Mixed Modeling in Genetic Divergence Study of Elite Popcorn Hybrids (Zea mays var. everta)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Obtaining Diallel Hybrids
2.2. Hybrid Evaluation
2.3. Statistical Analysis
- if: , individual k is included in the cluster;
- if: , individual k is not included in the cluster.
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lima, V.J.; Viana, A.P.; Amaral Junior, A.T.; Kamphorst, S.H.; Leite, J.T.; Santos, P.H.A.D.; Bispo, R.B.; Santos, T.O. Exploring the use of testers to maximize selection accuracy of partially inbred S3 popcorn progenies. Rev. Bras. Cienc. Agrar. 2020, 15, 1–11. [Google Scholar] [CrossRef]
- CEASA/RS—Centro de Abastecimento do Rio Grande do Sul. Boletim de Preços de Atacado. Available online: https://ceasa.rs.gov.br/ (accessed on 22 March 2022).
- SFAGRO. Milho Pipoca Atrai Produtores Que Buscam Maior Renda e Diversificação de Culturas. Available online: https://www.agrolink.com.br/noticias/milho-pipoca-atrai-produtores-que-buscam-maior-renda-e-diversificacao-de-culturas_404907.html#:~:text=Custo%20e%20produtividade&text=O%20custo%20de%20produ%C3%A7%C3%A3o%20ficou,custo%20de%20semente%20mais%20alto (accessed on 2 June 2022).
- Oliveira, G.H.F.; Amaral, C.B.; Revolti, L.T.M.; Buzinaro, R.; Moro, G.V. Genetic variability in popcorn synthetic population. Acta Sci. Agron. 2019, 41, 2–9. [Google Scholar] [CrossRef]
- Kurosawa, R.N.F.; Amaral Junior, A.T.; Vivas, M.; Almeida, R.N.; Vivas, J.M.S.; Lima, V.J.; Silveira, S.F. Diallel analysis for resistance to northern leaf blight in popcorn under contrasting nitrogen availability. Agron. J. 2021, 113, 1029–1038. [Google Scholar] [CrossRef]
- Brasil. Ministério da Agricultura, Pecuária e Abastecimento. Registro Nacional de Cultivares RNC. Available online: https://www.agricultura.gov.br/guia-de-servicos/registro-nacional-de-cultivares-rnc (accessed on 22 March 2022).
- Pacheco, C.A.P.; Gama, E.E.G.E.; Guimarães, P.E.O.; Santos, M.X.; Ferreira, A.S. Estimativas de parâmetros genéticos nas populações CMS 42 e CMS 43 de milho pipoca. Pesqui. Agropecuária Bras. 1998, 33, 1995–2001. [Google Scholar]
- Miranda, G.V.; Coimbra, R.R.; Godoy, C.L.; Souza, L.V.; Guimarães, L.J.M.; Melo, A.V. Potencial de melhoramento e divergência genética de cultivares de milho-pipoca. Pesqui. Agropecuária Bras. 2003, 38, 681–688. [Google Scholar] [CrossRef]
- Rinaldi, D.A.; Pipolo, V.C.; Gerage, A.C.; Ruas, C.F.; Fonseca Junior, N.S.; Souza, A.; Souza, S.G.H.; Garbuglio, D.D. Correlação entre heterose e divergência genética estimadas por cruzamentos dialélicos e marcadores moleculares RAPD em populações de milho-pipoca. Bragantia 2007, 66, 183–192. [Google Scholar] [CrossRef]
- Silva, T.A.; Pinto, R.J.B.; Scapim, C.A.; Mangolin, C.A.; Machado, M.F.P.S.; Carvalho, M.S.N. Genetic divergence in popcorn genotypes using microsatellites in bulk genomic DNA. Crop Breed. Appl. Biotechnol. 2009, 9, 31–36. [Google Scholar] [CrossRef] [Green Version]
