Barley-Based Cropping Systems and Weed Control Strategies Influence Weed Infestation, Soil Properties and Barley Productivity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Treatment
2.2. Crop Husbandry
2.3. Post-Harvest Soil Analysis
2.4. Weed Dry Biomass
2.5. Allometric Traits of Barley
2.6. Agronomic and Yield-Related Traits of Barley
2.7. Statistical Analysis
3. Results
3.1. Soil Properties
3.2. Weed Dry Biomass
3.3. Crop Allometry
3.4. Yield and Associated Traits
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blanco-Canqui, H.; Lal, R. Cropping Systems. In Principles of Soil Conservation and Management; Springer: Dordrecht, The Netherlands, 2010; pp. 165–193. [Google Scholar]
- Sainju, U.M.; Alasinrin, S.Y. Changes in soil chemical properties and crop yields with long-term cropping system and nitrogen fertilization. Agrosyst. Geosci. Environ. 2020, 3, e20019. [Google Scholar] [CrossRef] [Green Version]
- Ashworth, A.J.; Allen, F.L.; DeBruyn, J.M.; Owens, P.R.; Sams, C. Crop Rotations and Poultry Litter Affect Dynamic Soil Chemical Properties and Soil Biota Long Term. J. Environ. Qual. 2018, 47, 1327–1338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sainju, U.M.; Allen, B.L.; Caesar-TonThat, T.; Lenssen, A.W. Dryland soil chemical properties and crop yields affected by long-term tillage and cropping sequence. Springerplus 2015, 4, 320. [Google Scholar] [CrossRef] [Green Version]
- Metherell, A.K.; Cambardella, C.A.; Parton, W.J.; Peterson, G.A.; Harding, L.A.; Cole, C. V Simulation of soil organic matter dynamics in dryland wheat-fallow cropping systems. In Soil Management and Greenhouse Effect; CRC Press: Boca Raton, FL, USA, 2018; pp. 259–270. ISBN 0203739310. [Google Scholar]
- Duchene, O.; Vian, J.-F.; Celette, F. Intercropping with legume for agroecological cropping systems: Complementarity and facilitation processes and the importance of soil microorganisms. A review. Agric. Ecosyst. Environ. 2017, 240, 148–161. [Google Scholar] [CrossRef]
- Scalise, A.; Pappa, V.A.; Gelsomino, A.; Rees, R.M. Pea cultivar and wheat residues affect carbon/nitrogen dynamics in pea-triticale intercropping: A microcosms approach. Sci. Total Environ. 2017, 592, 436–450. [Google Scholar] [CrossRef] [PubMed]
- Jabran, K. Allelopathy: Introduction and concepts. In Manipulation of Allelopathic Crops for Weed Control; Springer: Berlin/Heidelberg, Germany, 2017; pp. 1–12. [Google Scholar]
- Mennan, H.; Jabran, K.; Zandstra, B.H.; Pala, F. Non-Chemical Weed Management in Vegetables by Using Cover Crops: A Review. Agronomy 2020, 10, 257. [Google Scholar] [CrossRef] [Green Version]
- FAO. Available online: www.faostat.fao.org (accessed on 10 November 2021).
- GOP. Economic Survey of Pakistan; Govt. of Pakistan, Economic Advisory Wing: Islamabad, Pakistan, 2020.
