The Long-Term Experiment Platform for the Study of Agronomical and Environmental Effects of the Biochar: Methodological Framework
Abstract
:1. Introduction
2. State of the Art of Long-Term Experiments Focusing on Soil Carbon Studies: Site Networks, Database, and Data Management
- assessment of C sequestration potential in agricultural soils;
- assessment of agricultural ecosystem adaptation to climate and CO2 changes;
- regional assessment of C sequestration on U.S. Conservation Reserve Program land;
- regional assessment of the impacts of conservation tillage on SOM;
- regional soil quality assessment and monitoring;
- contribution to IPCC chapter on “Mitigation options in agriculture”;
- process studies of environmental and management impacts on soil structure and SOM dynamics;
- process studies of tillage effects on microbial community structure and SOM stabilization;
- carbon dating and 12C/13C analyses of SOM turnover;
- management and soil effects on microorganism biodiversity.
- 1.
- collecting and retrieving LTE experimental data;
- 2.
- establishing a database system—composed of a metadata database and actual dataset database—as described here below;
- 3.
- establishing quality control criteria and protocols;
- 4.
- fostering data and model sharing among researchers through an electronic bulletin board and list server—which was made possible through a collaboration agreement preserving the intellectual property rights of data holders and model developers.
- 1.
- general details (name of the experiment and start year, contact details for data holder/duty person);
- 2.
- local condition descriptions (e.g., coordinates, site history, climatic region, rainfall and temperature, soil description);
- 3.
- nature of the experiment (e.g., land use, vegetation/crop type, factors, treatments, land management);
- 4.
- measurement methods and frequency;
- 5.
- experimental design (e.g., plot size, slope, heterogeneity measures, replicates, controls, statistical analysis, etc.);
- 6.
- data availability;
- 7.
- key references.
3. The Proposal for a Long-Term Experiment Platform for the Study of the Agronomical and Environmental Effects of Biochar (LTEP-BIOCHAR)
- 1.
- Taking a census of the current LTEs on biochar’s effects on soil;
- 2.
- Presenting the objectives, methods, and conditions of the experiments;
- 3.
- Displaying the authors and promoters of the experiments.
- 1.
- engaging new LTEs on biochar (by invitation, literature search, or spontaneous request from the LTEP leader);
- 2.
- qualification check from the LTEP board, including minimum duration (3 years), availability to provide all the information requested in the standard format;
- 3.
- downloading and completing the “template” entirely, adding all the details of interest and attaching some photos of the site and the materials used, specifying all technical details of the experiment;
- 4.
- providing at least one published, peer-reviewed paper as proof of the scientific approach of the experiment, as well as authorship and data property protection;
- 5.
- editorial checks and adjustments to fit the standard format;
- 6.
- publication on the website [49].
4. Critical Review of the Adopted Choices
- 1.
- the period for soils in a temperate location to reach a new equilibrium in terms of C sink saturation after a land use change is around 100 years [52];
- 2.
- guidelines for greenhouse gas inventories use a figure of 20 years for soil C to approach a new equilibrium: “It is important, in deriving estimates of biomass accumulation rates, to recognize that biomass growth rates will occur primarily during the first 20 years following changes in management, after which time the rates will tend towards a new steady-state level with little or no change occurring unless further changes in management conditions occur” [53];
- 3.
- a decade is therefore the minimal timespan to record significative changes.
5. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amonette, J.E.; Blanco-Canqui, H.; Hassebrook, C.; Laird, D.A.; Lal, R.; Lehmann, J.; Page-Dumroese, D. Integrated Biochar Research: A Roadmap. J. Soil Water Conserv. 2021, 76, 24A–29A. [Google Scholar] [CrossRef]
- Schulte, L.A.; Dale, B.E.; Bozzetto, S.; Liebman, M.; Souza, G.M.; Haddad, N.; Richard, T.L.; Basso, B.; Brown, R.C.; Hilbert, J.A.; et al. Meeting Global Challenges with Regenerative Agriculture Producing Food and Energy. Nat. Sustain. 2021, 5, 384–388. [Google Scholar] [CrossRef]
- Olsson, L.; Barbosa, H.; Bhadwal, S.; Cowie, A.; Delusca, K.; Flores-Rentería, D.; Hermans, K.; Jobbágy, E.; Kurz, W.; Li, D.; et al. IPCC SRCCL Chapter 4: Land Degradation; PCC: Geneva, Switzerland, 2019; p. 436. [Google Scholar]
- IPCC; Matthews, R.; Babiker, M.; de Coninck, H.; Connors, S.; van Diemen, R.; Djalante, R.; Ebi, K.; Ellis, N.; Fischlin, A.; et al. Annex I: Glossary. In Global Warming of 1.5 °C. An IPCC Special Report; IPCC: Geneva, Switzerland, 2018. [Google Scholar]
- Lehmann, J.; Cowie, A.; Masiello, C.A.; Kammann, C.; Woolf, D.; Amonette, J.E.; Cayuela, M.L.; Camps-Arbestain, M.; Whitman, T. Biochar in Climate Change Mitigation. Nat. Geosci. 2021, 14, 883–892. [Google Scholar] [CrossRef]
- Schmidt, H.-P.; Kammann, C.; Hagemann, N.; Leifeld, J.; Bucheli, T.D.; Sánchez Monedero, M.A.; Cayuela, M.L. Biochar in Agriculture—A Systematic Review of 26 Global Meta-Analyses. GCB Bioenergy 2021, 13, 1708–1730. [Google Scholar] [CrossRef]
- Wang, J.; Xiong, Z.; Kuzyakov, Y. Biochar Stability in Soil: Meta-Analysis of Decomposition and Priming Effects. GCB Bioenergy 2016, 8, 512–523. [Google Scholar] [CrossRef]
- Fang, Y.; Singh, B.; Singh, B.P. Effect of Temperature on Biochar Priming Effects and Its Stability in Soils. Soil Biol. Biochem. 2015, 80, 136–145. [Google Scholar] [CrossRef]
- Brodowski, S.; John, B.; Flessa, H.; Amelung, W. Aggregate-Occluded Black Carbon in Soil. Eur. J. Soil Sci. 2006, 57, 539–546. [Google Scholar] [CrossRef]
- Pulcher, R.; Balugani, E.; Ventura, M.; Greggio, N.; Marazza, D. Inclusion of Biochar in a C Dynamics Model Based on Observations from an 8-Year Field Experiment. Soil 2022, 8, 199–211. [Google Scholar] [CrossRef]
- Ventura, M.; Alberti, G.; Viger, M.; Jenkins, J.R.; Girardin, C.; Baronti, S.; Zaldei, A.; Taylor, G.; Rumpel, C.; Miglietta, F.; et al. Biochar Mineralization and Priming Effect on SOM Decomposition in Two European Short Rotation Coppices. GCB Bioenergy 2015, 7, 1150–1160. [Google Scholar] [CrossRef]
- Joseph, S.; Cowie, A.L.; Van Zwieten, L.; Bolan, N.; Budai, A.; Buss, W.; Cayuela, M.L.; Graber, E.R.; Ippolito, J.A.; Kuzyakov, Y.; et al. How Biochar Works, and When It Doesn’t: A Review of Mechanisms Controlling Soil and Plant Responses to Biochar. GCB Bioenergy 2021, 13, 1731–1764. [Google Scholar] [CrossRef]
- Biederman, L.A.; Harpole, W.S. Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. GCB Bioenergy 2013, 5, 202–214. [Google Scholar] [CrossRef]
- Glaser, B.; Lehr, V.-I. Biochar Effects on Phosphorus Availability in Agricultural Soils: A Meta-Analysis. Sci. Rep. 2019, 9, 9338. [Google Scholar] [CrossRef] [PubMed]
