Sustainable Industrial Sotol Production in Mexico—A Life Cycle Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Goal and Scope
2.2. Functional Unit
2.3. System Boundary
2.4. Life Cycle Inventory
3. Results
4. Discussion and Recommendations
5. Conclusions and Future Research
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Becerra-López, J.L.; Rosales-Serna, R.; Ehsan, M.; Becerra-López, J.S.; Czaja, A.; Estrada-Rodríguez, J.L.; Romero-Méndez, U.; Santana-Espinosa, S.; Reyes-Rodríguez, C.M.; Ríos-Saucedo, J.C.; et al. Climatic Change and Habitat Availability for Three Sotol Species in México: A Vision towards Their Sustainable Use. Sustainability 2020, 12, 3455. [Google Scholar] [CrossRef] [Green Version]
- Flores-Gallegos, A.C.; Cruz-Requena, M.; Castillo-Reyes, F.; Rutiaga-Quiñones, O.M.; Torre, L.S.; Paredes-Ortíz, A.; Soto, O.N.; Rodriguez-Herrera, R. Sotol, an alcoholic beverage with rising importance in the worldwide commerce. In Alcoholic Beverages: Volume 7: The Science of Beverages, 1st ed.; Grumezescu, A.M., Holban, A.M., Eds.; Woodhead Publishing: Sawston, UK, 2019; Volume 7, pp. 141–160. [Google Scholar] [CrossRef]
- Gutiérrez-Ortiz, J.A.; Gutiérrez-de Alba, E. The Sotol War: From Pre-Hispanic Times to the Law Regulating Sotol Activity, 1st ed.; Sispro: Chihuahua, Mexico, 2019.
- Gardea, A.A.; Findley, L.T.; Orozco-Avitia, J.A.; Bañuelos, N.; Esqueda, M.; Huxman, T.H. Bacanora and sotol: So far, so close. Social Studies. J. Contemp. Food Reg. Dev. 2012, 2, 153–168. Available online: https://www.ebsco.com/ (accessed on 5 April 2020).
- Reyes-Valdés, M.H.; Palacios, R.; Rivas-Martínez, E.N.; Robledo-Olivo, A.; Antonio-Bautista, A.; Valdés-Dávila, C.M.; Villarreal-Quintanilla, J.Á.; Benavides-Mendoza, A. The Sustainability of Mexican Traditional Beverage Sotol: Ecological, Historical, and Technical Issues. In Processing and Sustainability of Beverages, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 103–137. [Google Scholar] [CrossRef]
- Madrid-Solórzano, J.M.; Garcia-Alcaraz, J.L.; Valles-Rosales, D.J. The elaboration process of sotol: A systematic review. Mundo FESC 2021, 11, 107–117. Available online: https://www.fesc.edu.co/Revistas/OJS/index.php/mundofesc/article/view/917/723 (accessed on 17 July 2022).
- Adhikari, B.; Prapaspongsa, T. Environmental Sustainability of Food Consumption in Asia. Sustainability 2019, 11, 5749. [Google Scholar] [CrossRef] [Green Version]
- Rosado, M.A.G. Propuestas de prácticas sustentables en la industria vitivinícola de Baja California, México (tesís de maestria). Ph.D. Thesis, El Colegio de la Frontera Norte, Tijuana, Mexico, 2016. Available online: https://colef.repositorioinstitucional.mx/jspui/handle/1014/204 (accessed on 20 July 2022).