- Kanatas, P.J.J.; Travlos, I.S.S.; Gazoulis, J.; Antonopoulos, N.; Tsekoura, A.; Tataridas, A.; Zannopoulos, S. The combined effects of false seedbed technique, post-emergence chemical control and cultivar on weed management and yield of barley in Greece. Phytoparasitica 2020, 48, 131–143. [Google Scholar] [CrossRef]
- Woźniak, A. Effect of various systems of tillage on winter barley yield, weed infestation and soil properties. Appl. Ecol. Environ. Res. 2020, 18, 3483–3496. [Google Scholar] [CrossRef]
- Watson, P.R.; Derksen, D.A.; Van Acker, R.C. The ability of 29 barley cultivars to compete and withstand competition. Weed Sci. 2006, 54, 783–792. [Google Scholar] [CrossRef]
- Mahajan, G.; Hickey, L.; Chauhan, B.S. Response of barley genotypes to weed interference in Australia. Agronomy 2020, 10, 99. [Google Scholar] [CrossRef] [Green Version]
- Mushtaq, W.; Siddiqui, M.B.; Hakeem, K.R. Allelopathic control of native weeds. In Allelopathy; Springer: Berlin/Heidelberg, Germany, 2020; pp. 53–59. [Google Scholar]
- Jabran, K.; Cheema, Z.A.; Farooq, M.; Hussain, M. lower doses of pendimethalin mixed with allelopathic crop water extracts for weed management in canola (Brassica napus). Int. J. Agric. Biol. 2010, 12, 335–340. [Google Scholar]
- Khan, M.B.; Ahmad, M.; Hussain, M.; Jabran, K.; Farooq, S.; Waqas-Ul-Haq, M. Allelopathic plant water extracts tank mixed with reduced doses of atrazine efficiently control Trianthema portulacastrum L. in Zea mays L. J. Anim. Plant Sci. 2012, 22, 339–346. [Google Scholar]
- Tanveer, A.; Jabbar, M.K.; Kahliq, A.; Matloob, A.; Abbas, R.N.; Javaid, M.M. Allelopathic effects of aqueous and organic fractions of Euphorbia dracunculoides Lam. on germination and seedling growth of chickpea and wheat. Chil. J. Agric. Res. 2012, 72, 495–501. [Google Scholar] [CrossRef]
- Farooq, M.; Khan, I.; Nawaz, A.; Cheema, M.A.; Siddique, K.H.M. Using sorghum to suppress weeds in autumn planted maize. Crop Prot. 2020, 133, 105162. [Google Scholar] [CrossRef]
- Mahmood, A.; Cheema, Z.A.; Mushtaq, M.N.; Farooq, M. Maize–sorghum intercropping systems for purple nutsedge management. Arch. Agron. Soil Sci. 2013, 59, 1279–1288. [Google Scholar] [CrossRef]
- Hussain, M.I.; Danish, S.; Sánchez-Moreiras, A.M.; Vicente, Ó.; Jabran, K.; Chaudhry, U.K.; Branca, F.; Reigosa, M.J. Unraveling Sorghum Allelopathy in Agriculture: Concepts and Implications. Plants 2021, 10, 1795. [Google Scholar] [CrossRef] [PubMed]
- Riaz Marral, M.W.; Khan, M.B.; Ahmad, F.; Farooq, S.; Hussain, M. The influence of transgenic (Bt) and non-transgenic (non-Bt) cotton mulches on weed dynamics, soil properties and productivity of different winter crops. PLoS ONE 2020, 15, e0238716. [Google Scholar] [CrossRef]
- Singh, R. Weed management in major kharif and rabi crops. In Proceedings of the National Training on Advances in Weed Management, Jabalpur, India, 13–18 December 2021; pp. 31–40. [Google Scholar]