- Mia, S.; van Groenigen, J.W.; van de Voorde, T.F.J.; Oram, N.J.; Bezemer, T.M.; Mommer, L.; Jeffery, S. Biochar Application Rate Affects Biological Nitrogen Fixation in Red Clover Conditional on Potassium Availability. Agric. Ecosyst. Environ. 2014, 191, 83–91. [Google Scholar] [CrossRef]
- Haider, F.U.; Coulter, J.A.; Cai, L.; Hussain, S.; Cheema, S.A.; Wu, J.; Zhang, R. An Overview on Biochar Production, Its Implications, and Mechanisms of Biochar-Induced Amelioration of Soil and Plant Characteristics. Pedosphere 2022, 32, 107–130. [Google Scholar] [CrossRef]
- Edeh, I.G.; Mašek, O.; Buss, W. A Meta-Analysis on Biochar’s Effects on Soil Water Properties—New Insights and Future Research Challenges. Sci. Total Environ. 2020, 714, 136857. [Google Scholar] [CrossRef]
- Gross, A.; Bromm, T.; Glaser, B. Soil Organic Carbon Sequestration after Biochar Application: A Global Meta-Analysis. Agronomy 2021, 11, 2474. [Google Scholar] [CrossRef]
- Hagemann, N.; Joseph, S.; Schmidt, H.-P.; Kammann, C.I.; Harter, J.; Borch, T.; Young, R.B.; Varga, K.; Taherymoosavi, S.; Elliott, K.W.; et al. Organic Coating on Biochar Explains Its Nutrient Retention and Stimulation of Soil Fertility. Nat. Commun. 2017, 8, 1089. [Google Scholar] [CrossRef]
- Arneth, A.; Barbosa, H.; Benton, T.; Calvin, K.; Calvo, E.; Connors, S.; Cowie, A.; Davin, E.; Denton, F.; van Diemen, R. IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. In Summary for Policy Makers; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2019. [Google Scholar]
- Nan, Q.; Xin, L.; Qin, Y.; Waqas, M.; Wu, W. Exploring Long-Term Effects of Biochar on Mitigating Methane Emissions from Paddy Soil: A Review. Biochar 2021, 3, 125–134. [Google Scholar] [CrossRef]
- Borchard, N.; Schirrmann, M.; Cayuela, M.L.; Kammann, C.; Wrage-Mönnig, N.; Estavillo, J.M.; Fuertes-Mendizábal, T.; Sigua, G.; Spokas, K.; Ippolito, J.A.; et al. Biochar, Soil and Land-Use Interactions That Reduce Nitrate Leaching and N2O Emissions: A Meta-Analysis. Sci. Total Environ. 2019, 651, 2354–2364. [Google Scholar] [CrossRef]
- Jia, G.; Shevliakova, E.; Artaxo, P.; Noblet-Ducoudré, N.D.; Houghton, R.; Anderegg, W.; Bastos, A.; Bernsten, T.K.; Cai, P.; Calvin, K.; et al. SPM2 Land–Climate Interactions. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; IPCC Report; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Fuss, S.; Lamb, W.F.; Callaghan, M.W.; Hilaire, J.; Creutzig, F.; Amann, T.; Beringer, T.; de Oliveira Garcia, W.; Hartmann, J.; Khanna, T.; et al. Negative Emissions—Part 2: Costs, Potentials and Side Effects. Environ. Res. Lett. 2018, 13, 063002. [Google Scholar] [CrossRef]
- Jeffery, S.; Abalos, D.; Prodana, M.; Bastos, A.C.; van Groenigen, J.W.; Hungate, B.A.; Verheijen, F. Biochar Boosts Tropical but Not Temperate Crop Yields. Environ. Res. Lett. 2017, 12, 053001. [Google Scholar] [CrossRef]
- Zhang, D.; Yan, M.; Niu, Y.; Liu, X.; van Zwieten, L.; Chen, D.; Bian, R.; Cheng, K.; Li, L.; Joseph, S.; et al. Is Current Biochar Research Addressing Global Soil Constraints for Sustainable Agriculture? Agric. Ecosyst. Environ. 2016, 226, 25–32. [Google Scholar] [CrossRef]
