]
- WRB IUSS Working Group. World Reference Base for Soil Resources 2014. update 2015. International Soil Classification Systemfor Naming Soils and Creating Legends for Soil Maps. In World Soil Resources Reports; FAO: Rome, Italy, 2015; Available online: https://www.fao.org/3/i3794en/I3794en.pdf (accessed on 1 August 2022).
- Naczk, M.; Amarowicz, R.; Sullivan, A.; Shahidi, F. Current research developments on poliphenolics of rapeseed/ Canova: A review. Food Chem. 1998, 62, 489–502. [Google Scholar] [CrossRef]
- Yen, G.-C.; Chen, H.-Y. Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agric. Food Chem. 1995, 43, 27–32. [Google Scholar] [CrossRef]
- Pekarinen, S.S.; Stöckmann, H.; Schwarz, K.; Heinnonen, M.; Hopia, I. Antioxidant activity and partitioning of phenolic acids in bulk and emulsified methyl linoleate. J. Agric. Food Chem. 1999, 47, 3036–3043. [Google Scholar] [CrossRef] [PubMed]
- Emmons, C.L.; Peterson, D.M.; Paul, G.L. Antioxidants capacity of oats (Avena sativa L.) extracts. 2. In vitro antioxidant activity and content of phenolic and tocol antioxidants. J. Agric. Food Chem. 1999, 47, 4894–4898. [Google Scholar] [CrossRef]
- Okazaki, Y.; Isobe, T.; Iwata, Y.; Matsukawa, T.; Matsuda, F.; Miyagawa, H.; Ishihara, A.; Nishioka, T.; Iwamura, H. Metabolism of avenanthramide phytoalexins in oats. Plant J. 2004, 39, 560–572. [Google Scholar] [CrossRef]
- Chen, C.; Wang, L.; Wang, R.; Luo, X.H.; Li, Y.F.; Li, J.; Li, Y.N.; Chen, Z.X. Phenolic contents, cellular antioxidant activity and antiproliferative capacity of different varieties of oats. Food Chem. 2018, 239, 260–267. [Google Scholar] [CrossRef]
- Multari, S.; Pihlava, J.-M.; Ollennu-Chuasam, P.; Hietaniemi, V.; Yang, B.R.; Suomela, J.-P. Identification and quantification of avenanthramides and free and bound phenolic acids in eight cultivars of husked oat (Avena sativa L.) from Finland. J. Agric. Food Chem. 2018, 66, 2900–2908. [Google Scholar] [CrossRef]
- Zieliński, H.; Kozłowska, H.; Lewczuk, B. Bioactive compounds in the cereal grains before and after hydrothermal processing. Innov. Food Sci. Emerg. Technol. 2001, 2/3, 159–169. [Google Scholar] [CrossRef]
- Lempereur, I.; Rouaur, X.; Abecassis, J. Arabinoxylan and ferulic acid variation in durum wheat (Triticum durum) and distribution in milling fractions. J. Cereal Sci. 1997, 25, 103–107. [Google Scholar] [CrossRef]
- Andreasen, M.F.; Christensen, L.P.; Meyer, A.S.; Hansen, A. Release of hydrocinnamic and hydrobenzoic acids in rye by commercial plant cell wall degrading enzyme preparations. J. Sci. Food Agric. 1999, 79, 411–413. [Google Scholar] [CrossRef]
- Bhanja Dey, T.; Kuhad, R. Upgrading the antioxidant potential of cereals by their fungal fermentation under solid-state cultivation conditions. Lett. Appl. Microbiol. 2014, 59, 493–499. [Google Scholar] [CrossRef]
- Tian, W.; Zheng, Y.; Wang, W.; Wang, D.; Tilley, M.; Zhang, G.; He, Z.; Li, Y. A comprehensive review of wheat phytochemicals: From farm to fork and beyond. Compr. Rev. Food Sci. Food Saf. 2022, 21, 2274–2308. [Google Scholar] [CrossRef]
- Goupy, P.; Hugues, M.; Boivin, P.; Amiot, M.J. Antioxidant composition and activity of barley (Hordeum vulgare) and malt extracts and of isolated phenolic compounds. J. Sci. Food Agric. 1999, 79, 1625–1634. [Google Scholar] [CrossRef]