- Naeem, M.; Farooq, M.; Farooq, S.; Ul-Allah, S.; Alfarraj, S.; Hussain, M. The impact of different crop sequences on weed infestation and productivity of barley (Hordeum vulgare L.) under different tillage systems. Crop Prot. 2021, 149, 105759. [Google Scholar] [CrossRef]
- Naeem, M.; Hussain, M.; Farooq, M.; Farooq, S. Weed flora composition of different barley-based cropping systems under conventional and conservation tillage practices. Phytoparasitica 2021, 49, 751–769. [Google Scholar] [CrossRef]
- Naeem, M.; Mehboob, N.; Farooq, M.; Farooq, S.; Hussain, S.; Ali, H.M.; Hussain, M. Impact of Different Barley-Based Cropping Systems on Soil Physicochemical Properties and Barley Growth under Conventional and Conservation Tillage Systems. Agronomy 2021, 11, 8. [Google Scholar] [CrossRef]
- Shahzad, M.; Jabran, K.; Hussain, M.; Raza, M.A.S.; Wijaya, L.; El-Sheikh, M.A.; Alyemeni, M.N. The impact of different weed management strategies on weed flora of wheat-based cropping systems. PLoS ONE 2021, 16, e0247137. [Google Scholar] [CrossRef]
- Blake, G.R.; Hartge, K.H. Bulk density. In Methods of Soil Analysis. Part 1 Physical and Mineralogical Methods, 5.1, 2nd ed.; American Society of Agronomy: Madison, WI, USA, 1986; pp. 363–375. [Google Scholar]
- Danielson, R.E.; Sutherland, P.L. Porosity. Methods Soil Anal. Part 1 Physical and Mineralogical Methods, 5.1, 2nd ed.; American Society of Agronomy: Madison, WI, USA, 1986; pp. 443–461. [Google Scholar]
- Soltanpour, P.N.; Workman, S. Modification of the NH4HCO3-DTPA Soil Test to Omit Carbon Black1. Commun. Soil Sci. Plant Anal. 1979, 10, 1411–1420. [Google Scholar] [CrossRef]
- Watson, D.J. Comparative physiological studies on the growth of field crops: I. Variation in net assimilation rate and leaf area between species and varieties, and within and between years. Ann. Bot. 1947, 11, 41–76. [Google Scholar] [CrossRef]
- Garnier, E.; Shipley, B.; Roumet, C.; Laurent, G. A standardized protocol for the determination of specific leaf area and leaf dry matter content. Funct. Ecol. 2001, 15, 688–695. [Google Scholar] [CrossRef]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Steel, R.; Torrei, J.; Dickey, D. Principles and Procedures of Statistics A Biometrical Approach; McGraw-Hill: New York, NY, USA, 1997. [Google Scholar]
- Ibm, C. SPSS Statistics for Windows; IBM Corp. Released, Version 20; IBM Corporation: Armonk, NY, USA, 2012; pp. 1–8. [Google Scholar]
- Çerçioğlu, M.; Anderson, S.H.; Udawatta, R.P.; Alagele, S. Effect of cover crop management on soil hydraulic properties. Geoderma 2019, 343, 247–253. [Google Scholar] [CrossRef]
- Burr-Hersey, J.E.; Mooney, S.J.; Bengough, A.G.; Mairhofer, S.; Ritz, K. Developmental morphology of cover crop species exhibit contrasting behaviour to changes in soil bulk density, revealed by X-ray computed tomography. PLoS ONE 2017, 12, e0181872. [Google Scholar] [CrossRef] [Green Version]
- Haruna, S.I.; Nkongolo, N.V. Tillage, cover crop and crop rotation effects on selected soil chemical properties. Sustainability 2019, 11, 2770. [Google Scholar] [CrossRef] [Green Version]
