Chitosan as an Adjuvant to Improve Isopyrazam Azoxystrobin against Leaf Spot Disease of Kiwifruit and Enhance Its Photosynthesis, Quality, and Amino Acids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pathogen, Fungicide and Culture Medium
2.2. Screening Test of Fungicides In Vitro
2.3. Field Control Experiments of Leaf Spot Disease of Kiwifruit
2.4. Investigation of Control Effect of Leaf Spot Disease
2.5. Determination of Soluble Protein, Malonaldehyde (MDA), Resistance Enzyme Activities and Photosynthetic Characteristics of Kiwifruit Leaves
2.6. Determination of Yield, Quality and Amino Acids of Kiwifruit
2.7. Statistical Analyses
3. Results
3.1. Toxicity of Different Fungicides against Lasiodiplodia Theobromae
3.2. Field Control Effect of Isopyrazam·Azoxystrobin and Chitosan against Leaf Spot Disease of Kiwifruit
3.3. Effects of Isopyrazam·Azoxystrobin and Chitosan on Soluble Protein, MDA and Resistance Enzyme Activities of Kiwifruit Leaves
3.4. Effects of Isopyrazam·Azoxystrobin and Chitosan on Photosynthetic Characteristics of Kiwifruit Leaves
3.5. Effects of Isopyrazam·Azoxystrobin and Chitosan on Growth, Quality and Amino Acids of Kiwifruit Fruits
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, H.; Zhou, H.; Li, P. Lacquer wax coating improves the sensory and quality attributes of kiwifruit during ambient storage. Sci. Hortic. 2019, 244, 31–41. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, C.; Li, J.; Wu, X.; Long, Y.; Su, Y. Intercropping Vicia sativa L. Improves the Moisture, Microbial Community, Enzyme Activity and Nutrient in Rhizosphere Soils of Young Kiwifruit Plants and Enhances Plant Growth. Horticulturae 2021, 7, 335. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, C.; Long, Y.; Wu, X.; Su, Y.; Lei, Y.; Ai, Q. Bioactivity and Control Efficacy of the Novel Antibiotic Tetramycin against Various Kiwifruit Diseases. Antibiotics 2021, 10, 289. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.M.; Gao, G.T.; Gu, L.J.; Sun, X.Y.; Xue, X.Y.; Geng, P.F.; Lei, Y.S. Identification and Pharmaceutical Screening of Brown Spot Disease on Actinidia chinensis. Sci. Agric. Sin. 2013, 46, 4916–4925. [Google Scholar] [CrossRef]
- Yuan, G.Q.; Xie, Y.L.; Tan, D.C.; Li, Q.Q.; Lin, W. First Report of Leaf Spot Caused by Corynespora cassiicola on Kiwifruit (Actinidia chinensis) in China. Plant Dis. 2014, 98, 1586. [Google Scholar] [CrossRef]
- Kikuhara, K.; Nakashima, C. Sooty spot of kiwifruit caused by Pseudocercospora actinidiae Deighton. J. Gen. Plant Pathol. 2008, 74, 185–187. [Google Scholar] [CrossRef]
- Jeong, I.-H.; Lim, M.-T.; Kim, G.-H.; Han, T.-W.; Kim, H.-C.; Kim, M.-J.; Park, H.-S.; Shin, S.-H.; Hur, J.-S.; Shin, J.-S.; et al. Incidences of Leaf Spots and Blights on Kiwifruit in Korea. Plant Pathol. J. 2008, 24, 125–130. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.Q.; Zhang, R.Q.; Long, Y.H.; Hu, A.L.; Mo, F.X.; Li, W.Z. Identification and Biological Characteristics of a Kiwifruit Leaf Spot Disease Pathogen. North Hortic. 2021, 12, 44–49. [Google Scholar]
- Naseri, B. Legume Root Rot Control Through Soil Management for Sustainable Agriculture. In Sustainable Management of Soil and Environment; Springer: Berlin/Heidelberg, Germany, 2019; pp. 217–258. [Google Scholar]
