Reducing Carbon Footprint of Agriculture—Can Organic Farming Help to Mitigate Climate Change?
Abstract
:1. Introduction
2. Agriculture’s Share in Greenhouse Gas Emissions
3. Organic Agriculture
4. Evaluation of Greenhouse Gas Emissions in the Life Cycle Assessment
- Consumption of renewable sources (biomass, energy);
- Consumption of non-renewable resources (mineral resources, fossil fuels);
- Water consumption;
- Amounts of waste for recycling;
- Environmental impact category indicators (acidification potential, eutrophication potential, photooxidant formation potential);
- Environmental footprints (carbon footprint, ecological footprint, water footprint).
4.1. Life Cycle Assessment Framework
- Goal and scope definition;
- Life cycle inventory;
- Life cycle impact assessment;
- Interpretation.
- Selecting the impact category;
- Classification—assigning the LCI results to the impact category;
- Characterization—calculation of the category indicators;
- Normalization—calculating the value of a category indicator against the reference information;
- Grouping—the sorting or ranking of indicators;
- Weighing—assigning weights (importance) to the potential influences;
- Evaluation and reporting of the LCIA results.
4.2. Carbon Footprint
5. Driving Factors of the GHG Emissions Intensity in Crop Production
5.1. Fertilization
5.2. Plant Protection
5.3. Energy and Machinery Use
5.4. Carbon Sequestration
6. Carbon Footprint of Organic Farming
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kundzewicz, Z.W. Large-scale climate change (observations, interpretation, projections). In Climate Change and Its Impact on Selected Sectors in Poland; Kundzewicz, Z.W., Hov, Ø., Okruszko, T., Eds.; Ridero IT Publishing: Poznań, Poland, 2017; pp. 14–28. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Summary for policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; MassonDelmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 3–32. [Google Scholar] [CrossRef]
- Bindoff, N.L.; Stott, P.A.; AchutaRao, K.M.; Allen, M.R.; Gillett, N.; Gutzler, D.; Hansingo, K.; Hegerl, G.; Hu, Y.; Jain, S.; et al. Detection and attribution of climate change: From global to regional. In Climate Change 2013: The Physical Science Basis Contribution of Working Group I to the 5th Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 867–952. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Shukla, P.R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., van Diemen, R., Eds.; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Fahey, D.W.; Doherty, S.J.; Hibbard, K.A.; Romanou, A.; Taylor, P.C. Physical drivers of climate change. In Climate Science Special Report: Fourth National Climate Assessment; Wuebbles, D.J., Fahey, D.W., Hibbard, K.A., Dokken, D.J., Stewart, B.C., Maycock, T.K., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2017; pp. 73–113. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Kozyra, J. Climate change impact on Polish agriculture. In Climate Change and Its Impact on Selected Sectors in Poland; Kundzewicz, Z.W., Hov, Ø., Okruszko, T., Eds.; Ridero IT Publishing: Poznań, Poland, 2017; pp. 158–171. [Google Scholar]
- Graczyk, D.; Szwed, M. Changes in the occurrence of late spring frost in Poland. Agronomy 2020, 10, 1835. [Google Scholar] [CrossRef]
- Choryński, A.; Pińskwar, I.; Graczyk, D.; Krzyżaniak, M. The emergence of different local resilience arrangements regarding extreme weather events in small municipalities—A case study from the Wielkopolska Region, Poland. Sustainability 2022, 14, 2052. [Google Scholar] [CrossRef]
- Rojas-Downing, M.M.; Nejadhashemi, A.P.; Harrigan, T.; Woźnicki, S.A. Climate change and livestock: Impacts, adaptation, and mitigation. Clim. Risk Manag. 2017, 16, 145–163. [Google Scholar] [CrossRef]
- Añel, J.A.; Fernández-González, M.; Labandeira, X.; López-Otero, X.; de la Torre, L. Impact of cold waves and heat waves on the energy production sector. Atmosphere 2017, 8, 209. [Google Scholar] [CrossRef]
- Graczyk, D.; Pińskwar, I.; Choryński, A. Heat-related mortality in two regions of Poland: Focus on urban and rural areas during the most severe and long-lasting heatwaves. Atmosphere 2022, 13, 390. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Piniewski, M.; Mezghani, A.; Okruszko, T.; Pińskwar, I.; Kardel, I.; Hov, Ø. Assessment of climate change and associated impact on selected sectors in Poland. Acta Geophys. 2018, 66, 1509–1523. [Google Scholar] [CrossRef]
- Commission Implementing Regulation (EU) No 749/2014 of 30 June 2014 on Structure, Format, Submission Processes and Review of Information Reported by Member States Pursuant to Regulation (EU) No 525/2013 of the European Parliament and of the Council. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32014R0749&from=EN (accessed on 22 May 2022).
- European Council Conclusions 2014. 2030 Climate and Energy Policy Framework. Conclusions—23/24 October 2014, EUCO 169/14. Available online: https://www.consilium.europa.eu/media/24561/145397.pdf (accessed on 22 May 2022).