- de Moura, M.S.; Silva, B.M.; Mota, P.K.; Borghi, E.; de Resende, A.V.; Acuña-Guzman, S.F.; Araújo, G.S.S.; da Silva, L.D.C.M.; de Oliveira, G.C.; Curi, N. Soil management and diverse crop rotation can mitigate early-stage no-till compaction and improve least limiting water range in a Ferralsol. Agric. Water Manag. 2021, 243, 106523. [Google Scholar] [CrossRef]
- Naz, S.; Fatima, Z.; Iqbal, P.; Khan, A.; Zakir, I.; Noreen, S.; Younis, H.; Abbas, G.; Ahmad, S. Agronomic crops: Types and uses. In Agronomic Crops; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–18. [Google Scholar]
- Ali, H.Q.Z.; Choudhary, F.A.; Hayat, S.; Iqbal, R.; Khaliq, T.; Ahmad, A. Viable alternatives to cotton-wheat crop rotation for semi-arid climatic conditions. J. Dev. Agric. Econ. 2019, 11, 57–62. [Google Scholar]
- Ahmad, M.; Adil, Z.; Hussain, A.; Mumtaz, M.Z.; Nafees, M.; Ahmad, I.; Jamil, M. Potential of phosphate solubilizing Bacillus strains for improving growth and nutrient uptake in mungbean and maize crops. Pak. J. Agric. Sci. 2019, 56, 283–289. [Google Scholar]
- Singh, T.; Satapathy, B.S.; Gautam, P.; Lal, B.; Kumar, U.; Saikia, K.; Pun, K.B. Comparative efficacy of herbicides in weed control and enhancement of productivity and profitability of rice. Exp. Agric. 2018, 54, 363–381. [Google Scholar] [CrossRef]
- Alsaadawi, I.S.; Khaliq, A.; Farooq, M. Integration of allelopathy and less herbicides effect on weed management in field crops and soil biota: A Review. Plant Arch. 2020, 20, 225–237. [Google Scholar]
- Babiker, M.M.; Salah, A.E.; Mukhtaret, M.U. Impact of herbicides Pendimethalin, Gesaprim and their combination on weed control under maize (Zea mays L.). JAIS 2013, 1, 17–22. [Google Scholar]
- Farooq, N.; Abbas, T.; Tanveer, A.; Jabran, K. Allelopathy for weed management. In Co-Evolution of Secondary Metabolites; Springer: Cham, Switzerland, 2020; pp. 505–519. [Google Scholar]
- Czarnota, M.A.; Paul, R.N.; Weston, L.A.; Duke, S.O. Anatomy of Sorgoleone-Secreting Root Hairs of Sorghum Species. Int. J. Plant Sci. 2003, 164, 861–866. [Google Scholar] [CrossRef]
- Gurmani, A.R.; Khan, S.U.; Mehmood, T.; Ahmed, W.; Rafique, M. Exploring the allelopathic potential of plant extracts for weed suppression and productivity in wheat (Triticum aestivum L.). Gesunde Pflanz. 2021, 73, 29–37. [Google Scholar] [CrossRef]
- Shirgapure, K.H.; Ghosh, P. Allelopathy a tool for sustainable weed management. Arch. Curr. Res. Int. 2020, 20, 17–25. [Google Scholar] [CrossRef]
- Shahzad, M.; Farooq, M.; Hussain, M. Weed spectrum in different wheat-based cropping systems under conservation and conventional tillage practices in Punjab, Pakistan. Soil Tillage Res. 2016, 163, 71–79. [Google Scholar] [CrossRef]
- Alarcón, R.; Hernández-Plaza, E.; Navarrete, L.; Sánchez, M.J.; Escudero, A.; Hernanz, J.L.; Sánchez-Giron, V.; Sánchez, A.M. Effects of no-tillage and non-inversion tillage on weed community diversity and crop yield over nine years in a Mediterranean cereal-legume cropland. Soil Tillage Res. 2018, 179, 54–62. [Google Scholar] [CrossRef]