- Arnhold, E.; Silva, R.G.; Viana, J.M.S. Seleção de linhagens S5 de milho-pipoca com base em desempenho e divergência genética. Acta Sci. Agron. 2010, 32, 279–283. [Google Scholar] [CrossRef]
- Saavedra, J.; Aparecida Silva, T.; Mora, F.; Scapim, C.A. Bayesian analysis of the genetic structure of a Brazilian popcorn germplasm using data from simple sequence repeats (SSR). Chil. J. Agric. Res. 2013, 73, 04–05. [Google Scholar] [CrossRef] [Green Version]
- Pena, G.F.; Amaral Júnior, A.T.; Ribeiro, R.M.; Ramos, H.C.C.; Boechat, M.S.B.; Santos, J.S.; Mafra, G.S.; Kamphorst, S.H.; Lima, V.J.; Vivas, M.; et al. Inference of genetic diversity in popcorn S3 progenies. Genet. Mol. Res. 2016, 15, gmr.15028456. [Google Scholar] [CrossRef]
- Vaz-De-Melo, A.; Colombo, G.A.; Vale, J.C.; Santana, W.D.; Fernandes, M.S. Estratégias de seleção entre progênies meios-irmãos de milho pipoca no cerrado Tocantinense. Rev. Bras. Tecnol. Apl. Ciências Agrárias 2017, 10, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Guimaraes, A.G.; Amaral Junior, A.T.; Almeida Filho, J.E.; Pena, G.F.; Vittorazzi, C.; Pereira, M.G. Population structure and impact of recurrent selection on popcorn using EST-SSR markers. Acta Sci. Agron. 2018, 40, e35218. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, N.C.; Suzukawa, A.K.; Pereira, C.B.; Santos, H.V.; Hanel, A.; Albuquerque, F.A.; Scapim, C.A. Popcorn Genotypes Resistance To Fall Armyworm. Ciência Rural 2018, 48, e20170378. [Google Scholar] [CrossRef]
- Vittorazzi, C.; Amaral Júnior, A.T.; Guimarães, A.G.; Silva, F.H.L.; Pena, G.F.; Daher, R.F.; Gerhardt, I.F.S.; Oliveira, G.H.F.; Santos, P.H.A.D.; Souza, Y.P.; et al. Evaluation of genetic variability to form heterotic groups in popcorn. Genet. Mol. Res. 2018, 17, gmr18083. [Google Scholar] [CrossRef]
- Mafra, G.S.; Amaral Júnior, A.T.; Almeida Filho, J.E.; Vivas, M.; Santos, P.H.A.D.; Santos, J.S.; Pena, G.F.; Lima, V.J.; Kamphorst, S.H.; Oliveira, F.T.; et al. SNP-based mixed model association of growth- and yield-related traits in popcorn. PLoS ONE 2019, 14, e0218552. [Google Scholar] [CrossRef]
- Castro, C.R.; Gonçalves, L.S.A.; Pinto, R.J.B.; Scapim, C.A.; Baba, V.Y.; Zeffa, D.M.; Kuki, M. Genetic diversity and diallel analysis of elite popcorn lines. Rev. Cienc. Agron. 2022, 53, 2022. [Google Scholar] [CrossRef]
- Resende, M.D.V. Métodos Estatísticos Ótimos na Análise de Experimentos de Campo; Embrapa Florestas: Colombo, RS, Brazil, 2004; 57p. [Google Scholar]
- Pearson, K. Notes on the history of correlation. Biometrika 1920, 13, 25–45. [Google Scholar] [CrossRef]
- Kempthorne, O.; Curnow, R.N. The partial diallel cross. Biometrics 1961, 17, 229–250. [Google Scholar] [CrossRef]
- Hallauer, A.R.; Carena, J.M.; Miranda Filho, J.B. Quantitative Genetics in Maize Breeding, 1st ed.; Springer: New York, NY, USA, 2010; 580p. [Google Scholar]