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef]
- Tubiello, F.N.; Karl, K.; Flammini, A.; Gütschow, J.; Obli-Laryea, G.; Conchedda, G.; Pan, X.; Qi, S.Y.; Halldórudóttir Heiðarsdóttir, H.; Wanner, N.; et al. Pre- and post-production processes increasingly dominate greenhouse gas emissions from agri-food systems. Earth Syst. Sci. Data 2022, 14, 1795–1809. [Google Scholar] [CrossRef]
- Rhodes, C.J. The 2015 Paris Climate Change Conference: Cop21. Sci. Prog. 2016, 97–104. [Google Scholar] [CrossRef]
- Cifuentes-Faura, J. European Union policies and their role in combating climate change over the years. Air Qual. Atmos. Health 2022, 15, 1333–1340. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission to the European Parliament, the European Council. Sustainable Carbon Cycles COM/2021/800 Final; European Commission: Brussels, Belgium, 2021. [Google Scholar]
- O’Donoghue, T.; Minasny, B.; McBratney, A. Regenerative agriculture and its potential to improve farmscape function. Sustainability 2022, 14, 5815. [Google Scholar] [CrossRef]
- Wiltshire, S.; Beckage, B. Soil carbon sequestration through regenerative agriculture in the U.S. state of Vermont. PLoS Clim. 2022, 1, e0000021. [Google Scholar] [CrossRef]
- White, R.E. The role of soil carbon sequestration as a climate change mitigation strategy: An Australian case study. Soil Syst. 2022, 6, 46. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions, European Green Deal, COM(2019) 640 Final, 11.12.2019; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- Wrzaszcz, W.; Prandecki, K. Agriculture and the European Green Deal. Probl. Agric. Econ. 2020, 365, 156–179. [Google Scholar] [CrossRef]
- Prandecki, K.; Wrzaszcz, W.; Zieliński, M. Environmental and climate challenges to agriculture in Poland in the context of objectives adopted in the European Green Deal strategy. Sustainability 2021, 13, 10318. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. A Farm to Fork Strategy for a Fair, Healthy and Environmen-Tally-Friendly Food System, COM/2020/381 Final, 20.05.2020; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- European Commission. Communication from the Commission to the European Parliament, the European Council, the European Economic and Social Committee and the Committee of the Regions, EU Biodiversity Strategy for 2030 Bringing Nature back into Our Lives, COM(2020) 380 Final, 20.05.2020; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Średnicka-Tober, D.; Obiedzinska, A.; Kazimierczak, R.; Rembiałkowska, E. Environmental impact of organic vs. conventional agriculture—A review. J. Res. Appl. Agric. Eng. 2016, 61, 204–211. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO). The Share of Food Systems in Total Greenhouse Gas Emissions. Global, Regional and Country Trends 1990–2019. FAOSTAT Analytical Brief Series No. 31; FAO: Rome, Italy, 2021. [Google Scholar]
- European Environment Agency (EEA). Available online: https://www.eea.europa.eu/data-and-maps/data/data-viewers/greenhouse-gases-viewer (accessed on 16 May 2022).
- Vogt, G. The origins of organic farming. In Organic Farming: An International History; Lockeretz, W., Ed.; CABI: London, UK, 2007; pp. 9–29. [Google Scholar]
- Migliorini, P.; Wezel, A. Converging and diverging principles and practices of organic agriculture regulations and agroecology. A review. Agron. Sustain. Dev. 2017, 37, 63. [Google Scholar] [CrossRef]
- Research Institute of Organic Agriculture (FiBL). The World of Organic Agriculture. Statistics and Emerging Trends. 2021. Available online: https://www.fibl.org/fileadmin/documents/shop/1150-organic-world-2021.pdf (accessed on 22 May 2022).
- Research Institute of Organic Agriculture (FiBL). Available online: https://statistics.fibl.org/data.html (accessed on 22 May 2022).
