The Potential of Using Radarsat-2 Satellite Image for Modeling and Mapping Wheat Yield in a Semiarid Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Field Data Measurement
2.3. Synthetic Aperture Radar Data
2.4. Selection of Radar Polarimetric Parameters
2.5. Developpement of Wheat Yield Estimation Model
3. Results and Discussion
3.1. Field Data Analysis
3.2. Correlation between Polarimetric Parameters and Grain Yield
3.3. Wheat Yields Modeling
3.4. Model Application for Wheat Yields Mapping
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sadok, W.; Schoppach, R.; Ghanem, M.E.; Zucca, C.; Sinclair, T.R. Wheat drought-tolerance to enhance food security in Tunisia, birthplace of the Arab Spring. Eur. J. Agron. 2019, 107, 1–9. [Google Scholar] [CrossRef]
- Khaldi, R.; Saaidia, B. Analyse de la Filière Céréalière en Tunisie et Identification des Principaux Points de Dysfonctionnement à L’origine des Pertes. Rapport de Projet FAO (GCP/RNE/004/ITA). Available online: http://www.onagri.nat.tn/uploads/Etudes/RapportIVF.pdf (accessed on 1 February 2022).
- Bahri, H.; Annabi, M.; Cheikh M’Hamed, H.; Frija, A. Assessing the long-term impact of conservation agriculture on wheat-based systems in Tunisia using APSIM simulations under a climate change context. Sci. Total Environ. 2019, 692, 1223–1233. [Google Scholar] [CrossRef] [PubMed]
- Kouadio, A.L. Prévisions des Rendements du blé d Hiver à Échelle Régionale par Modélisation de la Courbe de Chute de Œ Indice Foliaire. Ph.D. Dissertation, Université de Liège, Liège, Belgique, 2012. [Google Scholar]
- Esfandiary, F.; Aghaie, G.; Mehr, A.D. Wheat Yield Prediction through Agro Meteorological Indices for Ardebil District. Int. J. Agric. Biosyst. Eng. 2009, 49, 32–35. [Google Scholar]
- Hoogenboom, G. Contribution of agrometeorology to the simulation of crop production and its applications. Agric. For. Meteorol. 2000, 103, 137–157. [Google Scholar] [CrossRef]
- Zamani, A.; Sharifi, A.; Felegari, S.; Tariq, A.; Zhao, N. Agro Climatic Zoning of Saffron Culture in Miyaneh City by Using WLC Method and Remote Sensing Data. Agriculture 2022, 12, 118. [Google Scholar] [CrossRef]
- Fontanelli, G.; Paloscia, S.; Zribi, M.; Chahbi, A. Sensitivity analysis of X-band SAR to wheat and barley leaf area index in the Merguellil Basin. Remote Sens. Lett. 2013, 4, 1107–1116. [Google Scholar] [CrossRef] [Green Version]
- Mutanga, O.; Dube, T.; Galal, O. Remote sensing of crop health for food security in Africa: Potentials and constraints. Remote Sens. Appl. Soc. Environ. 2017, 8, 231–239. [Google Scholar] [CrossRef]
- Sharifi, A. Using Sentinel-2 Data to Predict Nitrogen Uptake in Maize Crop. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 2656–2662. [Google Scholar] [CrossRef]
- Labus, M.P.; Nielsen, G.A.; Lawrence, R.L.; Engel, R.; Long, D.S. Wheat yield estimates using multi-temporal NDVI satellite imagery. Int. J. Remote Sens. 2002, 23, 4169–4180. [Google Scholar] [CrossRef]
- Barnes, E.M.; Pinter, P.J.; Kimball, B.A.; Wall, G.W.; LaMorte, R.L.; Hunsaker, D.J.; Adamsen, F.; Leavitt, S.; Thompson, T.; Mathius, J. Modification of CERES-Wheat to accept leaf area index as an input variable. Pap.-Am. Soc. Agric. Eng. 1997, 1. [Google Scholar]
- El Hachimi, J.; El Harti, A.; Ouzemou, J.-E.; Lhissou, R.; Chakouri, M.; Jellouli, A. Assessment of the benefit of a single sentinel-2 satellite image to small crop parcels mapping. Geocarto Int. 2021, 1–17. [Google Scholar] [CrossRef]
- Ouzemou, J.-E.; El Harti, A.; Lhissou, R.; El Moujahid, A.; Bouch, N.; El Ouazzani, R.; Bachaoui, E.M.; El Ghmari, A. Crop type mapping from pansharpened Landsat 8 NDVI data: A case of a highly fragmented and intensive agricultural system. Remote Sens. Appl. Soc. Environ. 2018, 11, 94–103. [Google Scholar] [CrossRef]