- Olajire, A.A. The brewing industry and environmental challenges. J. Clean. Prod. 2020, 256, 102817. [Google Scholar] [CrossRef]
- Leivas, R.; Laso, J.; Hoehn, D.; Margallo, M.; Fullana-i-Palmer, P.; Aldaco, R. Product vs Corporate Carbon Footprint: A Case Study for the Spirit Drinks Sectors. Chem. Eng. Trans. 2019, 76, 223–228. [Google Scholar] [CrossRef]
- Becker, S.; Bouzdine-Chameeva, T.; Jaegler, A. The carbon neutrality principle: A case study in the French spirits sector. J. Clean. Prod. 2020, 274, 122739. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, O.; Jonsson, D.; Hillman, K. Life cycle assessment of Swedish single malt whisky. J. Clean. Prod. 2016, 112, 229–237. [Google Scholar] [CrossRef]
- Bhattacharyya, N.; Goodell, A.; Rogers, S.; Demond, A. Environmental impacts of wheat-based vodka production using life cycle assessment. J. Clean. Prod. 2019, 231, 642–648. [Google Scholar] [CrossRef]
- Martínez, J.M.; Baltierra-Trejo, E.; Taboada-González, P.; Aguilar-Virgen, Q.; Marquez-Benavides, L. Life Cycle Environmental Impacts and Energy Demand of Craft Mezcal in Mexico. Sustainability 2020, 12, 8242. [Google Scholar] [CrossRef]
- Madrid-Solórzano, J.M.; García-Alcaraz, J.L.; Macías, E.J.; Cámara, E.M.; Fernández, J.B. Life Cycle Analysis of Sotol Production in Mexico. Front. Sustain. Food Syst. 2021, 5, 411. [Google Scholar] [CrossRef]
- Löfgren, B.; Tillman, A.-M.; Rinde, B. Manufacturing actor’s LCA. J. Clean. Prod. 2011, 19, 2025–2033. [Google Scholar] [CrossRef]
- Page, R. ISO 14000 Environmental Standards: Implementing Innovation in Management and Measures; Edward Elgar Publishing: Cheltenham, UK, 2017. [Google Scholar] [CrossRef] [Green Version]
- Merchan, A.; Combelles, A. Comparison of Life cycle Impact Assessment methods in a case of crop in Northern France. In Proceedings of the 4th international conference on Life Cycle approaches, Lille, France, 5–6 November 2014; pp. 239–242. Available online: https://orbi.uliege.be/handle/2268/179975 (accessed on 26 September 2021).
- Bobba, S.; Deorsola, F.A.; Blengini, G.A.; Fino, D. LCA of tungsten disulphide (WS2) nano-particles synthesis: State of art and from-cradle-to-gate LCA. J. Clean. Prod. 2016, 139, 1478–1484. [Google Scholar] [CrossRef]
- Li, J.; Ma, X.; Liu, H.; Zhang, X. Life cycle assessment and economic analysis of methanol production from coke oven gas compared with coal and natural gas routes. J. Clean. Prod. 2018, 185, 299–308. [Google Scholar] [CrossRef]
- Rugani, B.; Vázquez-Rowe, I.; Benedetto, G.; Benetto, E. A comprehensive review of carbon footprint analysis as an extended environmental indicator in the wine sector. J. Clean. Prod. 2013, 54, 61–77. [Google Scholar] [CrossRef]
- Leivas, R.; Laso, J.; Abejón, R.; Margallo, M.; Aldaco, R. Environmental assessment of food and beverage under a NEXUS Water-Energy-Climate approach: Application to the spirit drinks. Sci. Total Environ. 2020, 720, 137576. [Google Scholar] [CrossRef]
- Cucurachi, S.; Scherer, L.; Guinée, J.; Tukker, A. Life Cycle Assessment of Food Systems. One Earth 2019, 1, 292–297. [Google Scholar] [CrossRef] [Green Version]
- Espinosa, R.V.; Soto, M.; Garcia, M.V.; Naranjo, J.E. Challenges of Implementing Cleaner Production Strategies in the Food and Beverage Industry: Literature Review. In Advances and Applications in Computer Science, Electronics and Industrial Engineering; Springer: Berlin, Germany, 2021; pp. 121–133. [Google Scholar] [CrossRef]
- Pan, W.; Pan, W.; Hu, C.; Tu, H.; Zhao, C.; Yu, D.; Xiong, J.; Zheng, G. Assessing the green economy in China: An improved framework. J. Clean Prod. 2019, 209, 680–691. [Google Scholar] [CrossRef]