- Bachheti, A.; Sharma, A.; Bachheti, R.K.; Husen, A.; Pandey, D.P. Plant Allelochemicals and Their Various Applications. Co-Evolution of Secondary Metabolites; Springer: Cham, Switzerland, 2020; pp. 441–465. [Google Scholar]
- Drews, S.; Neuhoff, D.; Köpke, U. Weed suppression ability of three winter wheat varieties at different row spacing under organic farming conditions. Weed Res. 2009, 49, 526–533. [Google Scholar] [CrossRef]
- Kandhro, M.N.; Tunio, S.; Rajpar, I.; Chachar, Q. Allelopathic impact of sorghum and sunflower intercropping on weed management and yield enhancement in cotton. Sarhad J. Agric. 2014, 30, 311–318. [Google Scholar]
- Khaliq, A.; Matloob, A.; Ihsan, M.Z.; Abbas, R.N.; Aslam, Z.; Rasool, F. Supplementing herbicides with manual weeding improves weed control efficiency, growth and yield of direct seeded rice. Int. J. Agric. Biol. 2013, 15, 191–199. [Google Scholar]
- Ibrahim, M.; Ahmad, N.; Shinwari, Z.K.; Bano, A.; Ullah, F. Allelopathic assessment of genetically modified and non modified maize (Zea mays L.) on physiology of wheat (Triticum aestivum L.). Pak. J. Bot 2013, 45, 235–240. [Google Scholar]
Crops | Sowing Time | Cultivars | Seed Rate (kg ha−1) | Fertilizer NPK (kg ha−1) | P–P (cm) | R–R (cm) | Harvesting Time | Harvest Method |
---|---|---|---|---|---|---|---|---|
Cotton | 14 May | IUB-2013 | 25 | 250–200–0 | 20 | 75 | 28 October (Last picking) | Manual |
Sorghum | 13 June | YS-16 | 10 | 100–60–0 | 15 | 60 | 29 October | Manual |
Mungbean | 15 June | NIAB-Mung 2011 | 20 | 20–60–0 | 10 | 30 | 27 September | Manual |
Maize | 26 July | YH-1898 | 25 | 200–150–0 | 22 | 75 | 30 October | Manual |
Barley | 15 and 18 November | Haider-93 | 80 | 50–25–0 | - | 25 | 7 and 9 April | Manual |
FB | MaB | CB | MuB | SB | LSD WCS | |
---|---|---|---|---|---|---|
2017–2018 | ||||||
WF | 3.74 ± 0.02 c E * | 4.07 ± 0.03 b E | 3.96 ± 0.05 b E | 4.20 ± 0.02 a E | 4.07 ± 0.04 b E | 0.11 |
WC | 4.98 ± 0.02 d A | 5.30 ± 0.03 ab A | 5.23 ± 0.03 bc A | 5.42 ± 0.03 a A | 5.14 ± 0.07 c A | 0.12 |
FS | 4.73 ± 0.03 c B | 4.93 ± 0.05 b B | 4.84 ± 0.02 bc B | 5.09 ± 0.04 a B | 4.74 ± 0.03 c B | 0.12 |
CC | 4.06 ± 0.05 c D | 4.23 ±0.02 b D | 4.16 ± 0.04 bc D | 4.35 ± 0.02 a D | 4.21 ± 0.03 b D | 0.10 |
AWE | 4.38 ± 0.03 d C | 4.73 ± 0.03 ab C | 4.65 ± 0.05 bc C | 4.81 ± 0.03 a C | 4.56 ± 0.02 c C | 0.11 |
LSD CS | 0.09 | 0.11 | 0.13 | 0.10 | 0.12 | |
2018–2019 | ||||||
WF | 3.88 ± 0.03 d E | 4.18 ± 0.02 bc E | 4.11 ± 0.02 c E | 4.34 ± 0.05 a E | 4.20 ± 0.01 b E | 0.08 |
WC | 5.14 ± 0.02 d A | 5.48 ± 0.03 ab A | 5.44 ± 0.03 b A | 5.58 ± 0.04 a A | 5.30 ± 0.05 c A | 0.10 |
FS | 4.98 ± 0.02 c B | 5.09 ± 0.02 b B | 5.18 ± 0.05 b B | 5.34 ± 0.03 a B | 4.98 ± 0.04 c B | 0.10 |
CC | 4.20 ± 0.07 b D | 4.29 ± 0.05 b D | 4.33 ± 0.06 b D | 4.49 ± 003 a D | 4.34 ± 0.04 ab D | 0.15 |
AWE | 4.57 ± 0.03 d C | 4.84 ± 0.03 bc C | 4.92 ± 0.04 ab C | 5.00 ± 0.02 a C | 4.75 ± 0.04 c C | 0.09 |
LSD WCS | 0.11 | 0.09 | 0.12 | 0.10 | 0.11 |
FB | MaB | CB | MuB | SB | LSD WCS | |
---|---|---|---|---|---|---|