- Tammeorg, P.; Bastos, A.C.; Jeffery, S.; Rees, F.; Kern, J.; Graber, E.R.; Ventura, M.; Kibblewhite, M.; Amaro, A.; Budai, A.; et al. Biochars in Soils: Towards the Required Level of Scientific Understanding. J. Environ. Eng. Landsc. Manag. 2017, 25, 192–207. [Google Scholar] [CrossRef]
- Wang, L.; O’Connor, D.; Rinklebe, J.; Ok, Y.S.; Tsang, D.C.W.; Shen, Z.; Hou, D. Biochar Aging: Mechanisms, Physicochemical Changes, Assessment, And Implications for Field Applications. Environ. Sci. Technol. 2020, 54, 14797–14814. [Google Scholar] [CrossRef] [PubMed]
- Agegnehu, G.; Srivastava, A.K.; Bird, M.I. The Role of Biochar and Biochar-Compost in Improving Soil Quality and Crop Performance: A Review. Appl. Soil Ecol. 2017, 119, 156–170. [Google Scholar] [CrossRef]
- Smith, P.; Powlson, D.; Glendining, M. Establishing a European GCTE Soil Organic Matter Network (SOMNET). In Evaluation of Soil Organic Matter Models; Powlson, D.S., Smith, P., Smith, J.U., Eds.; Springer: Berlin/Heidelberg, Germany, 1996; pp. 81–97. [Google Scholar]
- Powlson, D.S.; Smith, P. Evaluation of Soil Organic Matter Using Existing Long-Term Datasets (NATO ASI Series I, Vol. 38); Smith, J.U., Ed.; Springer: Berlin, Germany, 1996; p. 429. [Google Scholar]
- Smith, P.; Soussana, J.-F.; Angers, D.; Schipper, L.; Chenu, C.; Rasse, D.P.; Batjes, N.H.; van Egmond, F.; McNeill, S.; Kuhnert, M.; et al. How to Measure, Report and Verify Soil Carbon Change to Realize the Potential of Soil Carbon Sequestration for Atmospheric Greenhouse Gas Removal. Glob. Change Biol. 2020, 26, 219–241. [Google Scholar] [CrossRef]
- Grosse, M.; Hoffmann, C.; Specka, X.; Svoboda, N. Managing Long-Term Experiment Data: A Repository for Soil and Agricultural Research. In Long-Term Farming Systems Research; Elsevier: Amsterdam, The Netherlands, 2020; pp. 167–182. ISBN 978-0-12-818186-7. [Google Scholar]
- Smith, P.; Falloon, P.D.; Körschens, M.; Shevtsova, L.K.; Franko, U.; Romanenkov, V.; Coleman, K.; Rodionova, V.; Smith, J.U.; Schramm, G. EuroSOMNET—A European Database of Long-Term Experiments on Soil Organic Matter: The WWW Metadatabase. J. Agric. Sci. 2002, 138, 123–134. [Google Scholar] [CrossRef]
- Swift, M.; Seward, P.; Frost, P.; Qureshi, J.; Muchena, F. Long-Term Experiments in Africa: Developing a Database for Sustainable Land Use under Global Change. In Long-Term Experiments in Agricultural and Ecological Sciences; CAB International: Wallingford, UK, 1994; pp. 229–251. [Google Scholar]
- Petersen, J.; Mattsson, L.; Riley, H.; Salo, T.; Thorvaldsson, G.; Christensen, B.T. Long Continued Agricultural Soil Experiments: A Nordic Research Platform: An Overview; University of Aarhus, Faculty of Agricultural Sciences (DJF): Aarhus, Denmark, 2008; ISBN 87-91949-30-0. [Google Scholar]
- Powlson, D.S.; Poulton, P.R.; Glendining, M.J.; Macdonald, A.J.; Goulding, K.W.T. Is It Possible to Attain the Same Soil Organic Matter Content in Arable Agricultural Soils as under Natural Vegetation? Outlook Agric. 2022, 51, 91–104. [Google Scholar] [CrossRef]
- Greggio, N.; Balugani, E.; Carlini, C.; Contin, A.; Labartino, N.; Porcelli, R.; Quaranta, M.; Righi, S.; Vogli, L.; Marazza, D. Theoretical and Unused Potential for Residual Biomasses in the Emilia Romagna Region (Italy) through a Revised and Portable Framework for Their Categorization. Renew. Sustain. Energy Rev. 2019, 112, 590–606. [Google Scholar] [CrossRef]