- Mpofu, A.; Sapirstein, H.D.; Beta, T. Genotype and environmental variation in phenolic content, phenolic acid composition, and antioxidant activity of hard spring wheat. J. Agric. Food Chem. 2006, 54, 1265–1270. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chatzidimitriou, E.; Wood, L.; Hasanalieva, G.; Markellou, E.; Iversen, P.O.; Seal, C.; Baranski, M.; Vigar, V.; Ernst, L.; et al. Effect of wheat species (Triticum aestivum vs T. spelta), farming system (organic vs conventional) and flour type (wholegrain vs white) on composition of wheat flour—Results of a retail survey in the UK and Germany—2. Antioxidant activity, and phenolic and mineral content. Food Chem. X 2020, 6, 100091. [Google Scholar] [CrossRef] [PubMed]
- Hecker, K.D.; Meier, M.L.; Newman, R.K.; Newman, C.W. Barley β-glucan is effective as a hypocholesterolaemic ingredient in foods. J. Sci. Food Agric. 1998, 77, 179–183. [Google Scholar] [CrossRef]
- Slavin, J.L.; Martini, M.C.; Jacobs, D.R.; Marquardt, L. Plausible mechanisms of protectiveness of whole grains. Am. J. Clin. Nutr. 1999, 70, 459S–463S. [Google Scholar] [CrossRef]
- Hung, P.V. Phenolic compounds of cereals and their antioxidant capacity. Crit. Rev. Food Sci. Nutr. 2016, 56, 25–35. [Google Scholar] [CrossRef]
- Polonskiy, V.; Loskutov, I.; Sumina, A. Biological role and health benefits of antioxidant compounds in cereals. Biol. Commun. 2020, 65, 53–67. [Google Scholar] [CrossRef]
- Tian, W.; Wang, F.; Xu, K.; Zhang, Z.; Yan, J.; Yan, J.; Tian, Y.; Liu, J.; Zhang, Y.; Zhang, Y.; et al. Accumulation of Wheat Phenolic Acids under Different Nitrogen Rates and Growing Environments. Plants 2022, 11, 2237. [Google Scholar] [CrossRef]
- Durazzo, A.; Casale, G.; Melini, V.; Maiani, G.; Acquistucci, R. Evaluation of Antioxidant Properties in Cereals: Study of Some Traditional Italian Wheats. Foods 2015, 4, 391–399. [Google Scholar] [CrossRef]
- Eliášová, M.; Paznocht, L. Total phenolic content and antioxidant activity of tritordeum wheat and barley. Agronomy Res. 2017, 15, 1287–1294. [Google Scholar]
- Zrcková, M.; Capouchová, I.; Eliášová, M.; Paznocht, L.; Pazderů, K.; Dvořák, P.; Konvalina, P.; Orsák, M.; Štěrba, Z. The effect of genotype, weather conditions and cropping system on antioxidant activity and content of selected antioxidant compounds in wheat with coloured grain. Plant Soil Environ. 2018, 64, 530–538. [Google Scholar] [CrossRef]
- Stewart, D.; McDougall, G. Oat agriculture, cultivation and breeding targets: Implications for human nutrition and health. Br. J. Nutr. 2014, 112, S50–S57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kouřimská, L.; Sabolová, M.; Horčička, P.; Rys, S.; Božik, M. Lipid content, fatty acid profile and nutritional value of new oat varieties. J. Cereal Sci. 2018, 84, 44–48. [Google Scholar] [CrossRef]
- Dimberg, L.H.; Gissén, C.; Nilsson, J. Phenolic Compounds in Oat Grains (Avena Sativa L.) Grown in Conventional and Organic Systems. Ambio 2005, 34, 331–337. Available online: http://www.jstor.org/stable/4315611 (accessed on 1 August 2022). [CrossRef] [PubMed]
- Chen, H.; Qiu, S.; Gan, J.; Li, Z.; Nirasawa, S.; Yin, L. New insights into the antioxidant activity and components in crude oat oil and soybean oil. J. Food Sci. Technol. 2016, 53, 808–815. [Google Scholar] [CrossRef]
- Horvat, D.; Šimić, G.; Drezner, G.; Lalić, A.; Ledenčan, T.; Tucak, M.; Plavšić, H.; Andrić, L.; Zdunić, Z. Phenolic Acid Profiles and Antioxidant Activity of Major Cereal Crops. Antioxidants 2020, 9, 527. [Google Scholar] [CrossRef]