- Chahbi, A.; Zribi, M.; Lili-Chabaane, Z.; Duchemin, B.; Shabou, M.; Mougenot, B.; Boulet, G. Estimation of the dynamics and yields of cereals in a semi-arid area using remote sensing and the SAFY growth model. Int. J. Remote Sens. 2014, 35, 1004–1028. [Google Scholar] [CrossRef] [Green Version]
- Wiseman, G.; McNairn, H.; Homayouni, S.; Shang, J. RADARSAT-2 Polarimetric SAR Response to Crop Biomass for Agricultural Production Monitoring. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4461–4471. [Google Scholar] [CrossRef]
- McNairn, H.; Brisco, B. The application of C-band polarimetric SAR for agriculture: A review. Can. J. Remote Sens. 2004, 30, 525–542. [Google Scholar] [CrossRef]
- Mattia, F.; Toan, T.L.; Picard, G.; Posa, F.I.; Alessio, A.D.; Notarnicola, C.; Gatti, A.M.; Rinaldi, M.; Satalino, G.; Pasquariello, G. Multitemporal C-band radar measurements on wheat fields. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1551–1560. [Google Scholar] [CrossRef]
- Cable, J.W.; Kovacs, J.M.; Jiao, X.; Shang, J. Agricultural Monitoring in Northeastern Ontario, Canada, Using Multi-Temporal Polarimetric RADARSAT-2 Data. Remote Sens. 2014, 6, 2343–2371. [Google Scholar] [CrossRef] [Green Version]
- Doraiswamy, P.C.; Moulin, S.; Cook, P.W.; Stern, A.J. Crop Yield Assessment from Remote Sensing. Photogramm. Eng. Remote Sens. 2003, 69, 665–674. [Google Scholar] [CrossRef]
- Fieuzal, R.; Baup, F.; Marais-Sicre, C. Monitoring Wheat and Rapeseed by Using Synchronous Optical and Radar Satellite Data—From Temporal Signatures to Crop Parameters Estimation. 2013. Adv. Remote Sens. 2021, 2, 162–180. [Google Scholar] [CrossRef] [Green Version]
- Gumma, M.K.; Thenkabail, P.S.; Muralikrishna, I.V.; Velpuri, M.N.; Gangadhararao, P.T.; Dheeravath, V.; Biradar, C.M.; Acharya Nalan, S.; Gaur, A. Changes in agricultural cropland areas between a water-surplus year and a water-deficit year impacting food security, determined using MODIS 250 m time-series data and spectral matching techniques, in the Krishna River basin (India). Int. J. Remote Sens. 2011, 32, 3495–3520. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Allen, C.T.; Eger, G.; Kanemasu, E. Relating the microwave backscattering coefficient to leaf area index. Remote Sens. Environ. 1984, 14, 113–133. [Google Scholar] [CrossRef]
- Cloude, S.R.; Pottier, E. An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 1997, 35, 68–78. [Google Scholar] [CrossRef]
- Jiao, X.; McNairn, H.; Shang, J.; Pattey, E.; Liu, J.; Champagne, C. The sensitivity of RADARSAT-2 polarimetric SAR data to corn and soybean leaf area index. Can. J. Remote Sens. 2011, 37, 69–81. [Google Scholar] [CrossRef]
- Liu, C.; Shang, J.; Vachon, P.W.; McNairn, H. Multiyear Crop Monitoring Using Polarimetric RADARSAT-2 Data. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2227–2240. [Google Scholar] [CrossRef]
- Picard, G.; Toan, T.L.; Mattia, F. Understanding C-band radar backscatter from wheat canopy using a multiple-scattering coherent model. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1583–1591. [Google Scholar] [CrossRef]
- Dabrowska-Zielinska, K.; Inoue, Y.; Kowalik, W.; Gruszczynska, M. Inferring the effect of plant and soil variables on C- and L-band SAR backscatter over agricultural fields, based on model analysis. Adv. Space Res. 2007, 39, 139–148. [Google Scholar] [CrossRef]