- Giagnoni, L.; Maienza, A.; Baronti, S.; Vaccari, F.P.; Genesio, L.; Taiti, C.; Martellini, T.; Scodellini, R.; Cincinelli, A.; Costa, C.; et al. Long-Term Soil Biological Fertility, Volatile Organic Compounds and Chemical Properties in a Vineyard Soil after Biochar Amendment. Geoderma 2019, 344, 127–136. [Google Scholar] [CrossRef]
- Sánchez-Monedero, M.A.; Cayuela, M.L.; Sánchez-García, M.; Vandecasteele, B.; D’Hose, T.; López, G.; Martínez-Gaitán, C.; Kuikman, P.J.; Sinicco, T.; Mondini, C. Agronomic Evaluation of Biochar, Compost and Biochar-Blended Compost across Different Cropping Systems: Perspective from the European Project FERTIPLUS. Agronomy 2019, 9, 225. [Google Scholar] [CrossRef]
- Futa, B.; Oleszczuk, P.; Andruszczak, S.; Kwiecińska-Poppe, E.; Kraska, P. Effect of Natural Aging of Biochar on Soil Enzymatic Activity and Physicochemical Properties in Long-Term Field Experiment. Agronomy 2020, 10, 449. [Google Scholar] [CrossRef]
- Farkas, É.; Feigl, V.; Gruiz, K.; Vaszita, E.; Fekete-Kertész, I.; Tolner, M.; Kerekes, I.; Pusztai, É.; Kari, A.; Uzinger, N.; et al. Long-Term Effects of Grain Husk and Paper Fibre Sludge Biochar on Acidic and Calcareous Sandy Soils—A Scale-up Field Experiment Applying a Complex Monitoring Toolkit. Sci. Total Environ. 2020, 731, 138988. [Google Scholar] [CrossRef] [PubMed]
- Cooper, J.; Greenberg, I.; Ludwig, B.; Hippich, L.; Fischer, D.; Glaser, B.; Kaiser, M. Effect of Biochar and Compost on Soil Properties and Organic Matter in Aggregate Size Fractions under Field Conditions. Agric. Ecosyst. Environ. 2020, 295, 106882. [Google Scholar] [CrossRef]
- Safaei Khorram, M.; Zhang, G.; Fatemi, A.; Kiefer, R.; Mahmood, A.; Jafarnia, S.; Zakaria, M.P.; Li, G. Effect of Walnut Shell Biochars on Soil Quality, Crop Yields, and Weed Dynamics in a 4-Year Field Experiment. Environ. Sci. Pollut. Res. 2020, 27, 18510–18520. [Google Scholar] [CrossRef]
- Kätterer, T.; Roobroeck, D.; Andrén, O.; Kimutai, G.; Karltun, E.; Kirchmann, H.; Nyberg, G.; Vanlauwe, B.; Röing de Nowina, K. Biochar Addition Persistently Increased Soil Fertility and Yields in Maize-Soybean Rotations over 10 Years in Sub-Humid Regions of Kenya. Field Crops Res. 2019, 235, 18–26. [Google Scholar] [CrossRef]
- Greenberg, I.; Kaiser, M.; Polifka, S.; Wiedner, K.; Glaser, B.; Ludwig, B. The Effect of Biochar with Biogas Digestate or Mineral Fertilizer on Fertility, Aggregation and Organic Carbon Content of a Sandy Soil: Results of a Temperate Field Experiment. J. Plant Nutr. Soil Sci. 2019, 182, 824–835. [Google Scholar] [CrossRef]
- Haider, G.; Steffens, D.; Moser, G.; Müller, C.; Kammann, C.I. Biochar Reduced Nitrate Leaching and Improved Soil Moisture Content without Yield Improvements in a Four-Year Field Study. Agric. Ecosyst. Environ. 2017, 237, 80–94. [Google Scholar] [CrossRef]
- Aydin, E.; Šimanský, V.; Horák, J.; Igaz, D. Potential of Biochar to Alternate Soil Properties and Crop Yields 3 and 4 Years after the Application. Agronomy 2020, 10, 889. [Google Scholar] [CrossRef]
- Long Term Experiment Platform. Available online: https://site.unibo.it/environmental-management-research-group/en/activities/long-term-platform (accessed on 11 May 2022).
