Evaluation of Models for Utilization in Genomic Prediction of Agronomic Traits in the Louisiana Sugarcane Breeding Program
Abstract
:1. Introduction
2. Material and Methods
2.1. Sugarcane Clones and Phenotypic Data
Phenotypic Data Analysis
2.2. Genotypic Data
2.3. Models Used for Genomic Prediction
2.4. Model Efficiency
2.5. Prediction Accuracy (without Fixed Effects)
2.6. Prediction Accuracy: All vs. Individual Conditions
2.7. Cross-Validation: Crop Type/Soil Types as Fixed Effect
3. Results
3.1. Phenotypic Variation
3.2. Prediction Accuracy (without Fixed Effects)
3.3. Prediction Accuracy with Putative Causal SNPs as Fixed Effects
3.4. Prediction Accuracy: All vs. Individual Conditions
3.5. Prediction Accuracy: Soil Type and/or Crop Type as Fixed Effects
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yadav, S.; Jackson, P.; Wei, X.; Ross, E.M.; Aitken, K.; Deomano, E.; Voss-Fels, K.P. Accelerating Genetic Gain in Sugarcane Breeding Using Genomic Selection. Agronomy 2020, 10, 585. [Google Scholar] [CrossRef]
- United States Department of Agriculture National Agricultural Statistics Service (USDA-NASS). 2021. Available online: https://nassgeodata.gmu.edu/CropScape/ (accessed on 20 July 2022).
- American Sugar Cane League, Louisiana Sugarcane Statistics. Available online: https://www.amscl.org/education/learn/ (accessed on 20 July 2022).
- Goldemberg, J.; Coelho, S.T.; Guardabassi, P. The sustainability of ethanol production from sugarcane. Energy Policy 2008, 36, 2086–2097. [Google Scholar] [CrossRef]
- Gazaffi, R.; Oliveira, K.M.; Souza, A.P.; Garcia, A.A.F. Sugarcane: Breeding Methods and Genetic Mapping. In Sugarcane Bioethanol R &D for Productivity and Sustainability; Cortez, L.A.B., Ed.; Editora Edgard Blucher Publ.: São Paulo, Brazil, 2010; pp. 333–344. [Google Scholar]
- Hale, A.L.; Veremis, J.C.; Tew, T.L.; Burner, D.M.; Legendre, B.; Dunckelman, P. 50 years of sugarcane germplasm enhancement—roadblocks, hurdles, and success. In Proceedings of the International Society of Sugar Cane Technologists 9th Sugarcane Breeding and Germplasm Workshop, Cairns, Australia, 17–21 August 2009. [Google Scholar]
- Khan, N.A.; Bedre, R.; Parco, A.; Bernaola, L.; Hale, A.; Kimbeng, C.; Baisakh, N. Identification of cold-responsive genes in energycane for their use in genetic diversity analysis and future functional marker development. Plant Sci. 2013, 211, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Gouy, M.; Rousselle, Y.; Chane, A.T.; Anglade, A.; Royaert, S.; Nibouche, S.; Costet, L. Genome wide association mapping of agro-morphological and disease resistance traits in sugarcane. Euphytica 2015, 202, 269–284. [Google Scholar] [CrossRef]
- Matsuoka, S.; Garcia, A.A.F.; Arizono, H. Melhoramento da cana-de-açúcar. Melhor. De Espécies Cultiv. 2005, 2, 205–251. [Google Scholar]
- Landell, M.D.A.; Bressiani, J.A. Melhoramento genético, caracterização e manejo varietal. Cana-De-Açúcar. Camp. Inst. Agronômico 2008, 1, 101–155. [Google Scholar]
- Haley, C.S.; Visscher, P.M. Strategies to utilize marker-quantitative trait loci associations. J. Dairy Sci. 1998, 81, 85–97. [Google Scholar] [CrossRef]