- Joseph, A.T.; van der Velde, R.; O’Neill, P.E.; Lang, R.; Gish, T. Effects of corn on C- and L-band radar backscatter: A correction method for soil moisture retrieval. Remote Sens. Environ. 2010, 114, 2417–2430. [Google Scholar] [CrossRef]
- Attema, E.P.W.; Ulaby, F.T. Vegetation modeled as a water cloud. Radio Sci. 1978, 13, 357–364. [Google Scholar] [CrossRef]
- Moran, M.S.; Vidal, A.; Troufleau, D.; Inoue, Y.; Mitchell, T.A. Ku- and C-band SAR for discriminating agricultural crop and soil conditions. IEEE Trans. Geosci. Remote Sens. 1998, 36, 265–272. [Google Scholar] [CrossRef]
- Jamil, N.; Kootstra, G.; Kooistra, L. Evaluation of Individual Plant Growth Estimation in an Intercropping Field with UAV Imagery. Agriculture 2022, 12, 102. [Google Scholar] [CrossRef]
- Sharifi, A. Yield prediction with machine learning algorithms and satellite images. J. Sci. Food Agric. 2021, 101, 891–896. [Google Scholar] [CrossRef] [PubMed]
- Fieuzal, R.; Baup, F. Forecast of wheat yield throughout the agricultural season using optical and radar satellite images. Int. J. Appl. Earth Obs. Geoinf. 2017, 59, 147–156. [Google Scholar] [CrossRef]
- Jin, X.; Yang, G.; Xu, X.; Yang, H.; Feng, H.; Li, Z.; Shen, J.; Lan, Y.; Zhao, C. Combined Multi-Temporal Optical and Radar Parameters for Estimating LAI and Biomass in Winter Wheat Using HJ and RADARSAR-2 Data. Remote Sens. 2015, 7, 13251–13272. [Google Scholar] [CrossRef] [Green Version]
- Mehdaoui, R.; Anane, M. Exploitation of the red-edge bands of Sentinel 2 to improve the estimation of durum wheat yield in Grombalia region (Northeastern Tunisia). Int. J. Remote Sens. 2020, 41, 8986–9008. [Google Scholar] [CrossRef]
- Mangiarotti, S.; Mazzega, P.; Jarlan, L.; Mougin, E.; Baup, F.; Demarty, J. Evolutionary bi-objective optimization of a semi-arid vegetation dynamics model with NDVI and σ0 satellite data. Remote Sens. Environ. 2008, 112, 1365–1380. [Google Scholar] [CrossRef]
- Touzi, R.; Boerner, W.M.; Lee, J.S.; Lueneburg, E. A review of polarimetry in the context of synthetic aperture radar: Concepts and information extraction. Can. J. Remote Sens. 2004, 30, 380–407. [Google Scholar] [CrossRef]
- Kim, Y.; Zyl, J.V. On the relationship between polarimetric parameters. In Proceedings of the IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120), Honolulu, HI, USA, 24–28 July 2000; Volume 1293, pp. 1298–1300. [Google Scholar]
- Freeman, A.; Durden, S.L. A three-component scattering model for polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 1998, 36, 963–973. [Google Scholar] [CrossRef] [Green Version]
- Zyl, J.J.v. Unsupervised classification of scattering behavior using radar polarimetry data. IEEE Trans. Geosci. Remote Sens. 1989, 27, 36–45. [Google Scholar] [CrossRef]
- Zyl, J.J.v.; Zebker, H.A.; Elachi, C. Imaging radar polarization signatures: Theory and observation. Radio Sci. 1987, 22, 529–543. [Google Scholar] [CrossRef]
- Allain, S.; Lopez-Martinez, C.; Ferro-Famil, L.; Pottier, E. New eigenvalue-based parameters for natural media characterization. In Proceedings of the 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS’05, Seoul, Korea, 29 July 2005; p. 4. [Google Scholar]
- Chen, J.; Lin, H.; Huang, C.; Fang, C. The relationship between the leaf area index (LAI) of rice and the C-band SAR vertical/horizontal (VV/HH) polarization ratio. Int. J. Remote Sens. 2009, 30, 2149–2154. [Google Scholar] [CrossRef]
- Gosselin, G. L’utilisation de la Polarimétrie Radar et de la Décomposition de Touzi pour la Caractérisation et la Classification des Physionomies Végétales des Milieux Humides: Le cas du lac Saint-Pierre; Universite de Montreal: Montreal, QC, Canada, 2013. [Google Scholar]