- Hanus, G. The phenomenon of ecologisation in the food behaviour of Poles—Results of empirical research. Econ. Environ. 2020, 73, 71–84. [Google Scholar] [CrossRef]
- Caffrey, K.R.; Veal, M.V. Conducting an agricultural life cycle assessment: Challenges and perspectives. Sci. World J. 2013, 2013, 472431. [Google Scholar] [CrossRef] [Green Version]
- Roy, P.; Nei, D.; Orikasa, T.; Xu, Q.; Okadome, H.; Nakamura, N.; Shiina, T. A review of life cycle assessment (LCA) on some food products. J. Food Eng. 2009, 90, 1–10. [Google Scholar] [CrossRef]
- Klöpffer, W. The role of SETAC in the development of LCA. Int. J. Life Cycle Asses. 2006, 11, 116–122. [Google Scholar] [CrossRef]
- Alhashim, R.; Deepa, R.; Anandhi, A. Environmental impact assessment of agricultural production using LCA: A review. Climate 2021, 9, 164. [Google Scholar] [CrossRef]
- Hospido, A.; Davis, J.; Berlin, J.; Sonesson, U. A review of methodological issues affecting LCA of novel food products. Int. J. Life Cycle Assess. 2010, 15, 44–52. [Google Scholar] [CrossRef]
- Nitschelm, L.; Flipo, B.; Chambaut, H.; Colomb, V.; Gac, A.; Dauguet, S.; Espagnol, S.; Le Gall, C.; Perrin, A.; Ponchant, P.; et al. Using life cycle assessment to assess and improve the environmental performance of organic production systems. In Book of Abstracts of the Science Forum at the Organic World Congress 2021, Rennes, France, 8–10 September 2021; Rahmann, G., Rey, F., Ardakani, R., Azim, K., Chable, V., Heckendorn, F., Migliorini, P., Moeskops, B., Neuhoff, D., Rembiałkowska, E., Eds.; Johann Heinrich von Thünen-Institut: Braunschweig, Germany, 2021. [Google Scholar]
- Nemecek, T.; Bengoa, X.; Lansche, J.; Roesch, A.; Faist-Emmenegger, M.; Rossi, V.; Humbert, S. Methodological Guidelines for the Life Cycle Inventory of Agricultural Products; Version 3.5. World Food LCA Database (WFLDB); Quantis and Agroscope: Zurich, Switzerland, 2019. [Google Scholar]
- Del Borghi, A.L.; Moreschi, M.G. Life cycle assessment in the food industry. In The Interaction of Food Industry and Environment; Galanakis, C., Ed.; Academic Press: London, UK, 2020; pp. 63–118. [Google Scholar] [CrossRef]
- Sureeyatanapas, P.; Yodprang, K.; Varabuntoonvit, V. Drivers, barriers and benefits of product carbon footprinting: A state-of-the-art survey of Thai manufacturers. Sustainability 2021, 13, 6543. [Google Scholar] [CrossRef]
- Taufique, K.; Nielsen, K.; Dietz, T.; Shwom, R.; Stern, P.; Vandenbergh, M. Revisiting the promise of carbon labelling. Nat. Clim. Chang. 2022, 12, 132–140. [Google Scholar] [CrossRef]
- PAS 2050:2011. BSI 2011; Specification for the Assessment of the Life Cycle Greenhouse Gas Emissions of Goods and Services. British Standards Institute: London, UK, 2011; ISBN 978-0-580-71382-8.
- Guenther, M.; Saunders, C.M.; Tait, P.R. Carbon labeling and consumer attitudes. Carbon Manag. 2012, 3, 445–455. [Google Scholar] [CrossRef]
- Guinée, J.B.; Gorrée, M.; Heijungs, R.; Huppes, G.; Kleijn, R.; de Koning, A.; van Oers, L.; Wegener Sleeswijk, A.; Suh, S.; Udo de Haes, H.A.; et al. Handbook on Life Cycle Assessment. Operational Guide to the ISO Standards. I: LCA in Perspective. IIa: Guide. IIb: Operational Annex. III: Scientific Background; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002. [Google Scholar]
- Cucurachi, S.; Scherer, L.; Guinee, J.; Tukker, A. Life cycle assessment of food systems. One Earth 2019, 1, 292–297. [Google Scholar] [CrossRef]
- ISO 14040:2006; Environmental Management–Life Cycle Assessment–Principles and Framework. International Organization for Standardization: Geneva, Switzerland, 2006.
- ISO 14044:2006; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. International Organization for Standardization: Geneva, Switzerland, 2006.
- Fantozzi, F.; Bartocci, P. Carbon footprint as a tool to limit greenhouse gas emissions. In Greenhouse Gases; Moya, B.L., Pous, J., Eds.; IntechOpen: London, UK, 2016. [Google Scholar] [CrossRef] [Green Version]
- Litskas, V.D.; Platis, D.P.; Anagnostopoulos, C.D.; Tsaboula, A.C.; Menexes, G.C.; Kalburtji, K.L.; Stavrinides, M.C.; Mamolos, A.P. Climate change and agriculture: Carbon footprint estimation for agricultural products and labeling for emissions mitigation, In Sustainability of the Food System: Sovereignty, Waste, and Nutrients Bioavailability; Betoret, N., Betoret, E., Eds.; Academic Press: London, UK, 2020; pp. 33–49. [Google Scholar] [CrossRef]
- Iriarte, A.; Rieradevall, J.; Gabarrell, X. Life cycle assessment of sunflower and rapeseed as energy crops under Chilean conditions. J. Clean. Prod. 2010, 18, 336–345. [Google Scholar] [CrossRef]
- Gasol, C.M.; Salvia, J.; Serra, J.; Antón, A.; Sevigne, E.; Rieradevall, J.; Gabarrell, X. A life cycle assessment of biodiesel production from winter rape grown in Southern Europe. Biomass Bioenergy 2012, 40, 71–81. [Google Scholar] [CrossRef]
- Hergoualc’h, K.; Akiyama, H.; Bernoux, M.; Chirinda, N.; del Prado, A.; Kasimir, Å.; MacDonald, J.D.; Ogle, S.M.; Regina, K.; van der Weerden, T.J. N2O emissions from managed soils, and CO2 emissions from lime and urea application. In 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Buendia, E., Tanabe, K., Kranjc, A., Baasansuren, J., Fukuda, M., Ngarize, S., Osako, A., Pyrozhenko, Y., Shermanau, P., Federici, S., Eds.; IPCC: Geneva, Switzerland, 2019; Chapter 11; Available online: https://www.ipcc-nggip.iges.or.jp/public/2019rf/pdf/4_Volume4/19R_V4_Ch11_Soils_N2O_CO2.pdf (accessed on 10 May 2022).