- When We Share, Everyone Wins. Available online: https://creativecommons.org/ (accessed on 11 May 2022).
- Il Biochar|Ichar-Associazione Italiana Biochar 2Il Biochar|Ichar-Associazione Italiana Biochar. 2021. Available online: https://ichar.org (accessed on 11 May 2022).
- Smith, P. Land Use Change and Soil Organic Carbon Dynamics. Nutr. Cycl. Agroecosyst. 2008, 81, 169–178. [Google Scholar] [CrossRef]
- Buendia, E.; Tanabe, K.; Kranjc, A.; Jamsranjav, B.; Fukuda, M.; Ngarize, S.; Osako, A.; Pyrozhenko, Y.; Shermanau, P.; Federici, S. Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; IPCC: Kyoto, Japan, 2019. [Google Scholar]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: Science, Technology and Implementation, 2nd ed.; Routledge: London, UK, 2015; ISBN 978-0-415-70415-1. [Google Scholar]
Ecosystem Services | Finding | Truth Value | Uncertainties |
---|---|---|---|
Carbon sequestration | Biochar resistant to decomposition compared with fresh organic matter [5] | Very high confidence | Feedstock and process temperature |
Biochar stability is influenced by soil properties [7] | Medium confidence | Interactions between biotic and abiotic components of soil | |
Global carbon equivalent removal rate for converting available biomass into biochar is between 0.03 and 6.6 GtCO2eq year−1 by 2050 [3] | Medium confidence | Biomass availability and sink models’ interactions between biotic and abiotic components of soil | |
Mean residence time is in the order of magnitude of hundreds of years [12] | Low confidence | Feedstock and process temperature, interactions between biotic and abiotic components of soil, priming effect, crops, and soil conditions | |
Provision of food, fibers, feed, and other biomasses | Increased plant productivity by 10–13% [13] | Medium confidence | Biochar type, biochar and fertilizer agent interactions, application methods, permanence of the effect |
Nutrient cycling | Improved nutrient use efficiency and increased availability of phosphorus and potassium in soils; amelioration of soil acidity [14,15,16] | Medium confidence | Biochar type (ash content) and crop type, soil alkalinity; lack of long-term experiments, permanence of the effect |
Storing and purifying water, regulating flows, recharging aquifers | Increased water holding capacity [17] | Medium/high confidence | Specific local conditions may result in increased runoff and lower infiltration rates; soil type |
LTE Networks | Experiments | Duration Eligibility (Years) | Oldest Experiment (Years) | LTEs Addressing SOM |
---|---|---|---|---|
Australia (1995) | 32 | 10 | 83 | >6 |
Germany and Eastern Europe (1994) | 50 | 30 | 116 | >13 |
EuroSOMNET (2002) | 110 | 8 | 157 | >45 |
North America (1992) | 39 | 10 | 118 | 39 |
BonaRes Germany (2020) | 200 | 20 | 142 | n.a. |
Africa (2012) | 19 | 5 | 52 | n.a. |
Nordic Research Platform (2008) | 38 | 16 | 104 | >6 |
Field Name | Location | Ongoing |
---|---|---|
1. Tebano [38] | Italy | Yes |
2. Braccesca [39] | Italy | Yes |
3. Poggio Torselli (olive) | Italy | Yes |
4. Poggio Torselli (wine) | Italy | Yes |
5. Jumilla [40] | Spain | Yes |
6. Udine [40] | Italy | Yes |
7. Bezek [41] | Polonia | n/a |
8. Őrbottyán-Nyírlugos [42] | Hungary | n/a |
9. Donndorf-Eckersdorf [43] | Germany | n/a |
10. Mashhad [44] | Iran | n/a |
11. Siaya-Nyabeda-Kibugu [45] | Kenya | n/a |