2017–2018 | ||||||
WF | 4.08 ± 0.02 d E | 4.38 ± 0.03 bc E | 4.31 ± 0.05 c E | 4.54 ± 0.02 a E | 4.41 ± 0.04 b E | 0.07 |
WC | 5.35 ± 0.02 d A | 5.73 ± 0.03 ab A | 5.64 ± 0.03 b A | 5.79 ± 0.03 a A | 5.51 ± 0.07 c A | 0.12 |
FS | 5.07 ± 0.03 c B | 5.18 ± 0.05 bc B | 5.27 ± 0.02 b B | 5.43 ± 0.04 a B | 5.08 ± 0.03 c B | 0.11 |
CC | 4.40 ± 0.05 c D | 4.50 ± 0.02 b D | 4.53 ± 0.04 b D | 4.69 ± 0.02 a D | 4.55 ± 0.03 b D | 0.06 |
AWE | 4.77 ± 0.03 e C | 5.04 ± 0.03 c C | 5.12 ± 0.05 b C | 5.20 ± 0.03 a C | 4.95 ± 0.02 d C | 0.07 |
LSD CS | 0.08 | 0.09 | 0.10 | 0.10 | 0.08 | |
2018–2019 | ||||||
WF | 4.22 ± 0.04 d E | 4.55 ± 0.03 b E | 4.44 ± 0.04 c E | 4.68 ± 0.03 a E | 4.55 ± 0.03 bc E | 0.10 |
WC | 5.48 ± 0.03 d A | 5.80 ± 0.03 ab A | 5.70 ± 0.05 bc A | 5.93 ± 0.06 a A | 5.65 ± 0.03 c A | 0.12 |
FS | 5.32 ± 0.04 c B | 5.53 ± 0.04 b B | 5.45 ± 0.04 b B | 5.68 ± 0.05 a B | 5.32 ± 0.02 c B | 0.12 |
CC | 4.54 ± 0.02 c D | 4.68 ± 0.04 b D | 4.62 ± 0.03 bc D | 4.83 ± 0.03 a D | 4.68 ± 0.02 b D | 0.09 |
AWE | 4.91 ± 0.03 d C | 5.28 ± 0.03 ab C | 5.22 ± 0.04 b C | 5.34 ± 0.03 a C | 5.09 ± 0.02 c C | 0.09 |
LSD WCS | 0.10 | 0.11 | 0.12 | 0.12 | 0.07 |
FB | MaB | CB | MuB | SB | LSD CS | |
---|---|---|---|---|---|---|
2017–2018 | ||||||
WC | 18.10 ± 0.29 a A | 7.85 ± 0.26 a C | 17.87 ± 0.12 a A | 15.87 ± 0.48 a B | 6.85 ± 0.13 a D | 0.85 |
FS | 10.15 ± 0.15 b A | 3.52 ± 0.17 b D | 8.56 ± 0.25 c B | 6.03 ± 0.48 b C | 1.99 ± 0.25 b E | 0.89 |
CC | 0.97 ± 0.16 d A | 0.33 ± 0.01 c B | 1.17 ± 0.14 d A | 0.86 ± 0.13 c A | 0.31 ± 0.02 c B | 0.35 |
AWE | 9.15 ± 0.47 c A | 3.67 ± 0.20 b C | 9.46 ± 0.33 b A | 6.71 ± 0.11 b B | 2.16 ± 0.47 b D | 1.09 |
LSD WCS | 0.96 | 0.51 | 0.74 | 1.13 | 0.88 | |
2018–2019 | ||||||
WC | 41.41 ± 0.94 a B | 22.13 ± 0.92 a D | 38.85 ± 0.02 a C | 47.14 ± 0.40 a A | 19.45 ± 0.53 a E | 2.08 |
FS | 23.75 ± 0.84 b B | 13.47 ± 0.38 b C | 22.33 ± 0.69 b B | 27.55 ± 1.12 b A | 10.59 ± 1.72 b C | 3.31 |
CC | 4.59 ± 0.17 c AB | 2.96 ± 0.40 c BC | 4.83 ± 1.01 c AB | 6.04 ± 0.84 c A | 1.22 ± 0.06 c C | 1.94 |
AWE | 23.62 ± 0.43 b B | 13.69 ± 0.59 b C | 22.62 ± 0.23 b B | 26.74 ± 0.73 b A | 11.12 ± 0.43 b D | 1.60 |
LSD WCS | 2.19 | 2.00 | 2.02 | 2.64 | 3.01 |
FB | MaB | CB | MuB | SB | LSD WCS | |
---|---|---|---|---|---|---|
2017–2018 | ||||||
WF | 238.51 ± 1.91 a A | 242.23 ± 3.58 a A | 238.52 ± 3.01 a A | 244.67 ± 2.59 a A | 239.92 ± 2.07 a A | 8.50 |
WC | 171.35 ± 2.45 c D | 206.23 ± 2.23 ab C | 199.84 ± 3.69 b C | 206.18 ± 3.55 ab B | 209.61 ± 1.32 a C | 8.79 |
FS | 206.89 ± 2.99 b C | 231.51 ± 2.81 a B | 225.01 ± 2.76 a B | 233.84 ± 4.53 a A | 230.12 ± 1.66 a B | 9.73 |
CC | 234.03 ± 3.52 a A | 234.24 ± 3.13 a AB | 233.19 ± 3.93 a AB | 242.39 ± 3.43 a A | 242.12 ± 4.60 a A | 11.83 |
AWE | 216.73 ± 1.56 b B | 236.44 ± 2.17 a AB | 233.71 ± 3.20 a AB | 239.87 ± 4.04 a A | 236.19 ± 1.75 a AB | 8.54 |
LSD CS | 8.13 | 8.93 | 10.54 | 11.61 | 8.09 | |
2018–2019 | ||||||
WF | 241.90 ± 3.47 a A | 245.24 ± 2.90 a A | 247.28 ± 2.39 a A | 251.06 ± 4.07 a A | 244.98 ± 3.33 a A | 10.34 |