- Cameron, A.; Sarojini, V. Pseudomonas syringaepv.actinidiae: Chemical control, resistance mechanisms and possible alternatives. Plant Pathol. 2013, 63, 1–11. [Google Scholar] [CrossRef]
- Wicaksono, W.A.; Jones, E.E.; Casonato, S.; Monk, J.; Ridgway, H.J. Biological control of Pseudomonas syringae pv. actinidiae (Psa), the causal agent of bacterial canker of kiwifruit, using endophytic bacteria recovered from a medicinal plant. Biol. Control 2018, 116, 103–112. [Google Scholar] [CrossRef]
- Slusarenko, A.J.; Patel, A.; Portz, D. Control of plant diseases by natural products: Allicin from garlic as a case study. Eur. J. Plant Pathol. 2008, 121, 313–322. [Google Scholar] [CrossRef]
- Borlinghaus, J.; Albrecht, F.; Gruhlke, M.C.H.; Nwachukwu, I.; Slusarenko, A.J. Allicin: Chemistry and Biological Properties. Molecules 2014, 19, 12591–12618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naseri, B. Epidemics of Rhizoctonia Root Rot in Association with Biological and Physicochemical Properties of Field Soil in Bean Crops. J. Phytopathol. 2013, 161, 397–404. [Google Scholar] [CrossRef]
- Naseri, B. Bean production and fusarium root rot in diverse soil environments in Iran. J. Soil Sci. Plant Nutr. 2014, 14, 177–188. [Google Scholar] [CrossRef] [Green Version]
- Verlee, A.; Mincke, S.; Stevens, C.V. Recent developments in antibacterial and antifungal chitosan and its derivatives. Carbohydr. Polym. 2017, 164, 268–283. [Google Scholar] [CrossRef]
- Chakraborty, M.; Hasanuzzaman, M.; Rahman, M.; Khan, A.R.; Bhowmik, P.; Mahmud, N.U.; Tanveer, M.; Islam, T. Mechanism of Plant Growth Promotion and Disease Suppression by Chitosan Biopolymer. Agriculture 2020, 10, 624. [Google Scholar] [CrossRef]
- Torres-Rodriguez, J.A.; Reyes-Pérez, J.J.; Castellanos, T.; Angulo, C.; Quiñones-Aguilar, E.E.; Hernandez-Montiel, L.G. A biopolymer with antimicrobial properties and plant resistance inducer against phytopathogens: Chitosan. Not. Bot. Horti Agrobot. Cluj-Napoca 2021, 49, 12231. [Google Scholar] [CrossRef]
- Rahman, M.; Mukta, J.A.; Sabir, A.A.; Gupta, D.R.; Mohi-Ud-Din, M.; Hasanuzzaman, M.; Miah, M.G.; Rahman, M.; Islam, M.T. Chitosan biopolymer promotes yield and stimulates accumulation of antioxidants in strawberry fruit. PLoS ONE 2018, 13, e0203769. [Google Scholar] [CrossRef]
- Coutinho, T.C.; Ferreira, M.C.; Rosa, L.H.; de Oliveira, A.M.; Júnior, E.N.D.O. Penicillium citrinum and Penicillium mallochii: New phytopathogens of orange fruit and their control using chitosan. Carbohydr. Polym. 2020, 234, 115918. [Google Scholar] [CrossRef]
- El Amerany, F.; Meddich, A.; Wahbi, S.; Porzel, A.; Taourirte, M.; Rhazi, M.; Hause, B. Foliar Application of Chitosan Increases Tomato Growth and Influences Mycorrhization and Expression of Endochitinase-Encoding Genes. Int. J. Mol. Sci. 2020, 21, 535. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Guo, Z.; Luo, Y.; Wu, X.; An, H. Chitosan Can Induce Rosa roxburghii Tratt. against Sphaerotheca sp. and Enhance Its Resistance, Photosynthesis, Yield, and Quality. Horticulturae 2021, 7, 289. [Google Scholar] [CrossRef]
- Berger, L.R.R.; Stamford, N.P.; Willadino, L.G.; Laranjeira, D.; de Lima, M.A.B.; Malheiros, S.M.M.; de Oliveira, W.J.; Stamford, T.C.M. Cowpea resistance induced against Fusarium oxysporum f. sp. tracheiphilum by crustaceous chitosan and by biomass and chitosan obtained from Cunninghamella elegans. Biol. Control. 2016, 92, 45–54. [Google Scholar] [CrossRef]