- Committee on a Framework for Assessing the Health, Environmental, and Social Effects of the Food System; Food and Nutrition Board; Board on Agriculture and Natural Resources; Institute of Medicine; National Research Council; Nesheim, M.C.; Oria, M.; Yih, P.T. (Eds.) A Framework for Assessing Effects of the Food System; ANNEX 4, Nitrogen in Agroecosystems; National Academies Press: Washington, DC, USA, 2015. Available online: https://www.ncbi.nlm.nih.gov/books/NBK305171/ (accessed on 10 May 2022).
- Myhre, G.; Shindell, D.; Bréon, F.-M.; Collins, W.; Fuglestvedt, J.; Huang, J.; Koch, D.; Lamarque, J.-F.; Lee, D.; Mendoza, B.; et al. Anthropogenic and Natural Radiative Forcing. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.-K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Emmerling, C.; Krein, A.; Junk, J. Meta-analysis of strategies to reduce NH3 emissions from slurries in European agriculture and consequences for greenhouse gas emissions. Agronomy 2020, 10, 1633. [Google Scholar] [CrossRef]
- Mahmud, K.; Panday, D.; Mergoum, A.; Missaoui, A. Nitrogen losses and potential mitigation strategies for a sustainable agroecosystem. Sustainability 2021, 13, 2400. [Google Scholar] [CrossRef]
- Chmelíková, L.; Schmid, H.; Anke, S.; Hülsbergen, K.-J. Nitrogen-use efficiency of organic and conventional arable and dairy farming systems in Germany. Nutr. Cycl. Agroecosyst. 2021, 119, 337–354. [Google Scholar] [CrossRef]
- Severin, M.; Fuß, R.; Well, R.; Garlipp, F.; Van den Weghe, H. Soil, slurry and application effects on greenhouse gas emissions. Plant Soil Environ. 2015, 61, 344–351. [Google Scholar] [CrossRef]
- Sieling, K.; Kage, H. Efficient N management using winter oilseed rape. A review. Agron. Sustain. Dev. 2010, 30, 271–279. [Google Scholar] [CrossRef]
- Kuikmann, P.J.; van der Hoek, K.W.; Smit, A.; Zwart, K. Update of Emission Factors for Nitrous Oxide from Agricultural Soils on the Basis of Measurements in the Netherlands. Alterra Report. 1217. Available online: https://edepot.wur.nl/24831 (accessed on 10 May 2022).
- Schäfer, F.; Blanke, M. Farming and marketing system affects carbon and water footprint - A case study using Hokaido pumpkin. J. Clean. Prod. 2012, 28, 113–119. [Google Scholar] [CrossRef]
- Petersen, S.O.; Sommer, S.G. Ammonia and nitrous oxide interactions: Roles of manure organic matter management. Anim. Feed Sci. Technol. 2011, 166–167, 503–513. [Google Scholar] [CrossRef]
- Wang, C.; Amon, B.; Schulz, K.; Mehdi, B. Factors that influence nitrous oxide emissions from agricultural soils as well as their representation in simulation models: A review. Agronomy 2021, 11, 770. [Google Scholar] [CrossRef]
- Powell, J.M.; Jokela, W.E.; Misselbrook, T.H. Dairy slurry application method impacts ammonia emission and nitrate leaching in no-till corn silage. J. Environ. Qual. 2011, 40, 383–392. [Google Scholar] [CrossRef]
- Bouwman, A.F.; Boumans, L.J.M.; Batjes, N.H. Modeling global annual N2O and NO emissions from fertilized fields. Glob. Biogeochem. Cycles 2002, 16, 1080. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Physical Science Basis. Working Group I Contribution to the Fourth Assessment Report of the IPCC; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Avery, K., Tignor, M., Miller, H., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007.