- Agroceres. Guia Agroceres de Sanidade, 1st ed.; Sementes Agroceres: São Paulo, Brazil, 1996; 72p. [Google Scholar]
- Vieira, R.A.; Mesquini, R.M.; Silva, C.N.; Hata, F.T.; Tessmann, D.J.; Scapim, C.A. A new diagrammatic scale for the assessment of northern corn leaf blight. Crop Prot. 2014, 56, 55–57. [Google Scholar] [CrossRef]
- James, W.C. A Manual of Assessment Keys of Plant Diseases, 1st ed.; Canada Department of Agriculture Publication: Saint Paul, MN, USA, 1971; 80p. [Google Scholar]
- Amaral Júnior, A.T.; dos Santos, A.; Gerhardt, I.F.S.; Kurosawa, R.N.F.; Moreira, N.F.; Pereira, M.G.; Gravina, G.A.; Silva, F.H.L. Proposal of a super trait for the optimum selection of popcorn progenies based on path analysis. Genet. Mol. Res. 2016, 15, 1–9. [Google Scholar] [CrossRef]
- Schmildt, E.R.; Cruz, C.D.; Zanuncio, J.C.; Pereira, P.R.G.; Ferrão, R.G. Avaliação de métodos de correção do estande para estimar a produtividade em milho. Pesqui. Agropecuária Bras. 2001, 36, 1011–1018. [Google Scholar] [CrossRef]
- Bhering, L.L. Rbio: A tool for biometric and statistical analysis using the R platform. Crop Breed. Appl. Biotechnol. 2017, 17, 187–190. [Google Scholar] [CrossRef] [Green Version]
- Rao, C.R. Advanced Statistical Methods in Biometric Research; John Willey: New York, NY, USA, 1952; 390p. [Google Scholar]
- Mojena, R. Hierarquical grouping method and stopping rules: An evaluation. Comput. J. 1977, 20, 359–363. [Google Scholar] [CrossRef] [Green Version]
- Singh, D. The relative importance of characters affecting genetic divergence. Indian J. Genet. Plant Breed. 1981, 41, 237–245. [Google Scholar]
- Devore, J.L. Probabilidade e Estatística: Para Engenharia e Ciências, 1st ed.; Thomson Pioneira: São Paulo, Brazil, 2006; 706p. [Google Scholar]
- R Core Team. R: A Language and ENVIRONMENT for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria. 2021. Available online: http://www.R-project.org/ (accessed on 30 March 2022).
- Cruz, C.D. GENES—A software package for analysis in experimental statistics and quantitative genetics. Acta Sci. 2013, 35, 271–276. [Google Scholar] [CrossRef]
- Viana, A.P.; Resende, M.D.V. Genética Quantitativa No Melhoramento de Fruteiras, 1st ed.; Editora Interciência: Rio de Janeiro, Brazil, 2014; 122p. [Google Scholar]
- Rodrigues, H.S.; Cruz, C.D.; Macêdo, J.L.; Resende, M.D.V.; Lopes, R.; Borém, A. Genetic variability and progeny selection of peach palm via mixed models (REML/BLUP). Acta Sci. Agron. 2017, 39, 2. [Google Scholar] [CrossRef] [Green Version]
- Resende, M.D.V.; Alves, R.S. Linear, generalized, hierarchical, bayesian and random regression mixed models in genetics/genomics in plant breeding. Funct. Plant Breed. J. 2020, 2, 2. [Google Scholar] [CrossRef]