- Obianom, C.; Romanazzi, G.; Sivakumar, D. Effects of chitosan treatment on avocado postharvest diseases and expression of phenylalanine ammonia-lyase, chitinase and lipoxygenase genes. Postharvest Biol. Technol. 2019, 147, 214–221. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, C.; Wu, X.; Long, Y.; Su, Y. Chitosan Augments Tetramycin against Soft Rot in Kiwifruit and Enhances Its Improvement for Kiwifruit Growth, Quality and Aroma. Biomolecules 2021, 11, 1257. [Google Scholar] [CrossRef]
- Zhang, C.; Long, Y.-H.; Wang, Q.-P.; Li, J.-H.; Wu, X.-M.; Li, M. The Effect of Preharvest 28.6% Chitosan Composite Film Sprays for Controlling Soft Rot on Kiwifruit and Its Defense Responses. Hortic. Sci. 2019, 46, 180–194. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Long, Y.; Li, J.; Li, M.; Xing, D.; An, H.; Wu, X.; Wu, Y. A Chitosan Composite Film Sprayed before Pathogen Infection Effectively Controls Postharvest Soft Rot in Kiwifruit. Agronomy 2020, 10, 265. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Wang, Q.P.; Wu, X.M.; Long, Y.H.; Wu, Y.Y.; Huang, Y.X.; Tang, J.W. Effects of Forchlorfenuron on Amino Acids and Aroma Components of Guichang Kiwifruit Postharvests. J. Nucl. Agric. Sci. 2019, 33, 2186–2194. [Google Scholar] [CrossRef]
- Harp, T.L.; Godwin, J.R.; Scalliet, G.; Walter, H.; Stalker, A.D.; Bartlett, D.W.; Ranner, D.J. Isopyrazam, a New Generation Cereal Fungicide. Asp. Appl. Biol. 2011, 106, 113–120. [Google Scholar]
- Song, Y.; Zhang, Z.; Chen, L.; He, L.; Lu, H.; Ren, Y.; Mu, W.; Liu, F. Baseline Sensitivity of Botrytis cinerea to the Succinate Dehydrogenase Inhibitor Isopyrazam and Efficacy of this Fungicide. Plant Dis. 2016, 100, 1314–1320. [Google Scholar] [CrossRef] [Green Version]
- He, L.-M.; Cui, K.-D.; Ma, D.-C.; Shen, R.-P.; Huang, X.-P.; Jiang, J.-G.; Mu, W.; Liu, F. Activity, Translocation, and Persistence of Isopyrazam for Controlling Cucumber Powdery Mildew. Plant Dis. 2017, 101, 1139–1144. [Google Scholar] [CrossRef]
- Huang, X.-P.; Song, Y.-F.; Li, B.-X.; Mu, W.; Liu, F. Baseline sensitivity of isopyrazam against Sclerotinia sclerotiorum and its efficacy for the control of Sclerotinia stem rot in vegetables. Crop Prot. 2019, 122, 42–48. [Google Scholar] [CrossRef]
- Adetutu, E.; Ball, A.; Osborn, A. Azoxystrobin and soil interactions: Degradation and impact on soil bacterial and fungal communities. J. Appl. Microbiol. 2008, 105, 1777–1790. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, E.T.; Lopes, I.; Pardal, M.Â. Occurrence, fate and effects of azoxystrobin in aquatic ecosystems: A review. Environ. Int. 2013, 53, 18–28. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Huang, Y.; Wang, J.; Chen, X.; Wei, K.; Wang, M.; Shang, S. Activities of azoxystrobin and difenoconazole against Alternaria alternata and their control efficacy. Crop Prot. 2016, 90, 54–58. [Google Scholar] [CrossRef]