- Gałązka, A.; Gawryjołek, K.; Żuchowski, J. Evaluation of the content of phenolic acids and their antioxidant activity in winter cereal seeds. J. Elem. 2017, 22, 593–605. [Google Scholar] [CrossRef]
- Yilmaz, V.A. Investigation of bioactive compounds and antioxidant capacities of various cereal products. J. Agric. Fac. Gaziosmanpasa Univ. 2019, 36, 10–22. [Google Scholar] [CrossRef]
- Fardet, A.; Rock, E.; Rémésy, C. Is the in vitro antioxidant potential of whole-grain cereals and cereal products well reflected in vivo? J. Cereal Sci. 2008, 48, 258–276. [Google Scholar] [CrossRef]
- Žilić, S.; Šukalović, V.H.-T.; Dodig, D.; Maksimović, V.; Maksimović, M.; Basić, Z. Antioxidant activity of small grain cereals caused by phenolics and lipid soluble antioxidants. J. Cereal Sci. 2011, 54, 417–424. [Google Scholar] [CrossRef]
- Holtekjølen, A.K.; Sahlstrøm, S.; Knutsen, S.H. Phenolic contents and antioxidant activities in covered whole-grain flours of Norwegian barley varieties and in fractions obtained after pearling. Acta. Agric. Scand. B-Soil Plant 2011, 61, 67–74. [Google Scholar] [CrossRef]
- Abdel-Aal, E.S.M.; Choo, T.M. Differences in compositional properties of a hulless barley cultivar grown in 23 environments in eastern Canada. Can. J. Plant Sci. 2014, 94, 807–815. [Google Scholar] [CrossRef]
- Emmons, C.L.; Peterson, D.M. Antioxidant activity and phenolics content of oat as affected by cultivar and location. Crop Sci. 2001, 41, 1676–1681. [Google Scholar] [CrossRef]
Grain Fractions | Winter Wheat | Spring Barley | Oat | Mean for the Farming System | Mean | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Org. System | Conv. System | Mean | Org. System | Conv. System | Mean | Org. System | Conv. System | Mean | Org. System | Conv. System | ||
Entire grain | 1.94 ± 0.02 * | 1.99 ± 0.03 | 1.96 | 2.23 ± 0.02 | 2.15 ± 0.02 | 2.05 | 2.35 ± 0.03 | 2.27 ± 0.03 | 2.31 | 2.17 | 2.13 | 2.15 |
Dehulled grain | 1.75 ± 0.02 | 1.80 ± 0.02 | 1.77 | 1.80 ± 0.01 | 1.77 ± 0.01 | 1.78 | 2.26 ± 0.04 | 2.18 ± 0.02 | 2.22 | 1.93 | 1.91 | 1.92 |
Flour | 1.86 ± 0.01 | 1.92 ± 0.01 | 1.89 | 1.90 ± 0.01 | 1.85 ± 0.02 | 1.87 | 1.93 ± 0.04 | 1.87 ± 0.04 | 1.90 | 1.89 | 1.88 | 1.88 |
Bran | 2.01 ± 0.03 | 2.09 ± 0.03 | 2.05 | 2.36 ± 0.02 | 2.27 ± 0.03 | 2.31 | 2.47 ± 0.06 | 2.39 ± 0.05 | 2.43 | 2.28 | 2.25 | 2.26 |
Mean | 1.89 | 1.95 | 1.92 | 2.07 | 2.01 | 2.04 | 2.25 | 2.17 | 2.21 | 2.07 | 2.04 | - |
Grain Fractions | Winter Wheat | Spring Barley | Oat | Mean for the Farming System | Mean | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Org. System | Conv. System | Mean | Org. System | Conv. System | Mean | Org. System | Conv. System | Mean | Org. System | Conv. System | ||
Entire grain | 0.215 ± 0.005 * | 0.224 ± 0.005 | 0.219 | 0.222 ± 0.004 | 0.219 ± 0.003 | 0.220 | 0.238 ± 0.003 | 0.229 ± 0.004 | 0.233 | 0.225 | 0.224 | 0.224 |
Dehulled grain | 0.197 ± 0.006 | 0.200 ± 0.005 | 0.198 | 0.211 ± 0.005 | 0.206 ± 0.004 | 0.208 | 0.234 ± 0.005 | 0.226 ± 0.006 | 0.230 | 0.214 | 0.210 | 0.212 |
Flour | 0.193 ± 0.003 | 0.198 ± 0.002 | 0.195 | 0.209 ± 0.006 | 0.201 ± 0.005 | 0.205 | 0.225 ± 0.006 | 0.214 ± 0.004 | 0.219 | 0.209 | 0.204 | 0.206 |
Bran | 0.225 ± 0.007 | 0.231 ± 0.007 | 0.228 | 0.249 ± 0.007 | 0.235 ± 0.006 | 0.242 | 0.260 ± 0.008 | 0.243 ± 0.007 | 0.251 | 0.244 | 0.236 | 0.240 |
Mean | 0.207 | 0.213 | 0.210 | 0.222 | 0.215 | 0.218 | 0.239 | 0.228 | 0.233 | 0.223 | 0.219 | - |