- Collard, B.C.; Mackill, D.J. Marker-assisted selection: An approach for precision plant breeding in the twenty-first century. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 557–572. [Google Scholar] [CrossRef]
- D’Hont, A.; Ison, D.; Alix, K.; Roux, C.; Glaszmann, J.C. Determination of basic chromosome numbers in the genus Saccharum by physical mapping of ribosomal RNA genes. Genome 1998, 41, 221–225. [Google Scholar] [CrossRef]
- Aitken, K.S. History and development of molecular markers for sugarcane breeding. Sugar Tech 2022, 24, 341–353. [Google Scholar] [CrossRef]
- Costet, L.; Le Cunff, L.; Royaert, S.; Raboin, L.M.; Hervouet, C.; Toubi, L.; D’Hont, A. Haplotype structure around Bru1 reveals a narrow genetic basis for brown rust resistance in modern sugarcane cultivars. Theor. Appl. Genet. 2012, 125, 825–836. [Google Scholar] [CrossRef] [PubMed]
- Glynn, N.C.; Laborde, C.; Davidson, R.W.; Irey, M.S.; Glaz, B.; D’Hont, A.; Comstock, J.C. Utilization of a major brown rust resistance gene in sugarcane breeding. Mol. Breed. 2013, 31, 323–331. [Google Scholar] [CrossRef]
- Molina, L.; Queme, J.L.; Rosales, F. Comparative analysis between phenotype and Bru1 marker for incidence to brown rust in sugarcane. In Proceedings of the International Society of Sugar Cane Technologists, Townsville, Australia, 16–18 April 2013; Volume 28, pp. 1–6. [Google Scholar]
- Racedo, J.; Perera, M.F.; Bertani, R.; Funes, C.; González, V.; Cuenya, M.I.; Castagnaro, A.P. Bru1 gene and potential alternative sources of resistance to sugarcane brown rust disease. Euphytica 2013, 191, 429–436. [Google Scholar] [CrossRef]
- Parco, A.S.; Avellaneda, M.C.; Hale, A.H.; Hoy, J.W.; Kimbeng, C.A.; Pontif, M.J.; Baisakh, N. Frequency and distribution of the brown rust resistance gene B ru1 and implications for the Louisiana sugarcane breeding programme. Plant Breed. 2014, 133, 654–659. [Google Scholar] [CrossRef]
- Neuber, A.C.; Camilo dos Santos, F.R.; da Costa, J.B.; Volpin, M.; Xavier, M.A.; Perecin, D.; Pinto, L.R. Survey of the Bru1 gene for brown rust resistance in Brazilian local and basic sugarcane germplasm. Plant Breed. 2017, 136, 182–187. [Google Scholar] [CrossRef]
- Li, W.F.; Shan, H.L.; Zhang, R.Y.; Pu, H.C.; Wang, X.Y.; Cang, X.Y.; Huang, Y.K. Identification of field resistance and molecular detection of the brown rust resistance gene Bru1 in new elite sugarcane varieties in China. Crop Prot. 2018, 103, 46–50. [Google Scholar] [CrossRef]
- Hoarau, J.Y.; Grivet, L.; Offmann, B.; Raboin, L.M.; Diorflar, J.P.; Payet, J.; Glaszmann, J.C. Genetic dissection of a modern sugarcane cultivar (Saccharum spp.). II. Detection of QTLs for yield components. Theor. Appl. Genet. 2002, 105, 1027–1037. [Google Scholar] [CrossRef]
- Zhao, Y.; Mette, M.F.; Gowda, M.; Longin, C.F.H.; Reif, J.C. Bridging the gap between marker-assisted and genomic selection of heading time and plant height in hybrid wheat. Heredity 2014, 112, 638–645. [Google Scholar] [CrossRef]
- Meuwissen, T.H.E.; Hayes, B.J.; Goddard, M.E. Prediction of total genetic value using genome-wide dense marker maps. Genetics 2001, 157, 1819–1829. [Google Scholar] [CrossRef]