- Robertson, G.P.; Bruulsema, T.W.; Gehl, R.J.; Kanter, D.; Mauzerall, D.L.; Rotz, C.A.; Wiliams, C.O. Nitrogen–climate interactions in US agriculture. Biogeochemistry 2013, 114, 41–70. [Google Scholar] [CrossRef]
- Sommer, S.G.; Schjoerring, J.K.; Denmead, O.T. Ammonia emission from mineral fertilizers and fertilized crops. Adv. Agronomy 2004, 82, 557–622. [Google Scholar] [CrossRef]
- Bieńkowski, J.F.; Dąbrowicz, R.; Holka, M.; Jankowiak, J. Carbon footprint of rapeseed in conventional farming: Case study of large-sized farms in Wielkopolska Region (Poland). Asian J. Appl. Sci. Eng. 2015, 4, 191–200. [Google Scholar]
- Brentrup, F.; Palliere, C. GHG emission and energy efficiency in European nitrogen fertilizer production and use. In Proceedings of the International Fertiliser Society Conference, Cambridge, UK, 11 December 2008; International Fertiliser Socciety: York, UK, 2018; pp. 1–25. [Google Scholar]
- Beckman, J.; Riche, S. Changes to the natural gas corn, and fertilizer price relationships from the biofuels era. J. Agric. Appl. Econ. 2015, 47, 494–509. [Google Scholar] [CrossRef]
- Ghavam, S.; Vahdati, M.; Wilson, I.A.G.; Styring, P. Sustainable ammonia production processes. Front. Energy Res. 2021, 9, 580808. [Google Scholar] [CrossRef]
- Liu, C.; Cutforth, H.; Chai, Q.; Gan, Y. Farming tactics to reduce the carbon footprint of crop cultivation in semiarid areas. A review. Agron. Sustain. Dev. 2016, 36, 69. [Google Scholar] [CrossRef]
- Herridge, D.F.; Peoples, M.B.; Boddey, R.M. Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 2008, 311, 1–18. [Google Scholar] [CrossRef]
- Holka, M.; Jankowiak, J.; Bieńkowski, J.F.; Dąbrowicz, R. Life cycle assessment (LCA) of winter wheat in an intensive crop pro-duction system in Wielkopolska region (Poland). Appl. Ecol. Environ. Res. 2016, 14, 535–545. [Google Scholar] [CrossRef]
- Holka, M. Environmental impact assessment of chemical plant protection in intensive crop production. J. Cent. Eur. Agric. 2017, 18, 529–541. [Google Scholar] [CrossRef]
- Matyjaszczyk, E. Plant protection in Poland on the eve of obligatory Integrated Pest Management implementation. Pest Manag. Sci. 2013, 69, 991–995. [Google Scholar] [CrossRef]
- Harker, K.; O’Donovan, J.; Irvine, R.; Turkington, T.; Clayton, G. Integrating cropping systems with cultural techniques augments wild oat (Avena fatua) management in barley. Weed Sci. 2009, 57, 326–337. [Google Scholar] [CrossRef]
- Piwowar, A. The use of pesticides in Polish agriculture after integrated pest management (IPM) implementation. Environ. Sci. Pollut. Res. Int. 2021, 28, 26628–26642. [Google Scholar] [CrossRef]
- Gołasa, P.; Wysokiński, M.; Bieńkowska-Gołasa, W.; Gradziuk, P.; Golonko, M.; Gradziuk, B.; Siedlecka, A.; Gromada, A. Sources of greenhouse gas emissions in agriculture, with particular emphasis on emissions from energy used. Energies 2021, 14, 3784. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef]
- Moitzi, G.; Wagentristl, H.; Refenner, K.; Weingartmann, H.; Piringer, G.; Boxberger, J.; Gronauer, A. Effects of working depth and wheel slip on fuel consumption of selected tillage implements. Agric. Eng. Int. CIGR J. 2014, 16, 182–190. [Google Scholar]
- Sarauskis, E.; Buragienė, S.; Romaneckas, K.; Sakalauskas, A.; Algirdas, J.; Vaiciukevičius, E.; Karayel, D. Working time, fuel consumption and economic analysis of different tillage and sowing systems in Lithuania. Eng. Rural Dev. 2012, 11, 52–59. [Google Scholar]
- Fathollahzadeh, H.; Hossein, M.; Tabatabaie, S.M.H. Effect of ploughing depth on average and instantaneous tractor fuel consumption with three-share disc plough. Int. Agrophys. 2009, 23, 399–402. [Google Scholar]
- Filipovic, D.; Kosutic, S.; Gospodaric, Z.; Zimmer, R.; Banaj, Đ. The possibilities of fuel savings and the reduction of CO2 emissions in the soil tillage in Croatia. Agric. Ecosyst. Environ. 2006, 115, 290–294. [Google Scholar] [CrossRef]
- Saldukaitė, L.; ŠArauskis, E.; Zabrodskyi, A.; Adamavičienė, A.; Buragienė, S.; Kriaučiūnienė, Z.; Savickas, D. Assessment of energy saving and GHG reduction of winter oilseed rape production using sustainable strip tillage and direct sowing in three tillage technologies. Sustain. Energy Technol. Assess. 2022, 51, 101911. [Google Scholar] [CrossRef]
- Hoeppner, J.W.; Entz, M.; Mcconkey, B.G.; Zentner, R.P.; Nagy, C. Energy use and efficiency in two Canadian organic and conventional crop production systems. Renew. Agric. Food Syst. 2006, 21, 60–67. [Google Scholar] [CrossRef]
- Lynch, D.H.; Halberg, N.; Bhatta, G.D. Environmental impacts of organic agriculture in temperate regions. CAB Rev. 2012, 7, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Reganold, J.; Wachter, J. Organic agriculture in the twenty-first century. Nat. Plants 2016, 2, 15221. [Google Scholar] [CrossRef]
- Smith, L.; Williams, A.; Pearce, B. The energy efficiency of organic agriculture: A review. Renew. Agric. Food Syst. 2015, 30, 280–301. [Google Scholar] [CrossRef]