- Volpato, L.; Alves, R.S.; Teodoro, P.E.; Resende, M.D.V.; Nascimento, M.; Nascimento, A.C.C.; Ludke, W.H.; Silva, F.L.; Borém, A. Multi-trait multi-environment models in the genetic selection of segregating soybean progeny. PLoS ONE 2019, 14, e0215315. [Google Scholar] [CrossRef]
- Crevelari, J.A.; Pereira, M.G.; Azevedo, F.H.V.; Vieira, R.A.M. Genetic improvement of silage maize: Predicting genetic gain using selection indexes and best linear unbiased prediction. Rev. Cienc. Agron. 2019, 50, 197–204. [Google Scholar] [CrossRef]
- Kaefer, K.A.C.; Schuelter, A.R.; Schuster, I.; Marcolin, J.; Vendruscolo, E.C.G. Identification and characterization of maize lines resistant to leaf diseases. Semin. Ciências Agrárias 2019, 40, 517–526. [Google Scholar] [CrossRef] [Green Version]
- Viana, J.M.S.; Valente, M.S.F.; Scapim, C.A.; Resende, M.D.V.; Silva, F.F. Genetic evaluation of tropical popcorn inbred lines using BLUP. Maydica 2011, 56, 273–281. [Google Scholar]
- Freitas, I.L.J.; Amaral Júnior, A.T.; Viana, A.P.; Pena, G.F.; Cabral, P.D.S.; Vittorazzi, C.; Silva, T.R.C. Ganho Genético Avaliado Com Índices De Seleção E Com REML/Blup Em Milho-Pipoca. Pesqui. Agropecuária Bras. 2013, 48, 1464–1471. [Google Scholar] [CrossRef] [Green Version]
- Cheim, L.M.G.; Costa, F.M.; Silva, N.C.A.; Caneppele, C.; Cesar, A.L.T.M.S.; Rossignoli, P.A.; Faria, A.M.M. Characterization of the seeds of a landrace popcorn (Zea mays L. subsp. mays) cropped in an organic system via Family Farming. Res. Soc. Dev. 2021, 10, e7110817141. [Google Scholar] [CrossRef]
- Kurosawa, R.N.F.; Vivas, M.; Amaral Junior, A.T.; Ribeiro, R.M.; Miranda, S.B.; Pena, G.F.; Leite, J.T.; Mora, F. Popcorn germplasm resistance to fungal diseases caused by Exserohilum turcicum and Bipolaris maydis. Bragantia 2018, 77, 35–47. [Google Scholar] [CrossRef] [Green Version]
- Sousa, A.M.C.B.; Chavaglia, A.C.; Civardi, E.A.; Pinto, J.F.N.; Reis, E.F. Genetic dissimilarity for resistance to foliar diseases associated with the agronomic potential in maize. Rev. Caatinga 2020, 33, 936–944. [Google Scholar] [CrossRef]
- Souza, R.; Ogliari, J.B.; Pinto, T.T. Analysis of on farm conservation of sweet corn in a diversity microcenter of Zea mays L. in Southern Brazil. Maydica 2020, 65, 1–11. [Google Scholar]
- Cordeiro, A.G.M.; Lima, J.S.; Pena, G.F.; Rossi, A.A.B.; Godinho, V.P.C.; Guimaraes, P.E.O. Diversidade genética entre genótipos de milho (Zea mays L.) a partir de caracteres morfoagronômicos. Rev. Ciências Agro-Ambient. 2021, 19, 126–131. [Google Scholar] [CrossRef]
- Pacheco, R.F.C.; Guimarães, A.G.; Oliveira, J.R.; Saraiva, E.A.; Santos, G.M.F.; Costa, M.R.; Guimarães, C.G. Caracterização morfológica e divergência genética de populações de milho crioulo do Alto Vale do Jequitinhonha. Rev. Agrar. Acad. 2019, 2, 15–26. [Google Scholar] [CrossRef]