- Dubos, T.; Pasquali, M.; Pogoda, F.; Casanova, A.; Hoffmann, L.; Beyer, M. Differences between the succinate dehydrogenase sequences of isopyrazam sensitive Zymoseptoria tritici and insensitive Fusarium graminearum strains. Pestic. Biochem. Physiol. 2013, 105, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Marczewska, P.; Płonka, M.; Rolnik, J.; Sajewicz, M. Determination of azoxystrobin and its impurity in pesticide formulations by liquid chromatography. J. Environ. Sci. Heal. Part B 2020, 55, 599–603. [Google Scholar] [CrossRef] [PubMed]
- Vlot, A.C.; Sales, J.H.; Lenk, M.; Bauer, K.; Brambilla, A.; Sommer, A.; Chen, Y.; Wenig, M.; Nayem, S. Systemic propagation of immunity in plants. New Phytol. 2021, 229, 1234–1250. [Google Scholar] [CrossRef]
- Lopez-Moya, F.; Suarez-Fernandez, M.; Lopez-Llorca, L.V. Molecular Mechanisms of Chitosan Interactions with Fungi and Plants. Int. J. Mol. Sci. 2019, 20, 332. [Google Scholar] [CrossRef] [Green Version]
- El-Mohamedya, R.S.R.; Abd El-Aziz, M.E.; Kamel, S. Antifungal Activity of Chitosan Nanoparticles against Some Plant Pathogenic Fungi In Vitro. Agric. Eng. Int. CIGR J. 2019, 21, 201–209. [Google Scholar]
- Yan, J.; Cao, J.; Jiang, W.; Zhao, Y. Effects of preharvest oligochitosan sprays on postharvest fungal diseases, storage quality, and defense responses in jujube (Zizyphus jujuba Mill. cv. Dongzao) fruit. Sci. Hortic. 2012, 142, 196–204. [Google Scholar] [CrossRef]
- Ma, Z.; Yang, L.; Yan, H.; Kennedy, J.F.; Meng, X. Chitosan and oligochitosan enhance the resistance of peach fruit to brown rot. Carbohydr. Polym. 2013, 94, 272–277. [Google Scholar] [CrossRef] [PubMed]
- Dzung, N.A.; Khanh, V.T.P.; Dzung, T.T. Research on impact of chitosan oligomers on biophysical characteristics, growth, development and drought resistance of coffee. Carbohydr. Polym. 2011, 84, 751–755. [Google Scholar] [CrossRef]
- Zhu, S.T.; Wu, K. Nutritional evaluation of protein—Ratio coefficient of amino acid. Acta Nutr. Sin. 1988, 10, 187–190. [Google Scholar]
- Newman, D.J.; Cragg, G.M. Natural Products As Sources of New Drugs over the 30 Years from 1981 to 2010. J. Nat. Prod. 2012, 75, 311–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Fungicides | Regression Equation | EC50 (mg kg−1) | Determination Coefficient (R2) |
---|---|---|---|
29% Isopyrazam·Azoxystrobin SC | y = 5.2485 + 0.3365 x | 0.18 | 0.9933 |
0.3% Tetramycin AS | y = 4.5323 + 1.2463 x | 2.37 | 0.9840 |
48% Oxime·Tebuconazole SC | y = 4.6315 + 0.6662 x | 3.57 | 0.9769 |
50% Cyprodinil WDG | y = 4.6730 + 0.5843 x | 3.63 | 0.9925 |
0.3% Eugenol SL | y = 4.0371 + 1.7167 x | 3.64 | 0.9911 |
10% Difenoconazole WDG | y = 4.2910 + 0.4914 x | 27.72 | 0.9811 |
5% Hexaconazole·Tetramycin ME | y = 4.0744 + 0.5832 x | 38.66 | 0.9841 |
75% Pentazole·AzoxystrobinWDG | y = 4.1627 + 0.4647 x | 63.34 | 0.9533 |
2% Oligosaccharins AS | y = 2.4191 + 1.1674 x | 162.51 | 0.9989 |
Chitosan | y = 5.2904 + 0.9250 x | 485.41 | 0.9865 |
Treatments | Disease Index | Control Effect (%) |
---|---|---|
Isopyrazam·Azoxystrobin + Chitosan | 1.26 ± 0.22 cC | 86.83 ± 2.14 aA |
Isopyrazam·Azoxystrobin | 2.04 ± 0.23 cC | 78.70 ± 0.74 bA |
Chitosan | 4.25 ± 0.25 bB | 55.33 ± 4.90 cB |
Control | 9.56 ± 0.73 aA |
Treatments | Longitudinal Diameter (mm) | Transverse Diameter (mm) | Lateral Diameter (mm) | Fruit Shape Index | Single fruit Volume (cm3) | Single Fruit Weight (g) |
---|---|---|---|---|---|---|