- Sovacool, B.K.; Bazilian, M.; Griffiths, S.; Kim, J.; Foley, A.; Rooney, D. Decarbonizing the food and beverages industry: A critical and systematic review of developments, sociotechnical systems and policy options. Renew. Sustain. Energy Rev. 2021, 143, 110856. [Google Scholar] [CrossRef]
- Desta, M.; Lee, T.; Wu, H. Life cycle energy consumption and environmental assessment for utilizing biofuels in the development of a sustainable transportation system in Ethiopia. Energy Convers. Manag. X 2022, 13, 100144. [Google Scholar] [CrossRef]
- Fernández, R.Á.; Pérez-Dávila, O. Fuel cell hybrid vehicles and their role in the decarbonisation of road transport. J. Clean. Prod. 2022, 342, 130902. [Google Scholar] [CrossRef]
- Sosa-Rodríguez, F.S.; Vazquez-Arenas, J. The biodiesel market in Mexico: Challenges and perspectives to overcome in Latin-American countries. Energy Convers. Manag. X 2021, 12, 100149. [Google Scholar] [CrossRef]
- Briseño, H.; Ramirez-Nafarrate, A.; Araz, O.M. A multivariate analysis of hybrid and electric vehicles sales in Mexico. Socio-Econ. Plan. Sci. 2021, 76, 100957. [Google Scholar] [CrossRef]
- Perez-Martinez, M.M.; Noguerol, R.; Casales, B.; Lois, R.; Soto, B. Evaluation of environmental impact of two ready-to-eat canned meat products using Life Cycle Assessment. J. Food Eng. 2018, 237, 118–127. [Google Scholar] [CrossRef]
- Boesen, S.; Bey, N.; Niero, M. Environmental sustainability of liquid food packaging: Is there a gap between Danish consumers’ perception and learnings from life cycle assessment? J. Clean. Prod. 2019, 210, 1193–1206. [Google Scholar] [CrossRef]
- Sazdovski, I.; Bala, A.; Fullana-i-Palmer, P. Linking LCA literature with circular economy value creation: A review on beverage packaging. Sci. Total Environ. 2021, 771, 145322. [Google Scholar] [CrossRef]
- Otto, S.; Strenger, M.; Maier-Nöth, A.; Schmid, M. Food packaging and sustainability–Consumer perception vs. correlated scientific facts: A review. J. Clean. Prod. 2021, 298, 126733. [Google Scholar] [CrossRef]
- Ruggeri, G.; Mazzocchi, C.; Corsi, S.; Ranzenigo, B. No More Glass Bottles? Canned Wine and Italian Consumers. Foods 2022, 11, 1106. [Google Scholar] [CrossRef] [PubMed]
- Eco-Packaging Trends Across Spirits, Wine and Beer-IWSR. Available online: https://www.theiwsr.com/news-and-comment-radius-trend-eco-packaging/ (accessed on 21 May 2022).
- Echeverría, M. ¿Qué bebieron los mexicanos en casa durante la pandemia? Muchos cocteles en lata. Expansión 2022. Available online: https://expansion.mx/empresas/2020/10/02/que-bebieron-los-mexicanos-en-casa-durante-la-pandemia-muchos-cocteles-en-lata (accessed on 21 May 2022).
- Orlowski, M.; Lefebvre, S.; Back, R.M. Thinking outside the bottle: Effects of alternative wine packaging. J. Retail. Consum. Serv. 2022, 69, 103117. [Google Scholar] [CrossRef]
- Khan, W.S.; Asmatulu, E.; Uddin, M.N.; Asmatulu, R. 6-Recycling and reusing of glasses and ceramics. In Recycling and Reusing of Engineering Materials; Khan, W.S., Asmatulu, E., Uddin, M.N., Asmatulu, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 105–118. [Google Scholar] [CrossRef]
- Giner, M.-E.; Córdova, A.; Vázquez-Gálvez, F.A.; Marruffo, J. Promoting green infrastructure in Mexico’s northern border: The Border Environment Cooperation Commission’s experience and lessons learned. J. Environ. Manag. 2019, 248, 109104. [Google Scholar] [CrossRef]
- Oke, A.; Osobajo, O.; Obi, L.; Omotayo, T. Rethinking and optimising post-consumer packaging waste: A sentiment analysis of consumers’ perceptions towards the introduction of a deposit refund scheme in Scotland. Waste Manag. 2020, 118, 463–470, 2020. [Google Scholar] [CrossRef] [PubMed]
Stage | Data (Input) | Unit | Quantity |