- Santos, J.S.; Vivas, M.; Amaral Júnior, A.T.; Ribeiro, R.M.; Mafra, G.S.; Pena, G.F. Gene effects from Bipolaris maydis incidence and severity on popcorn. Rev. Bras. Ciências Agrárias 2019, 14, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Backes, R.L.; Balbinot Junior, A.A.; Sawazaki, E.; Gallotti, G.J.M.; Miranda, G.V. Desempenho de genótipos de milho pipoca no Planalto Norte Catarinense. Agropecuária Catarin. 2007, 20, 1, 78–81. [Google Scholar]
- Santos, J.S.; Souza, Y.P.; Vivas, M.; Amaral Junior, A.T.; Almeida, J.E.; Mafra, G.S.; Viana, A.P.; Gravina, G.A.; Ferreira, F.R.A. Genetic merit of popcorn lines and hybrids for multiple foliar diseases and agronomic properties. Funct. Plant Breed. J. 2020, 2, 33–47. [Google Scholar] [CrossRef]
- Amaral Junior, A.T.; Poltronieri, T.P.S.; Santos, P.H.D.; Vivas, M.; Gerhardt, I.F.S.; Carvalho, B.M.; Freitas, C.S.; Silveira, S.F. Reaction of popcorn lines (S7) cultivated in distinct phosphorus levels to Bipolaris maydis infection. Summa Phytopathol. 2019, 45, 18–22. [Google Scholar] [CrossRef]
- Ding, J.; Ali, F.; Chen, G.; Li, H.; Mahuku, G.; Yang, N.; Narro, L.; Magorokosho, C.; Makumbi, D.; Yan, J. Genome-wide association mapping reveals novel sources of resistance to northern corn leaf blight in maize. BMC Plant Biol. 2015, 15, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Trait | Genotype | x2 | Genotypic Variance | Environmental Variance | Phenotypic Variance | Heritability (Average Family) |
---|---|---|---|---|---|---|
IET | 43.7 | 3.8 × 10−11 ** | 61.37 | 95.58 | 85.27 | 0.72 |
SET | 11 | 0.0008 ** | 4.86 | 20.86 | 10.07 | 0.48 |
IBM | 28 | 1.15 × 10−07 ** | 24.06 | 53.39 | 37.41 | 0.64 |
SBM | 8.055 | 0.0045 ** | 0.008 | 0.044 | 0.019 | 0.43 |
PH | 128.3 | <2.2× 10 −16 ** | 215.45 | 114.81 | 244.15 | 0.88 |
EH | 59.5 | 1.2 × 10−14 ** | 73.05 | 87.17 | 94.84 | 0.77 |
NP | 52.4 | 4.66 × 10−13 ** | 61.37 | 95.58 | 85.27 | 0.72 |
NE | 2 | 0.16 ns | 7.175 | 86.58 | 28.82 | 0.25 |
EW | 42.2 | 8.23 × 10−11 ** | 195,204.2 | 313,277 | 273,523.4 | 0.71 |
GY | 45.69 | 1.4 × 10−11 ** | 0.65 | 0.97 | 0.89 | 0.72 |
DF | 42.9 | 5.6 × 10−11 ** | 8.126 | 12.74 | 11.31 | 0.72 |
NED | 0.3 | 0.66 ns | 0.293 | 12.07 | 3.31 | 0.09 |
100GW | 27.1 | 1.9 × 10−07 ** | 1.19 | 2.65 | 1.86 | 0.64 |
PE | 21.3 | 3.9 × 10−06 ** | 7.34 | 19.39 | 12.19 | 0.6 |
VP | 55.4 | 9.7 × 10−14 ** | 606.57 | 759.67 | 796.48 | 0.76 |
Clusters | Genotypes |
---|---|
G1 | T55 (L88). |
G2 | T5 (L65 × L88); T44 (L55); T46 (L65); T24 (P3 × L77); T47 (P6); T17 (L54 × P8); T19 (L54 × L70); T20 (L54 × L77); T16 (L54 × L88); T8 (P6 × L88); T13 (L63 × P8); T15 (L63 × L70); T48 (L63); T6 (L65 × P8); T14 (L63 × L61); and T27 (P7 × L70) |
G3 | T54 (L76); T49 (L54); T4 (L65 × L76); T59 (L77); T53 (L80); T58 (L70); T45 (P1); e T57 (L61) |