- Lorenz, A.J.; Chao, S.; Asoro, F.G.; Heffner, E.L.; Hayashi, T.; Iwata, H.; Jannink, J.L. Genomic selection in plant breeding: Knowledge and prospects. Adv. Agron. 2011, 110, 77–123. [Google Scholar]
- Gouy, M.; Rousselle, Y.; Bastianelli, D.; Lecomte, P.; Bonnal, L.; Roques, D.; Costet, L. Experimental assessment of the accuracy of genomic selection in sugarcane. Theor. Appl. Genet. 2013, 126, 2575–2586. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xu, Y.; Hu, Z.; Xu, C. Genomic selection methods for crop improvement: Current status and prospects. Crop J. 2018, 6, 330–340. [Google Scholar] [CrossRef]
- Zeng, J.; Garrick, D.; Dekkers, J.; Fernando, R. A nested mixture model for genomic prediction using whole-genome SNP genotypes. PLoS ONE 2018, 13, e0194683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henderson, C.R. Applications of Linear Models in Animal Breeding; University of Guelph: Guelph, ON, Canada, 1984; p. 462. [Google Scholar]
- Pavlou, M.; Ambler, G.; Seaman, S.R.; Guttmann, O.; Elliott, P.; King, M.; Omar, R.Z. How to develop a more accurate risk prediction model when there are few events. Br. Med. J. 2015, 351, h3868. [Google Scholar] [CrossRef] [PubMed]
- Boutorh, A.; Guessoum, A. Complex diseases SNP selection and classification by hybrid association rule mining and artificial neural network—Based evolutionary algorithms. Eng. Appl. Artif. Intell. 2016, 51, 58–70. [Google Scholar] [CrossRef]
- Zhang, J.; Feng, J.Y.; Ni, Y.L.; Wen, Y.J.; Niu, Y.; Tamba, C.L.; Zhang, Y.M. pLARmEB: Integration of least angle regression with empirical Bayes for multilocus genome-wide association studies. Heredity 2017, 118, 517. [Google Scholar] [CrossRef]
- Mahadevaiah, C.; Appunu, C.; Aitken, K.; Suresha, G.S.; Vignesh, P.; Swamy, H.K.M.; Ram, B. Genomic Selection in Sugarcane: Current Status and Future Prospects. Front. Plant Sci. 2021, 12, 708233. [Google Scholar] [CrossRef]
- Meher, P.K.; Kumar, A.; Pradhan, S.K. Genomic Selection Using Bayesian Methods: Models, Software, and Application. In Genomics of Cereal Crops; Humana: New York, NY, USA, 2022; pp. 259–269. [Google Scholar]
- Avellaneda, M.C.; Parco, A.P.; Hoy, J.W.; Baisakh, N. Putative resistance-associated genes induced in sugarcane in response to the brown rust fungus, Puccinia melanocephala and their use in genetic diversity analysis of Louisiana sugarcane clones. Plant Gene 2018, 14, 20–28. [Google Scholar] [CrossRef]
- Fickett, N.; Gutierrez, A.; Verma, M.; Pontif, M.; Hale, A.; Kimbeng, C.; Baisakh, N. Genome-wide association mapping identifies markers associated with cane yield components and sucrose traits in the Louisiana sugarcane core collection. Genomics 2019, 111, 1794–1801. [Google Scholar] [CrossRef]
- de Los Campos, G.; Sorensen, D.; Gianola, D. Genomic heritability: What is it? PLoS Genet. 2015, 11, e1005048. [Google Scholar] [CrossRef]
- Hoerl, A.E.; Kennard, R.W. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 1970, 12, 55–67. [Google Scholar] [CrossRef]
- Park, T.; Casella, G. The bayesian lasso. J. Am. Stat. Assoc. 2008, 103, 681–686. [Google Scholar] [CrossRef]