WC | 174.74 ± 1.11 b C | 205.53 ± 3.10 a B | 209.62 ± 2.45 a B | 210.29 ± 1.71 a B | 211.67 ± 4.03 a B | 8.45 |
FS | 218.44 ± 2.14 b B | 238.56 ± 3.86 a A | 241.73 ± 2.91 a A | 245.39 ± 3.77 a A | 241.67 ± 2.20 a A | 9.66 |
CC | 240.75 ± 2.59 a A | 242.58 ± 4.36 a A | 240.96 ± 2.54 a A | 247.11 ± 2.06 a A | 247.18 ± 3.42 a A | 9.77 |
AWE | 224.23 ± 2.43 b B | 243.55 ± 3.90 a A | 242.60 ± 1.80 a A | 245.04 ± 3.39 a A | 243.69 ± 3.56 a A | 9.82 |
LSD WCS | 7.77 | 11.55 | 7.70 | 9.91 | 10.66 |
FB | MaB | CB | MuB | SB | LSD WCS | |
---|---|---|---|---|---|---|
2017–2018 | ||||||
WF | 49.54 ± 0.91 c A | 51.83 ± 0.65 b AB | 52.65 ± 0.41 ab A | 54.23 ± 0.62 a A | 53.60 ± 0.77 ab A | 2.18 |
WC | 46.43 ± 0.88 b BC | 48.66 ± 0.68 ab C | 47.93 ± 0.67 ab B | 47.76 ± 0.62 b C | 50.06 ± 0.70 a B | 2.25 |
FS | 45.53 ± 0.70 b C | 51.68 ± 0.78 a AB | 50.92 ± 1.03 a A | 50.68 ± 0.88 a B | 47.41 ± 0.33 b C | 2.45 |
CC | 48.92 ± 1.15 c AB | 52.38 ± 0.76 ab A | 50.61 ± 0.98 abc A | 52.81 ± 0.68 a AB | 49.70 ± 0.80 bc B | 2.81 |
AWE | 48.32 ± 1.13 b ABC | 49.71 ± 0.97 ab BC | 50.82 ± 0.15 ab A | 52.20 ± 0.73 a AB | 48.97 ± 0.86 b BC | 2.64 |
LSD CS | 3.05 | 2.44 | 2.30 | 2.24 | 2.26 | |
2018–2019 | ||||||
WF | 50.58 ± 0.78 c A | 53.69 ± 0.50 ab A | 52.55 ± 0.63 bc A | 55.27 ± 0.96 a A | 54.57 ± 1.10 ab A | 2.59 |
WC | 48.14 ± 0.50 a AB | 48.55 ± 0.83 a B | 47.97 ± 0.38 a B | 47.27 ± 0.40 a C | 47.69 ± 0.67 a C | 1.82 |
FS | 47.90 ± 0.83 b B | 51.95 ± 0.87 a A | 52.40 ± 0.52 a A | 51.71 ± 0.87 a B | 50.89 ± 0.49 a B | 2.32 |
CC | 50.41 ± 0.53 b A | 52.10 ± 0.82 ab A | 51.78 ± 0.82 ab A | 53.87 ± 0.69 a AB | 51.12 ± 0.64 b B | 2.22 |
AWE | 49.69 ± 1.11 b AB | 52.13 ± 0.85 ab A | 50.83 ± 0.76 b A | 53.57 ± 0.41 a AB | 50.27 ± 0.82 b B | 2.59 |
LSD WCS | 2.46 | 2.47 | 2.01 | 2.22 | 2.42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naeem, M.; Minhas, W.A.; Hussain, S.; Ul-Allah, S.; Farooq, M.; Farooq, S.; Hussain, M. Barley-Based Cropping Systems and Weed Control Strategies Influence Weed Infestation, Soil Properties and Barley Productivity. Agriculture 2022, 12, 487. https://doi.org/10.3390/agriculture12040487
Naeem M, Minhas WA, Hussain S, Ul-Allah S, Farooq M, Farooq S, Hussain M. Barley-Based Cropping Systems and Weed Control Strategies Influence Weed Infestation, Soil Properties and Barley Productivity. Agriculture. 2022; 12(4):487. https://doi.org/10.3390/agriculture12040487
Chicago/Turabian StyleNaeem, Muhammad, Waqas Ahmed Minhas, Shahid Hussain, Sami Ul-Allah, Muhammad Farooq, Shahid Farooq, and Mubshar Hussain. 2022. "Barley-Based Cropping Systems and Weed Control Strategies Influence Weed Infestation, Soil Properties and Barley Productivity" Agriculture 12, no. 4: 487. https://doi.org/10.3390/agriculture12040487
APA StyleNaeem, M., Minhas, W. A., Hussain, S., Ul-Allah, S., Farooq, M., Farooq, S., & Hussain, M. (2022). Barley-Based Cropping Systems and Weed Control Strategies Influence Weed Infestation, Soil Properties and Barley Productivity. Agriculture, 12(4), 487. https://doi.org/10.3390/agriculture12040487