Grain Fractions | Winter Wheat | Spring Barley | Oat | Mean for the Farming System | Mean | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Org. System | Conv. System | Mean | Org. System | Conv. System | Mean | Org. System | Conv. System | Mean | Org. System | Conv. System | ||
Entire grain | 31.25 ± 0.05 * | 31.78 ± 0.06 | 31.51 | 32.18 ± 0.06 | 31.96 ± 0.07 | 32.07 | 35.03 ± 0.05 | 34.02 ± 0.07 | 34.52 | 32.82 | 32.58 | 32.70 |
Dehulled grain | 19.25 ± 0.0.37 | 19.94 ± 0.41 | 19.59 | 20.12 ± 0.39 | 20.02 ± 0.22 | 20.07 | 32.05 ± 0.51 | 31.90 ± 0.55 | 31.97 | 23.80 | 23.83 | 23.81 |
Flour | 20.79 ± 0.30 | 21.06 ± 0.26 | 20.92 | 22.51 ± 0.09 | 21.78 ± 0.08 | 22.14 | 27.35 ± 0.27 | 25.12 ± 0.22 | 26.23 | 23.55 | 22.65 | 23.10 |
Bran | 33.65 ± 0.41 | 33.82 ± 0.37 | 33.73 | 34.89 ± 0.40 | 33.19 ± 0.33 | 34.04 | 37.11 ± 0.38 | 34.04 ± 0.39 | 35.57 | 35.21 | 33.68 | 34.44 |
Mean | 26.23 | 26.65 | 26.44 | 27.42 | 26.73 | 27.07 | 32.88 | 31.27 | 32.07 | 28.84 | 28.21 | - |
Grain Fractions | Winter Wheat | Spring Barley | Oat | Mean for the Farming System | Mean | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Org. System | Conv. System | Mean | Org. System | Conv. System | Mean | Org. System | Conv. System | Mean | Org. System | Conv. System | ||
Entire grain | 33.62 ± 0.65 * | 34.91 ± 0.66 | 34.26 | 38.35 ± 0.77 | 37.25 ± 0.56 | 37.80 | 39.44 ± 0.82 | 36.78 ± 0.65 | 38.11 | 37.13 | 36.31 | 36.72 |
Dehulled grain | 31.89 ± 0.49 | 32.96 ± 0.52 | 32.42 | 36.22 ± 0.47 | 35.16 ± 0.44 | 35.69 | 37.85 ± 0.58 | 38.12 ± 0.46 | 38.48 | 35.32 | 35.41 | 35.36 |
Flour | 11.61 ± 0.67 | 11.87 ± 0.70 | 11.74 | 12.19 ± 0.86 | 12.02 ± 0.75 | 12.10 | 13.74 ± 0.91 | 12.50 ± 0.85 | 13.12 | 12.51 | 12.13 | 12.32 |
Bran | 36.25 ± 0.79 | 37.34 ± 0.55 | 36.75 | 40.11 ± 0.70 | 39.87 ± 0.61 | 39.99 | 41.88 ± 1.02 | 40.96 ± 1.08 | 41.42 | 39.41 | 39.39 | 39.40 |
Mean | 28.34 | 29.27 | 28.80 | 31.71 | 31.07 | 31.39 | 33.22 | 32.09 | 32.65 | 31.09 | 30.81 | - |
Cereals | Grain Fractions | Organically Grown Grain | Conventionally Grown Grain |
---|---|---|---|
Winter wheat | Whole grain | 0.621 * | 0.633 * |
Dehulled grain | 0.473 ns | 0.521 * | |
Flour | 0.423 ns | 0.434 ns | |
Bran | 0.677 * | 0.694 * | |
Spring barley | Whole grain | 0.724* | 0.709 * |
Dehulled grain | 0.601 * | 0.586 * | |
Flour | 0.564 * | 0.532 * | |
Bran | 0.871 * | 0.746 * | |
Oat | Whole grain | 0.860 * | 0.738 * |
Dehulled grain | 0.710 * | 0.698 * | |
Flour | 0.622 * | 0.613 * | |
Bran | 0.925 * | 0.887 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwiatkowski, C.A.; Harasim, E.; Feledyn-Szewczyk, B.; Joniec, J. The Antioxidant Potential of Grains in Selected Cereals Grown in an Organic and Conventional System. Agriculture 2022, 12, 1485. https://doi.org/10.3390/agriculture12091485
Kwiatkowski CA, Harasim E, Feledyn-Szewczyk B, Joniec J. The Antioxidant Potential of Grains in Selected Cereals Grown in an Organic and Conventional System. Agriculture. 2022; 12(9):1485. https://doi.org/10.3390/agriculture12091485
Chicago/Turabian StyleKwiatkowski, Cezary A., Elżbieta Harasim, Beata Feledyn-Szewczyk, and Jolanta Joniec. 2022. "The Antioxidant Potential of Grains in Selected Cereals Grown in an Organic and Conventional System" Agriculture 12, no. 9: 1485. https://doi.org/10.3390/agriculture12091485
APA StyleKwiatkowski, C. A., Harasim, E., Feledyn-Szewczyk, B., & Joniec, J. (2022). The Antioxidant Potential of Grains in Selected Cereals Grown in an Organic and Conventional System. Agriculture, 12(9), 1485. https://doi.org/10.3390/agriculture12091485