- Tuomisto, H.; Hodge, I.D.; Riordan, P.; Macdonald, D.W. Does organic farming reduce environmental impacts?—A meta-analysis of European research. J. Environ. Manag. 2012, 112, 309–320. [Google Scholar] [CrossRef]
- Navarro-Pedreño, J.; Almendro-Candel, M.B.; Zorpas, A.A. The increase of soil organic matter reduces global warming, Myth or Reality? Science 2021, 3, 18. [Google Scholar] [CrossRef]
- Hussain, S.; Hussain, S.; Guo, R.; Sarwar, M.; Ren, X.; Krstic, D.; Aslam, Z.; Zulifqar, U.; Rauf, A.; Hano, C.; et al. Carbon sequestration to avoid soil degradation: A review on the role of conservation tillage. Plants 2021, 10, 2001. [Google Scholar] [CrossRef]
- Abdalla, M.; Hastings, A.; Cheng, K.; Yue, Q.; Chadwick, D.; Espenberg, M.; Truu, J.; Rees, R.M.; Smith, P. A critical review of the impacts of cover crops on nitrogen leaching, net greenhouse gas balance and crop productivity. Glob. Chang. Biol. 2019, 25, 2530–2543. [Google Scholar] [CrossRef]
- Peixoto, L.; Olesen, J.E.; Elsgaard, L.; Enggrob, K.L.; Banfield, C.; Dippold, M.; Nicolaisen, M.; Bak, F.; Zang, H.; Dresbøll, D.; et al. Deep-rooted perennial crops differ in capacity to stabilize C inputs in deep soil layers. Sci. Rep. 2022, 12, 5952. [Google Scholar] [CrossRef]
- Petersen, B.; Knudsen, M.; Hermansen, J.; Halberg, N. An approach to include soil carbon changes in life cycle assessments. J. Clean. Prod. 2013, 52, 217–224. [Google Scholar] [CrossRef]
- Sperow, M. What might it cost to increase soil organic carbon using no-till on U.S. cropland? Carbon Balance Manag. 2020, 15, 26. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; 2006. Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/ (accessed on 10 May 2022).
- Smith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; McCarl, B.; Ogle, S.; O’Mara, F.; Rice, C.; et al. Greenhouse gas mitigation in agriculture. Phil. Trans. R. Soc. B 2008, 363, 789–813. [Google Scholar] [CrossRef] [Green Version]
- Knudsen, M.T.; Meyer-Aurich, A.; Olesen, J.E.; Chirinda, N.; Hermansen, J.E. Carbon footprints of crops from organic and conventional arable crop rotations—Using a life cycle assessment approach. J. Clean. Prod. 2014, 64, 609–618. [Google Scholar] [CrossRef]
- Kwiatkowski, C.; Harasim, E.; Pawlowski, L. Can catch crops be an important factor in carbon dioxide sequestration? Int. J. Conserv. Sci. 2020, 11, 1005–1018. [Google Scholar]
- Smith, P.; Powlson, D.; Glendining, M.; Smith, J. Potential for carbon sequestration in European soils: Preliminary estimates for five scenarios using results from long-term experiments. Glob. Chang. Biol. 1997, 3, 67–79. [Google Scholar] [CrossRef]
- Bieńkowski, J. Mulicriterial anaysis of possibilities of farm sustainable development with consideration of environmental and economic factors. Monogr. Rozpr. Nauk. 2011, 29, 171. [Google Scholar]
- Ogle, S.M.; Breidt, F.J.; Paustian, K. Agricultural management impacts on soil organic carbon storage under moist and dry climatic conditions of temperate and tropical regions. Biogeochemistry 2005, 72, 87–121. [Google Scholar] [CrossRef]
- West, T.; Marland, G. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: Comparing tillage practices in the United States. Agric. Ecosyst. Environ. 2002, 9, 217–232. [Google Scholar] [CrossRef]
- Ogle, S.M.; Breidt, F.J.; Eve, M.D.; Paustian, K. Uncertainty in estimating land use and management impacts on soil organic carbon storage for US agricultural lands between 1982 and 1997. Glob. Chang. Biol. 2003, 9, 1521–1542. [Google Scholar] [CrossRef]
- Zhang, Z.; Zimmermann, N.E.; Stenke, A.; Li, X.; Hodson, E.L.; Zhu, G.; Huang, C.; Poulter, B. Emerging role of wetland methane emissions in driving 21st century climate change. Proc. Natl. Acad. Sci. USA 2017, 114, 9647–9652. [Google Scholar] [CrossRef]
- Stalenga, J.; Kawalec, A. Evaluation of the impact of different production systems on the level of emissions of nitrous oxide and the balance of soil organic substances. Acta Agroph. Rozpr. Monogr. 2007, 150, 73–75. [Google Scholar]
- Brock, C.; Oberholzer, H.-R.; Schwarz, J.; Fliessbach, A.; Hülsbergen, K.-J.; Koch, W.; Pallutt, B.; Reinicke, F.; Leithold, G. Soil organic matter balances in organic versus conventional farming—Modelling in field experiments and regional upscaling for cropland in Germany. Org. Agric. 2012, 2, 185–195. [Google Scholar] [CrossRef]
- Borek, R. Agroforestry systems in Poland A preliminary identification. Pap. Glob. Chang. IGBP 2015, 22, 37–51. [Google Scholar] [CrossRef]
- Rosati, A.; Borek, R.; Canali, S. Agroforestry and organic agriculture. Agroforest. Syst. 2021, 95, 805–821. [Google Scholar] [CrossRef]
- Bieńkowski, J.; Jankowiak, J. Agro-ecological evaluation of the Wielkopolska region. Pam. Puław. 2001, 124, 15–24. [Google Scholar]
- Guo, L.B.; Gifford, R.M. Soil carbon stocks and land use change: A meta analysis. Glob. Chang. Biol. 2002, 8, 345–360. [Google Scholar] [CrossRef]
- Hellebrand, H.J.; Strähle, M.; Scholz, V.; Kern, J. Soil carbon, soil nitrate and soil emissions of nitrous oxide during cultivation of energy crops. Nutr. Cycl. Agoecosyst. 2010, 87, 175–186. [Google Scholar] [CrossRef]