G4 | T37 (L80×L55); T34 (P10 × P1); T43 (L70 × P1); T7 (P6 × L76); T12 (L63 × L88); T13 (L63 × P8); T11 (L63 × L76); T39 (L80 × L65); T36 (L80 × L77); T38 (L80 × P1); T9 (P6 × P8); T25 (P3 × L55); T60 (UENF-14); T33 (P10 × L55); T35 (P10 × L65); T42 (L70 × L54); T52 (P10); T40 (L80 × P6); T1 (L55 × L76); T23 (P3 × L70); T41 (IAC125); T56 (P8); T18 (L54 × L61); T62 (BRS Angela); T50 (P3); T28 (P7 × L77); T30 (P7 × P1); T29 (P7 × 755); T61 (UFVM 2 Barão de Viçosa); T2 (P1 × L76); T10 (P6 × L61); T31 (P10 × L70); T26 (P7 × L61); and T27 (P7 × L70) |
G5 | T32 (P10 × L77) |
G6 | T51 (P7) |
Clusters | Genotypes |
---|---|
G1 | T1 (L55 × L76); T23 (P3 × L70); T33 (P10 × L55); T40 (L80 × P6); T41 (IAC125); T29 (P7 × L55); T56 (P8); T52 (P10); T35 (P10 × L65); T26 (P7 × L61); T10 (P6 × L61); T38 (L80 × P1); T28 (P7 × L77) T61 (UFVM 2 Barão de Viçosa) T31 (P10 × L70) T2 (P1 × L76) T3 (P1 × L88) T30 (P7 × P1); T50 (P3); T4 (L65 × L76); T25 (P3 × L55); T60 (UNEF-14); T12 (L63 × L88); T21 (P3 × P8); T7 (P6 × L76); T59 (L77); T11 (L63 × L76); T27 (P7 × L70); T53 (L80); T39 (L80 × L65); T36 (L80 × L77); T62 (BRS Angela); T9 (P6 × P8); T43 (L70 × P1); T18 (L54 × L61); T14 (L63 × L61); T58 (L70); T54 (L76); T13 (L63 × P8); T8 (P6 × L88); T37 (L80 × L55); T42 (L70 × L54); and T44 (L55) |
G2 | T19 (L54 × L70); T20 (L54 × L77); T17 (L54 × P8); T16 (L54 × L88); T15 (L63 × L70); T22 (P3 × L61); T48 (L63); T6 (L65 × P8); T46 (L65); T5 (L65 × L88); T47 (P6); and T24 (P3 × L77) |
G3 | T34 (P10 × P1); and T51 (P7) |
G4 | T45 (P1); and T49 (L54) |
G5 | T57 (L61) |
G6 | T32 (P10 × L77) |
G7 | T55 (L88) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pena, G.F.; Mafra, G.S.; do Amaral Júnior, A.T.; Alfenas, R.F.; Bhering, L.L.; Santos, J.S.; Kamphorst, S.H.; de Lima, V.J.; de Oliveira Santos, T.; Bispo, R.B.; et al. Mixed Modeling in Genetic Divergence Study of Elite Popcorn Hybrids (Zea mays var. everta). Agriculture 2022, 12, 910. https://doi.org/10.3390/agriculture12070910
Pena GF, Mafra GS, do Amaral Júnior AT, Alfenas RF, Bhering LL, Santos JS, Kamphorst SH, de Lima VJ, de Oliveira Santos T, Bispo RB, et al. Mixed Modeling in Genetic Divergence Study of Elite Popcorn Hybrids (Zea mays var. everta). Agriculture. 2022; 12(7):910. https://doi.org/10.3390/agriculture12070910
Chicago/Turabian StylePena, Guilherme Ferreira, Gabrielle Sousa Mafra, Antônio Teixeira do Amaral Júnior, Rafael Ferreira Alfenas, Leonardo Lopes Bhering, Juliana Saltires Santos, Samuel Henrique Kamphorst, Valter Jário de Lima, Talles de Oliveira Santos, Rosimeire Barboza Bispo, and et al. 2022. "Mixed Modeling in Genetic Divergence Study of Elite Popcorn Hybrids (Zea mays var. everta)" Agriculture 12, no. 7: 910. https://doi.org/10.3390/agriculture12070910
APA StylePena, G. F., Mafra, G. S., do Amaral Júnior, A. T., Alfenas, R. F., Bhering, L. L., Santos, J. S., Kamphorst, S. H., de Lima, V. J., de Oliveira Santos, T., Bispo, R. B., Viana, F. N., Pereira, M. G., de Amaral Gravina, G., & Daher, R. F. (2022). Mixed Modeling in Genetic Divergence Study of Elite Popcorn Hybrids (Zea mays var. everta). Agriculture, 12(7), 910. https://doi.org/10.3390/agriculture12070910