- Habier, D.; Fernando, R.L.; Kizilkaya, K.; Garrick, D.J. Extension of the Bayesian alphabet for genomic selection. BMC Bioinform. 2011, 12, 186. [Google Scholar] [CrossRef] [Green Version]
- Deomano, E.; Jackson, P.; Wei, X.; Aitken, K.; Kota, R.; Pérez-Rodríguez, P. Genomic prediction of sugar content and cane yield in sugar cane clones in different stages of selection in a breeding program, with and without pedigree information. Mol. Breed. 2020, 40, 38. [Google Scholar] [CrossRef]
- Hayes, B.J.; Wei, X.; Joyce, P.; Atkin, F.; Deomano, E.; Yue, J.; Voss-Fels, K.P. Accuracy of genomic prediction of complex traits in sugarcane. Theor. Appl. Genet. 2021, 134, 1455–1462. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; McCord, P.H.; Olatoye, M.O.; Qin, L.; Sood, S.; Lipka, A.E.; Todd, J.R. Experimental evaluation of genomic selection prediction for rust resistance in sugarcane. Plant Genome 2021, 14, e20148. [Google Scholar] [CrossRef]
- Voss-Fels, K.P.; Wei, X.; Ross, E.M.; Frisch, M.; Aitken, K.S.; Cooper, M.; Hayes, B.J. Strategies and considerations for implementing genomic selection to improve traits with additive and non-additive genetic architectures in sugarcane breeding. Theor. Appl. Genet. 2021, 134, 1493–1511. [Google Scholar] [CrossRef]
- Yadav, S.; Wei, X.; Joyce, P.; Atkin, F.; Deomano, E.; Sun, Y.; Voss-Fels, K.P. Improved genomic prediction of clonal performance in sugarcane by exploiting non-additive genetic effects. Theor. Appl. Genet. 2021, 134, 2235–2252. [Google Scholar] [CrossRef]
- Habier, D.; Fernando, R.L.; Dekkers, J. The impact of genetic relationship information on genome-assisted breeding values. Genetics 2007, 177, 2389–2397. [Google Scholar] [CrossRef]
- Zhou, Y.; Vales, M.I.; Wang, A.; Zhang, Z. Systematic bias of correlation coefficient may explain negative accuracy of genomic prediction. Brief. Bioinform. 2017, 18, 744–753. [Google Scholar] [CrossRef]
- Bernardo, R. Genomewide selection when major genes are known. Crop Sci. 2014, 54, 68–75. [Google Scholar] [CrossRef]
- Sarinelli, J.M.; Murphy, J.P.; Tyagi, P.; Holland, J.B.; Johnson, J.W.; Mergoum, M.; Brown-Guedira, G. Training population selection and use of fixed effects to optimize genomic predictions in a historical USA winter wheat panel. Theor. Appl. Genet. 2019, 132, 1247–1261. [Google Scholar] [CrossRef] [PubMed]
- Rice, B.; Lipka, A.E. Evaluation of RR-BLUP genomic selection models that incorporate peak genome-wide association study signals in maize and sorghum. Plant Genome 2019, 12, 180052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Data Sets | Traits | rrBLUP | BL | BRR | Bayes-A | Bayes-B | Bayes-C |
---|---|---|---|---|---|---|---|
Light soil (L) | Sucrose | −0.02 | −0.06 | −0.12 | −0.06 | −0.10 | −0.12 |
Cane yield | −0.15 | −0.25 | −0.31 | −0.27 | −0.31 | −0.29 | |
Sugar yield | −0.01 | 0.00 | −0.08 | −0.12 | −0.06 | −0.05 | |
Heavy soil (H) | Sucrose | 0.06 | 0.02 | 0.02 | 0.00 | −0.01 | 0.00 |
Cane yield | 0.16 | 0.08 | 0.19 | 0.17 | 0.14 | 0.12 | |
Sugar yield | 0.19 | 0.16 | 0.20 | 0.20 | 0.22 | 0.23 | |
Plant cane (Pc) | Sucrose | 0.05 | −0.01 | 0.00 | −0.02 | 0.00 | −0.04 |