- Falloon, P.; Powlson, D.; Smith, P. Managing field margins for biodiversity and carbon sequestration: A Great Britain case study. Soil Use Manag. 2004, 20, 240–247. [Google Scholar] [CrossRef]
- Biernat-Jarka, A.; Trębska, P. The importance of organic farming in the context of sustainable development of rural areas in Poland. Acta Sci. Pol. Oeconomia 2018, 17, 39–47. [Google Scholar] [CrossRef]
- Moudrý, J., Jr.; Moudrý, J. Environmental aspects of organic farming. In Organic Agriculture towards Sustainability; Pilipavicius, V., Ed.; IntechOpen: London, UK, 2014. [Google Scholar] [CrossRef]
- Foteinis, S.; Chatzisymeon, E. Life cycle assessment of organic versus conventional agriculture. A case study of lettuce cultivation in Greece. J. Clean. Prod. 2015, 112, 2462–2471. [Google Scholar] [CrossRef]
- Chiriacò, M.; Grossi, G.; Castaldi, S.; Valentini, R. The contribution to climate change of the organic versus conventional wheat farming: A case study on the carbon footprint of wholemeal bread production in Italy. J. Clean. Prod. 2017, 153, 309–319. [Google Scholar] [CrossRef]
- Van Stappen, F.; Loriers, A.; Mathot, M.; Planchon, V.; Stilmant, D.; Debode, F. Organic versus conventional farming: The case of wheat production in Wallonia (Belgium). Agric. Agric. Sci. Procedia 2015, 7, 272–279. [Google Scholar] [CrossRef]
- Williams, A.G.; Audsley, E.; Sandars, D.L. Environmental burdens of producing bread wheat, oilseed rape and potatoes in England and Wales using simulation and system modelling. Int. J. Life Cycle Assess. 2010, 15, 855–868. [Google Scholar] [CrossRef]
- Foteinis, S.; Hatzisymeon, M.; Borthwick, A.G.L.; Chatzisymeon, E. Environmental impacts of conventional versus organic eggplant cultivation systems: Influence of electricity mix, yield, over-fertilization, and transportation. Environments 2021, 8, 23. [Google Scholar] [CrossRef]
- Aguilera, E.; Guzmán, G.; Alonso, A. Greenhouse gas emissions from conventional and organic cropping systems in Spain. II. Fruit tree orchards. Agron. Sustain. Dev. 2015, 35, 725–737. [Google Scholar] [CrossRef] [Green Version]
- Al-Mansour, F.; Jejčič, V. Carbon footprint of conventional and organic crops production on family farms in Slovenia. In Book of Abstracts of the 1st South East European Conference on Sustainable Development of Energy, Water and Environment Systems, Ohrid, Republic of Macedonia, 29 June–3 July 2014; Faculty of Mechanical Engineering and Naval Architecture: Zagreb, Croatia, 2014. [Google Scholar]
- Backer, E.; Aertsens, J.; Vergucht, S.; Steurbaut, W. Assessing the ecological soundness of organic and conventional agriculture by means of life cycle assessment (LCA). Brit. Food J. 2009, 111, 1028–1061. [Google Scholar] [CrossRef]
- Scuderi, A.; Cammarata, M.; Branca, F.; Timpanaro, G. Agricultural production trends towards carbon neutrality in response to the EU 2030 Green Deal: Economic and environmental analysis in horticulture. Agric. Econ. Czech. 2021, 67, 435–444. [Google Scholar] [CrossRef]
- Chatzisymeon, E.; Foteinis, S.; Borthwick, A.G.L. Life cycle assessment of the environmental performance of conventional and organic methods of open field pepper cultivation system. Int. J. Life Cycle Assess. 2017, 22, 896–908. [Google Scholar] [CrossRef]
- Moudrý, J., Jr.; Jelínková, Z.; Moudrý, J.; Konvalina, P. Greenhouse gases emissions within the production of potatoes in Central Europe. Lucr. Ştiinţ. Inst. Agron. 2012, 55, 19–22. [Google Scholar]
- Jelínková, Z.; Moudrý, J., Jr.; Moudrý, J.; Kopecký, M.; Bernas, J. Life cycle assessment method—Tool for evaluation of greenhouse gases emissions from agriculture and food processing. In Greenhouse Gases; Moya, B.L., Pous, J., Eds.; IntechOpen: London, UK, 2016. [Google Scholar] [CrossRef]
- Gomiero, T.; Paoletti, M.; Pimentel, D. Energy and environmental issues in organic and conventional agriculture. Crit. Rev. Plant Sci. 2008, 27, 239–254. [Google Scholar] [CrossRef]
- Camposeo, S.; Vivaldi, G.A.; Russo, G.; Melucci, F.M. Intensification in olive growing reduces global warming potential under both integrated and organic farming. Sustainability 2022, 14, 6389. [Google Scholar] [CrossRef]
- Van der Werf, H.M.; Knudsen, M.T.; Cederberg, C. Towards better representation of organic agriculture in life cycle assessment. Nat. Sustain. 2020, 3, 419–425. [Google Scholar] [CrossRef]
- Costa, M.; Chadwick, D.; Saget, S.; Rees, B.; Williams, M.; Styles, D. Representing crop rotations in life cycle assessment: A review of legume LCA studies. Int. J. Life Cycle Assess. 2020, 25, 1–15. [Google Scholar] [CrossRef]
- Montemayor, E.; Andrade, E.; Bonmatí, A.; Antón, A. Critical analysis of life cycle inventory datasets for organic crop production systems. Int. J. Life Cycle Assess. 2022, 27, 1–21. [Google Scholar] [CrossRef]
- Ecoinvent Center Ecoinvent Database Website. Available online: http://www.ecoinvent.ch/ (accessed on 10 June 2022).