---|---|---|---|
Harvest | |||
(Stage I) | Transportation | km | 617 |
Sotol pineapple biomass | kg | 15,000 | |
Output | |||
Dasylirion leaf biomass | kg | 4500 | |
Cooking | Input | ||
(Stage II) | LPG | kg | 3600 |
Water | L | 3500 | |
Output | |||
Muddy water | L | 19 | |
Water | L | 20 | |
Milling | Input | ||
(Stage III) | Water | L | 2500 |
Output | L | ||
Bagasse | kg | 12,000 | |
Fermentation | Input | ||
(Stage IV) | Water vapor | kg/cm2 | 100 |
Distillation | Input | ||
(Stage V) | Evaporative cooling tower: water consumed | L | 900 |
Bottling | Input | ||
(Stage VI) | Transport | km | 1664 |
Water | L | 50 | |
Distilled water | L | 160 | |
Glass bottle | kg | 0.878 per bottle | |
Output | |||
Rested sotol loss from barrels | L | 10 | |
Aged sotol loss from barrels | L | 40 | |
Packaging | Input | ||
(Stage VII) | RSC box | kg | 0.48 per box |
Stages of Sotol Alcoholic Beverage Processing | |||||||||
---|---|---|---|---|---|---|---|---|---|
Impact Category | I | II | III | IV | V | VI | VII | Total | Unit |
Marine aquatic ecotoxicity (MAETP) | 1078.08 | 237.946 | 137.637 | 40.332 | 79.995 | 1855.13 | 110.282 | 3539.41 | kg 1,4-DB eq |
Fossil depletion (FD) | 34.7170 | 12.242 | 1.04012 | 0.12131 | 0.16912 | 23.3215 | 0.50739 | 72.1189 | MJ |
Global warming (GWP) | 2.4093 | 0.7929 | 0.08515 | 0.01231 | 0.01585 | 1.72182 | 0.04089 | 5.07841 | kg CO2 eq |
Human toxicity (HTP) | 0.8685 | 0.6711 | 0.30004 | 0.19472 | 0.20369 | 0.98547 | 0.01703 | 3.24063 | kg 1,4-DB eq |
Freshwater aquatic ecotoxicity (FAETP) | 0.3450 | 0.15420 | 0.09317 | 0.03602 | 0.04711 | 0.33822 | 0.02474 | 1.0385 | kg 1,4-DB eq |
Acidification (AP) | 6.09 × 10−3 | 1.05 × 10−3 | 4.01 × 10−4 | 6.76 × 10−5 | 1.48 × 10−4 | 8.94 × 10−3 | 1.31 × 10−4 | 0.01684 | kg SO2 eq |
Terrestrial ecotoxicity (TETP) | 3.68 × 10−3 | 1.33 × 10−3 | 7.95 × 10−4 | 2.33 × 10−4 | 3.03 × 10−4 | 2.70 × 10−3 | 2.27 × 10−4 | 9.29 × 10−3 | kg 1,4-DB eq |
Eutrophication (EP) | 1.44 × 10−3 | 2.69 × 10−4 | 1.68 × 10−4 | 2.06 × 10−5 | 7.44 × 10−5 | 1.60 × 10−3 | 8.94 × 10−5 | 3.67 × 10−3 | kg PO4-eq |
Photochemical oxidation (POCP) | 4.00 × 10−4 | 9.44 × 10−5 | 2.07 × 10−5 | 4.21 × 10−6 | 8.14 × 10−6 | 4.06 × 10−4 | 8.16 × 10−6 | 9.42 × 10−4 | kg C2H4 eq |
Abiotic depletion (AD) | 1.33 × 10−5 | 1.28 × 10−6 | 6.12 × 10−7 | 3.16 × 10−7 | 6.78 × 10−7 | 6.66 × 10−6 | 7.12 × 10−8 | 2.30 × 10−5 | kg Sb eq |
Ozone-layer depletion (ODP) | 4.07 × 10−7 | 8.74 × 10−8 | 5.90 × 10−9 | 5.80 × 10−10 | 7.72 × 10−10 | 2.27 × 10−7 | 3.38 × 10−9 | 7.32 × 10−7 | kg CFC-11 eq |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madrid-Solórzano, J.M.; García-Alcaraz, J.L.; Martínez Cámara, E.; Blanco Fernández, J.; Jiménez Macías, E. Sustainable Industrial Sotol Production in Mexico—A Life Cycle Assessment. Agriculture 2022, 12, 2159. https://doi.org/10.3390/agriculture12122159
Madrid-Solórzano JM, García-Alcaraz JL, Martínez Cámara E, Blanco Fernández J, Jiménez Macías E. Sustainable Industrial Sotol Production in Mexico—A Life Cycle Assessment. Agriculture. 2022; 12(12):2159. https://doi.org/10.3390/agriculture12122159
Chicago/Turabian StyleMadrid-Solórzano, Juan Manuel, Jorge Luis García-Alcaraz, Eduardo Martínez Cámara, Julio Blanco Fernández, and Emilio Jiménez Macías. 2022. "Sustainable Industrial Sotol Production in Mexico—A Life Cycle Assessment" Agriculture 12, no. 12: 2159. https://doi.org/10.3390/agriculture12122159
APA StyleMadrid-Solórzano, J. M., García-Alcaraz, J. L., Martínez Cámara, E., Blanco Fernández, J., & Jiménez Macías, E. (2022). Sustainable Industrial Sotol Production in Mexico—A Life Cycle Assessment. Agriculture, 12(12), 2159. https://doi.org/10.3390/agriculture12122159