- Ullmann, T.; Schmitt, A.; Jagdhuber, T. Two component decomposition of dual polarimetric HH/VV SAR data: Case study for the tundra environment of the Mackenzie Delta region, Canada. Remote Sens. 2016, 8, 1027. [Google Scholar] [CrossRef] [Green Version]
- Ji, K.; Wu, Y. Scattering mechanism extraction by a modified cloude-pottier decomposition for dual polarization SAR. Remote Sens. 2015, 7, 7447–7470. [Google Scholar] [CrossRef] [Green Version]
- Kasischke, E.S.; Smith, K.B.; Bourgeau-Chavez, L.L.; Romanowicz, E.A.; Brunzell, S.; Richardson, C.J. Effects of seasonal hydrologic patterns in south Florida wetlands on radar backscatter measured from ERS-2 SAR imagery. Remote Sens. Environ. 2003, 88, 423–441. [Google Scholar] [CrossRef]
- Canisius, F.; Shang, J.; Liu, J.; Huang, X.; Ma, B.; Jiao, X.; Geng, X.; Kovacs, J.M.; Walters, D. Tracking crop phenological development using multi-temporal polarimetric Radarsat-2 data. Remote Sens. Environ. 2018, 210, 508–518. [Google Scholar] [CrossRef]
- Patel, P.; Srivastava, H.S.; Panigrahy, S.; Parihar, J.S. Comparative evaluation of the sensitivity of multi-polarized multi-frequency SAR backscatter to plant density. Int. J. Remote Sens. 2006, 27, 293–305. [Google Scholar] [CrossRef]
- Kim, Y.; Jackson, T.; Bindlish, R.; Lee, H.; Hong, S. Radar Vegetation Index for Estimating the Vegetation Water Content of Rice and Soybean. IEEE Geosci. Remote Sens. Lett. 2012, 9, 564–568. [Google Scholar] [CrossRef]
- Forkuor, G.; Conrad, C.; Thiel, M.; Ullmann, T.; Zoungrana, E. Integration of Optical and Synthetic Aperture Radar Imagery for Improving Crop Mapping in Northwestern Benin, West Africa. Remote Sens. 2014, 6, 6472–6499. [Google Scholar] [CrossRef] [Green Version]
- Xiaodong, H.; Jinfei, W.; Jiali, S. Simplified adaptive volume scattering model and scattering analysis of crops over agricultural fields using the RADARSAT-2 polarimetric synthetic aperture radar imagery. J. Appl. Remote Sens. 2015, 9, 096026. [Google Scholar] [CrossRef]
- Oh, Y. Quantitative retrieval of soil moisture content and surface roughness from multipolarized radar observations of bare soil surfaces. IEEE Trans. Geosci. Remote Sens. 2004, 42, 596–601. [Google Scholar] [CrossRef]
- Balenzano, A.; Mattia, F.; Satalino, G.; Davidson, M.W.J. Dense Temporal Series of C- and L-band SAR Data for Soil Moisture Retrieval Over Agricultural Crops. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 439–450. [Google Scholar] [CrossRef]
- Lin, H.; Chen, J.; Pei, Z.; Zhang, S.; Hu, X. Monitoring Sugarcane Growth Using ENVISAT ASAR Data. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2572–2580. [Google Scholar] [CrossRef]
Acquisition Date | Spatial Resolution | Polarization | Incidence Angle | Mode | Pass | Product |
---|---|---|---|---|---|---|
14 April 2015 | 8 m | HH-HV-VV-VH | 20.9° | FQ3 | A | SLC |
Polarimetric Parameters | Description | Reference |
---|---|---|
Entropy (H) | Represents the random behavior of the global scattering. | [24] |
Anisotropy (A) | Shows the distribution of the two smallest eigen values, in other words, the importance of secondary scattering mechanisms. | [24] |
Alpha (α) | Represents the average dominant scattering mechanism. It is calculated from values and eigenvectors of the coherency matrix. | [24] |
Radar vegetation index (RVI) | RVI is a useful parameter to separate vegetated and none vegetated areas. RVI values for agricultural regions range from 0.3 to 0.6. It is important to mention that wheat shows the highest RVI of around 0.6 within the crop classes. | [39] |