12. Gartow [46] | Germany | n/a |
13. Prato Sesia [11] | Italy | Yes |
14. Frescobaldi | Italy | Yes |
15. Groß-Gerau [47] | Germany | n/a |
16. Cesa | Italy | Yes |
17. Dolna-Malanta [48] | Slovakia | n/a |
18. Merelbeke [40] | Belgium | n/a |
Section | Logical Function |
---|---|
Project name and location | Name that identifies the field study in the platform and at geographic level |
Experimental purpose | Aim of the study, technical–scientific challenges (e.g., increasing water retention, soil quality improvement, carbon storage, etc.), technical challenges (e.g., increasing quality and production), and relating the quality of the substrate |
Geographic position | Geographic location of the experiment |
Site description | Accurate description of the main environmental variables that act on soil dynamics: climate, soil type and its physico-chemical characterization, initial field conditions, and agronomic operations |
Biochar and its application | Biochar type as well as its physico-chemical and geochemical characterization, biochar application rate, and description of the experimental design: plot size, slope, cultivation, heterogeneity measures |
Measured parameters | Parameters periodically measured in relation to the purpose of the experiment, with particular attention to sampling frequency and analytical protocols: vegetation measurement, time zero samples, soil carbon measurements, soil physico-chemical properties, etc. |
Planned activities | Description of the planned activities (such as changing the conditions of the soil, agronomic operations, experimental devices, etc.) |
Key findings | Scientific results derived from the field study and data |
Presentation of the working group | Description of the group that conducts and supports the experiment: collaboration with universities, ministers, and any received funding from private parties, national/EU/Federal projects, etc. |
Metadata | Key Findings |
---|---|
Cropping system | 50% arable soil, 22.2%vineyard, 27.8% agroforestry (olive groves) |
Irrigation | n/a 1 |
Treatment | 66.6% only biochar, 5.6% biochar and fertilizers, 27.8% biochar and compost |
Duration of the experiment | Median = 4 years, average = 5.3 years, longest = 13 years |
Main purpose | 20% yield increase, 70% SOC content, 10% soil biology |
Funding | 77.8% funded by programs/entities, 22.2% self-funded |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marazza, D.; Pesce, S.; Greggio, N.; Vaccari, F.P.; Balugani, E.; Buscaroli, A. The Long-Term Experiment Platform for the Study of Agronomical and Environmental Effects of the Biochar: Methodological Framework. Agriculture 2022, 12, 1244. https://doi.org/10.3390/agriculture12081244
Marazza D, Pesce S, Greggio N, Vaccari FP, Balugani E, Buscaroli A. The Long-Term Experiment Platform for the Study of Agronomical and Environmental Effects of the Biochar: Methodological Framework. Agriculture. 2022; 12(8):1244. https://doi.org/10.3390/agriculture12081244
Chicago/Turabian StyleMarazza, Diego, Simone Pesce, Nicolas Greggio, Francesco Primo Vaccari, Enrico Balugani, and Alessandro Buscaroli. 2022. "The Long-Term Experiment Platform for the Study of Agronomical and Environmental Effects of the Biochar: Methodological Framework" Agriculture 12, no. 8: 1244. https://doi.org/10.3390/agriculture12081244