- Colomb, V.; Ait-Amar, S.; Basset-Mens, C.; Gac, A.; Gaillard, G.; Koch, P.; Mousset, J.; Salou, T.; Tailleur, A.; Van Der Werf, H.M. AGRIBALYSE®, the French LCI Database for Agricultural Products: High Quality Data for Producers and Environmental Labelling. Oilseeds Fats Crop. Lipids 2015, 22, D104. [Google Scholar] [CrossRef] [Green Version]
Goal | Functional Units | System Boundary | Country | References |
---|---|---|---|---|
Assessment of the carbon footprint of pumpkin production | 1 ha of cultivated land, 1 kg of product | Cradle-to-grave | Germany | [65] |
Assessment of the carbon footprint of wheat farming and whole meal bread production | 1 ha of wheat cultivation, 1 kg of bread | Cradle-to-gate | Italy | [123] |
Assessment of environmental impacts of wheat cultivation systems | 1 ha of wheat cultivation, 1 kg of grain | Cradle-to-gate | Belgium | [124] |
Assessment of the environmental burdens of producing bread wheat, oilseed rape, and potatoes | 1 kg of product | Cradle-to-gate | England, Wales | [125] |
Assessment of the environmental impacts of lettuce cultivation systems | 1 ha of lettuce cultivation, 1 t of lettuce produced | Cradle-to-gate | Greece | [122] |
Assessment of the environmental impacts of eggplant production | 1000 m2 of cultivation, 1 t of marketable eggplant fruit yield | Cradle-to-gate | Greece | [126] |
Assessment of the greenhouse gas emissions from herbaceous cropping systems | 1 ha of cultivation, 1 kg of product | Cradle-to-gate | Spain | [127] |
Assessment of the carbon footprint of conventional and organic crops production | 1 ha of land | Cradle-to-gate | Slovenia | [128] |
Assessment of the carbon footprint of crops from different organic and conventional arable crop rotations | 1 ha of land, 1 kg of crop | Cradle-to-gate | Denmark | [104] |
Assessment of the environmental impacts of organic and conventional leek production | 1 ha of leek cultivation, 1 kg of leek | Cradle-to-gate | Belgium | [129] |
Assessment of the carbon footprint of potatoes in different cultivation systems | 1 ha of cultivated land, 1 kg of potatoes | Cradle-to-gate | Italy | [130] |
Assessment of the environmental performance of pepper cultivation systems | 1 t of marketable pepper fruits | Cradle-to-gate | Greece | [131] |
Assessment of the greenhouse gas emissions from potato cultivation systems | 1 kg of potatoes | Cradle-to-gate | Czech Republic | [132] |
Assessment of the greenhouse gas emissions from plant production in different farming systems | 1 kg of product | Cradle-to-gate | Czech Republic | [133] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holka, M.; Kowalska, J.; Jakubowska, M. Reducing Carbon Footprint of Agriculture—Can Organic Farming Help to Mitigate Climate Change? Agriculture 2022, 12, 1383. https://doi.org/10.3390/agriculture12091383
Holka M, Kowalska J, Jakubowska M. Reducing Carbon Footprint of Agriculture—Can Organic Farming Help to Mitigate Climate Change? Agriculture. 2022; 12(9):1383. https://doi.org/10.3390/agriculture12091383
Chicago/Turabian StyleHolka, Małgorzata, Jolanta Kowalska, and Magdalena Jakubowska. 2022. "Reducing Carbon Footprint of Agriculture—Can Organic Farming Help to Mitigate Climate Change?" Agriculture 12, no. 9: 1383. https://doi.org/10.3390/agriculture12091383