Freeman-Durden Vol | A statistical model-based decomposition that has better stability in convergence and preserves the dominant scattering mechanism of each class. In this decomposition, the image pixels are divided into three categories: surface (s), volume (v) and double bounce (d) scattering. The volume scattering component is used in this study. | [40] |
Van Zyl Vol | Vanzyl has proposed this decomposition method of the covariance matrix (C) as odd-bounce (surface, even-bounce (double bounce) or diffuse (volume) scatters). The volume scattering component is used in this study. | [41] |
Pedestal height | Pedestal height is an indicator of the presence of an unpolarized scattering component, and thus the degree of polarization of a scattered wave. Signatures with significant pedestals heights are described by targets that are dominated with volume scattering or multiple-surface scattering. | [42] |
DERD | Derived from the eigenvalues of the coherence matrix and used to describe the relative relationship between two types of scatters. | [43] |
SERD | Derived from the eigenvalues of the coherence matrix based on the reflection symmetry hypothesis and used to describe a single type of scatters. | [43] |
Plot | Field Size | Biomass (g) | Number of Stalks | Grain Yield (t/ha) | Min | Max | CV * | SD * |
---|---|---|---|---|---|---|---|---|
P1 | 40 m × 30 m | 1184 | 87 | 3.238 | 3.05 | 3.42 | 0.05 | 1.62 |
P2 | 40 m × 30 m | 1136 | 77 | 3.544 | 3.11 | 3.95 | 0.08 | 2.88 |
P3 | 40 m × 30 m | 660 | 63 | 1.722 | 1.62 | 1.92 | 0.11 | 0.86 |
P4 | 50 m × 50 m | 800 | 42 | 1.459 | 1.03 | 1.94 | 0.20 | 3.05 |
P5 | 50 m × 70 m | 1128 | 92 | 3.890 | 3.54 | 4.44 | 0.06 | 2.41 |
P6 | 20 m × 50 m | 1368 | 84 | 4.861 | 4.39 | 5.27 | 0.06 | 2.96 |
P7 | 30 m × 60 m | 1104 | 70 | 3.580 | 3.29 | 4.65 | 0.06 | 2.37 |
P8 | 40 m × 30 m | 1200 | 78 | 4.681 | 3.78 | 4.22 | 0.03 | 1.24 |
P9 | 40 m × 60 m | 1208 | 87 | 3.990 | 3.72 | 4.72 | 0.08 | 3.53 |
P10 | 40 m × 70 m | 1188 | 93 | 4.262 | 3.98 | 4.57 | 0.05 | 2.21 |
P11 | 50 m × 40 m | 1108 | 100 | 5.394 | 4.97 | 5.78 | 0.05 | 2.88 |
P12 | 50 m × 30 m | 1320 | 90 | 3.093 | 2.68 | 3.49 | 0.07 | 2.2 |
P13 | 40 m × 30 m | 1396 | 90 | 3.558 | 3.26 | 3.91 | 0.05 | 2.09 |
P14 | 40 m × 30 m | 1580 | 129 | 6.157 | 5.71 | 6.83 | 0.07 | 4.41 |
P15 | 50 m × 30 m | 1928 | 102 | 5.560 | 5.22 | 5.94 | 0.05 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbouchi, M.; Lhissou, R.; Abdelfattah, R.; El Alem, A.; Chokmani, K.; Ben Aissa, N.; Cheikh M’hamed, H.; Annabi, M.; Bahri, H. The Potential of Using Radarsat-2 Satellite Image for Modeling and Mapping Wheat Yield in a Semiarid Environment. Agriculture 2022, 12, 315. https://doi.org/10.3390/agriculture12030315
Barbouchi M, Lhissou R, Abdelfattah R, El Alem A, Chokmani K, Ben Aissa N, Cheikh M’hamed H, Annabi M, Bahri H. The Potential of Using Radarsat-2 Satellite Image for Modeling and Mapping Wheat Yield in a Semiarid Environment. Agriculture. 2022; 12(3):315. https://doi.org/10.3390/agriculture12030315
Chicago/Turabian StyleBarbouchi, Meriem, Rachid Lhissou, Riadh Abdelfattah, Anas El Alem, Karem Chokmani, Nadhira Ben Aissa, Hatem Cheikh M’hamed, Mohamed Annabi, and Haithem Bahri. 2022. "The Potential of Using Radarsat-2 Satellite Image for Modeling and Mapping Wheat Yield in a Semiarid Environment" Agriculture 12, no. 3: 315. https://doi.org/10.3390/agriculture12030315
APA StyleBarbouchi, M., Lhissou, R., Abdelfattah, R., El Alem, A., Chokmani, K., Ben Aissa, N., Cheikh M’hamed, H., Annabi, M., & Bahri, H. (2022). The Potential of Using Radarsat-2 Satellite Image for Modeling and Mapping Wheat Yield in a Semiarid Environment. Agriculture, 12(3), 315. https://doi.org/10.3390/agriculture12030315