Cane yield | 0.00 | −0.05 | 0.02 | 0.01 | 0.00 | 0.00 | |
Sugar yield | 0.11 | 0.09 | 0.11 | 0.06 | 0.10 | 0.08 | |
Ratoon (R) | Sucrose | 0.19 | 0.13 | 0.01 | 0.09 | 0.05 | 0.04 |
Cane yield | 0.04 | −0.04 | −0.02 | −0.08 | −0.03 | −0.04 | |
Sugar yield | 0.03 | 0.06 | 0.05 | 0.02 | 0.06 | 0.03 | |
All Combined (C) | Sucrose | −0.12 | −0.20 | −0.20 | −0.25 | −0.28 | −0.23 |
Cane yield | 0.04 | −0.06 | −0.08 | −0.05 | −0.06 | −0.03 | |
Sugar yield | 0.09 | 0.19 | 0.23 | 0.19 | 0.19 | 0.19 |
Light Soil | Heavy Soil | Plant Cane | Ratoon Cane | All Combined | |
---|---|---|---|---|---|
Sucrose | −0.06 | 0.04 | −0.04 | 0.06 | −0.08 |
Cane Yield | 0.15 | 0.14 | 0.09 | 0.27 | 0.31 |
Sugar Yield | 0.03 | 0.03 | 0.28 | 0.23 | 0.22 |
Condition | Trait | rrBLUP | BL | BRR | Bayes-A | Bayes-B | Bayes-C |
---|---|---|---|---|---|---|---|
Light soil (L) | Sucrose | 0.54 | 0.86 | 0.91 | 0.92 | 0.92 | 0.91 |
Cane Yield | 0.68 | 0.97 | 0.95 | 0.98 | 0.97 | 0.95 | |
Sugar Yield | 0.62 | 0.91 | 0.96 | 0.95 | 0.95 | 0.93 | |
Heavy soil (H) | Sucrose | 0.53 | 0.91 | 0.91 | 0.91 | 0.95 | 0.89 |
Cane Yield | 0.98 | 0.98 | 0.97 | 0.93 | 0.95 | 0.96 | |
Sugar Yield | 0.98 | 0.86 | 0.95 | 0.97 | 0.97 | 0.93 | |
Plant cane (Pc) | Sucrose | 0.62 | 0.93 | 0.94 | 0.96 | 0.95 | 0.94 |
Cane Yield | 0.60 | 0.97 | 0.96 | 0.97 | 0.97 | 0.95 | |
Sugar Yield | 0.94 | 0.93 | 0.97 | 0.98 | 0.95 | 0.96 | |
Ratoon (R) | Sucrose | 0.50 | 0.84 | 0.90 | 0.93 | 0.88 | 0.91 |
Cane Yield | 0.60 | 0.96 | 0.95 | 0.97 | 0.90 | 0.94 | |
Sugar Yield | 0.66 | 0.87 | 0.95 | 0.97 | 0.96 | 0.92 | |
All Combined (C) | Sucrose | 0.52 | 0.92 | 0.88 | 0.92 | 0.93 | 0.87 |
Cane Yield | 0.63 | 0.91 | 0.95 | 0.95 | 0.94 | 0.96 | |
Sugar Yield | 0.72 | 0.91 | 0.95 | 0.95 | 0.93 | 0.96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Satpathy, S.; Shahi, D.; Blanchard, B.; Pontif, M.; Gravois, K.; Kimbeng, C.; Hale, A.; Todd, J.; Rao, A.; Baisakh, N. Evaluation of Models for Utilization in Genomic Prediction of Agronomic Traits in the Louisiana Sugarcane Breeding Program. Agriculture 2022, 12, 1330. https://doi.org/10.3390/agriculture12091330
Satpathy S, Shahi D, Blanchard B, Pontif M, Gravois K, Kimbeng C, Hale A, Todd J, Rao A, Baisakh N. Evaluation of Models for Utilization in Genomic Prediction of Agronomic Traits in the Louisiana Sugarcane Breeding Program. Agriculture. 2022; 12(9):1330. https://doi.org/10.3390/agriculture12091330
Chicago/Turabian StyleSatpathy, Subhrajit, Dipendra Shahi, Brayden Blanchard, Michael Pontif, Kenneth Gravois, Collins Kimbeng, Anna Hale, James Todd, Atmakuri Rao, and Niranjan Baisakh. 2022. "Evaluation of Models for Utilization in Genomic Prediction of Agronomic Traits in the Louisiana Sugarcane Breeding Program" Agriculture 12, no. 9: 1330. https://doi.org/10.3390/agriculture12091330
APA StyleSatpathy, S., Shahi, D., Blanchard, B., Pontif, M., Gravois, K., Kimbeng, C., Hale, A., Todd, J., Rao, A., & Baisakh, N. (2022). Evaluation of Models for Utilization in Genomic Prediction of Agronomic Traits in the Louisiana Sugarcane Breeding Program. Agriculture, 12(9), 1330. https://doi.org/10.3390/agriculture12091330