Isopyrazam·Azoxystrobin + Chitosan Isopyrazam·Azoxystrobin | 83.33 ± 0.86 a | 51.32 ± 0.48 a | 41.08 ± 0.54 a | 1.80 ± 0.04 a | 73.56 ± 0.96 a | 102.34 ± 3.06 a |
82.06 ± 1.59 ab | 49.27 ± 1.01 b | 40.32 ± 0.86 a | 1.83 ± 0.06 a | 68.25 ± 2.37 b | 91.73 ± 2.27 b | |
Chitosan | 81.67 ± 1.96 ab | 49.24 ± 1.63 b | 40.39 ± 1.46 a | 1.82 ± 0.07 a | 67.94 ± 0.43 b | 90.56 ± 1.18 b |
Control | 79.65 ± 2.47 b | 48.57 ± 0.60 b | 40.26 ± 0.83 a | 1.79 ± 0.08 a | 65.18 ± 1.19 c | 87.88 ± 1.10 b |
Treatments | Vitamin C (g kg−1) | Total Soluble Sugar (%) | Soluble Solid (%) | Dry Matter (%) | Titratable Acidity (%) |
---|---|---|---|---|---|
Isopyrazam·Azoxystrobin + Chitosan Isopyrazam·Azoxystrobin | 1.95 ± 0.03 a | 12.84 ± 0.06 a | 15.80 ± 0.10 a | 19.77 ± 0.16 a | 1.03 ± 0.03 c |
1.86 ± 0.01 c | 12.42 ± 0.03 c | 15.17 ± 0.12 c | 19.14 ± 0.10 c | 1.10 ± 0.04 b | |
Chitosan | 1.90 ± 0.02 b | 12.65 ± 0.05 b | 15.43 ± 0.06 b | 19.46 ± 0.01 b | 1.07 ± 0.01 bc |
Control | 1.83 ± 0.01 c | 12.11 ± 0.06 d | 14.50 ± 0.10 d | 18.49 ± 0.12 d | 1.18 ± 0.01 a |
Amino Acids (g kg−1) | Isopyrazam·Azoxystrobin + Chitosan | Isopyrazam·Azoxystrobin | Chitosan | Control |
---|---|---|---|---|
Aspartic | 0.87 | 0.83 | 0.86 | 0.84 |
Glutamate | 1.84 | 1.82 | 1.83 | 1.78 |
Cystine | 0.97 | 0.94 | 0.95 | 0.96 |
Serine | 0.78 | 0.76 | 0.75 | 0.74 |
Glycine | 0.76 | 0.68 | 0.73 | 0.72 |
Histidine | 0.68 | 0.67 | 0.68 | 0.65 |
Arginine | 1.41 | 1.37 | 1.39 | 1.34 |
Threonine | 0.45 | 0.45 | 0.46 | 0.47 |
Alanine | 0.74 | 0.68 | 0.72 | 0.66 |
Proline | 1.22 | 1.27 | 1.25 | 1.28 |
Tyrosine | 0.67 | 0.67 | 0.66 | 0.65 |
Valine | 0.66 | 0.59 | 0.64 | 0.63 |
Methionine | 0.57 | 0.58 | 0.55 | 0.56 |
Isoleucine | 0.61 | 0.57 | 0.58 | 0.54 |
Leucine | 0.63 | 0.53 | 0.56 | 0.55 |
Phenylalanine | 0.74 | 0.69 | 0.71 | 0.67 |
Lysine | 0.92 | 0.85 | 0.88 | 0.87 |
Sweet amino acids | 4.63 ± 0.05 a | 4.51 ± 0.07 b | 4.59 ± 0.06 a | 4.52 ± 0.06 b |
Flavor amino acids | 3.63 ± 0.06 a | 3.50 ± 0.08 b | 3.57 ± 0.09 a | 3.49 ± 0.08 b |
Bitter amino acids | 3.88 ± 0.08 a | 3.64 ± 0.07 b | 3.72 ± 0.08 ab | 3.62 ± 0.05 c |
Aromatic amino acids | 2.38 ± 0.05 a | 2.30 ± 0.06 b | 2.32 ± 0.07 a | 2.28 ± 0.08 b |
Essential amino acids | 4.58 ± 0.06 a | 4.26 ± 0.07 c | 4.38 ± 0.06 b | 4.29 ± 0.04 c |
Nonessential amino acids | 8.72 ± 0.07 a | 8.42 ± 0.08 b | 8.57 ± 0.09 a | 8.34 ± 0.08 b |
Total amino acids | 14.52 ± 0.11 a | 13.95 ± 0.11 c | 14.20 ± 0.09 b | 13.91 ± 0.12 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Li, H.; Lei, Y.; Su, Y.; Long, Y. Chitosan as an Adjuvant to Improve Isopyrazam Azoxystrobin against Leaf Spot Disease of Kiwifruit and Enhance Its Photosynthesis, Quality, and Amino Acids. Agriculture 2022, 12, 373. https://doi.org/10.3390/agriculture12030373
Wang Q, Li H, Lei Y, Su Y, Long Y. Chitosan as an Adjuvant to Improve Isopyrazam Azoxystrobin against Leaf Spot Disease of Kiwifruit and Enhance Its Photosynthesis, Quality, and Amino Acids. Agriculture. 2022; 12(3):373. https://doi.org/10.3390/agriculture12030373
Chicago/Turabian StyleWang, Qiuping, Haitao Li, Yang Lei, Yue Su, and Youhua Long. 2022. "Chitosan as an Adjuvant to Improve Isopyrazam Azoxystrobin against Leaf Spot Disease of Kiwifruit and Enhance Its Photosynthesis, Quality, and Amino Acids" Agriculture 12, no. 3: 373. https://doi.org/10.3390/agriculture12030373