Research on Laying Hens Feeding Behavior Detection and Model Visualization Based on Convolutional Neural Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Data Collection and Labeling
2.3. Faster R-CNN Network
2.4. Construction of Feature Extraction Network Based on Path Aggregation Network
2.5. Optimisation of the Loss Function
2.6. Model Training
3. Results
4. Discussion
4.1. Visual Analysis of the Feature Maps
4.2. Visual Analysis of the Convolution Kernels
4.3. Limits and Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Aydin, A.; Bahr, C.; Berckmans, D. A Real-Time Monitoring Tool to Automatically Measure the Feed Intakes of Multiple Broiler Chickens by Sound Analysis. Comput. Electron. Agric. 2015, 114, 1–6. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, Y.; Street, G.M.; Huang, Y.; Filip To, S.D.; Purswell, J.L. Classification of Broiler Behaviours Using Triaxial Accelerometer and Machine Learning. Animal 2021, 15, 100269. [Google Scholar] [CrossRef] [PubMed]
- Hansen, I.; Braastad, B.O. Effect of Rearing Density on Pecking Behaviour and Plumage Condition of Laying Hens in Two Types of Aviary. Appl. Anim. Behav. Sci. 1994, 40, 263–272. [Google Scholar] [CrossRef]
- Pereira, D.F.; Lopes, F.A.A.; Filho, L.R.A.G.; Salgado, D.D.; Neto, M.M. Cluster Index for Estimating Thermal Poultry Stress (Gallus Gallus Domesticus). Comput. Electron. Agric. 2020, 177, 105704. [Google Scholar] [CrossRef]
- Neves, D.P.; Mehdizadeh, S.A.; Tscharke, M.; de Alencar Nääs, I.; Banhazi, T.M. Detection of Flock Movement and Behaviour of Broiler Chickens at Different Feeders Using Image Analysis. Inf. Process. Agric. 2015, 2, 177–182. [Google Scholar] [CrossRef] [Green Version]
- de Alencar Nääs, I.; da Silva Lima, N.D.; Gonçalves, R.F.; Antonio de Lima, L.; Ungaro, H.; Minoro Abe, J. Lameness Prediction in Broiler Chicken Using a Machine Learning Technique. Inf. Process. Agric. 2021, 8, 409–418. [Google Scholar] [CrossRef]
- Del Valle, J.E.; Pereira, D.F.; Mollo Neto, M.; Gabriel Filho, L.R.A.; Salgado, D.D. Unrest Index for Estimating Thermal Comfort of Poultry Birds (Gallus Gallus Domesticus) Using Computer Vision Techniques. Biosyst. Eng. 2021, 206, 123–134. [Google Scholar] [CrossRef]
- Jia, N.; Kootstra, G.; Koerkamp, P.G.; Shi, Z.; Du, S. Segmentation of Body Parts of Cows in RGB-Depth Images Based on Template Matching. Comput. Electron. Agric. 2021, 180, 105897. [Google Scholar] [CrossRef]
- Qiao, Y.; Truman, M.; Sukkarieh, S. Cattle Segmentation and Contour Extraction Based on Mask R-CNN for Precision Livestock Farming. Comput. Electron. Agric. 2019, 165, 104958. [Google Scholar] [CrossRef]
- Lamping, C.; Derks, M.; Groot Koerkamp, P.; Kootstra, G. ChickenNet—An End-to-End Approach for Plumage Condition Assessment of Laying Hens in Commercial Farms Using Computer Vision. Comput. Electron. Agric. 2022, 194, 106695. [Google Scholar] [CrossRef]
- Xiao, D.; Lin, S.; Liu, Y.; Yang, Q.; Wu, H. Group-Housed Pigs and Their Body Parts Detection with Cascade Faster R-CNN. Int. J. Agric. Biol. Eng. 2022, 15, 203–209. [Google Scholar] [CrossRef]
- da Silva Santos, A.; de Medeiros, V.W.C.; Gonçalves, G.E. Monitoring and Classification of Cattle Behavior: A Survey. Smart Agric. Technol. 2023, 3, 100091. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, J.; Zhang, B.; Dai, S.; Shen, M. Visual Detection on Posture Transformation Characteristics of Sows in Late Gestation Based on Libra R-CNN. Biosyst. Eng. 2022, 223, 219–231. [Google Scholar] [CrossRef]
- Cheng, M.; Yuan, H.; Wang, Q.; Cai, Z.; Liu, Y.; Zhang, Y. Application of Deep Learning in Sheep Behaviors Recognition and Influence Analysis of Training Data Characteristics on the Recognition Effect. Comput. Electron. Agric. 2022, 198, 107010. [Google Scholar] [CrossRef]
- Wang, J.; Wang, N.; Li, L.; Ren, Z. Real-Time Behavior Detection and Judgment of Egg Breeders Based on YOLO V3. Neural Comput. Appl. 2020, 32, 5471–5481. [Google Scholar] [CrossRef]
- Nasiri, A.; Yoder, J.; Zhao, Y.; Hawkins, S.; Prado, M.; Gan, H. Pose Estimation-Based Lameness Recognition in Broiler Using CNN-LSTM Network. Comput. Electron. Agric. 2022, 197, 106931. [Google Scholar] [CrossRef]
- Fang, C.; Zhang, T.; Zheng, H.; Huang, J.; Cuan, K. Pose Estimation and Behavior Classification of Broiler Chickens Based on Deep Neural Networks. Comput. Electron. Agric. 2021, 180, 105863. [Google Scholar] [CrossRef]
- Geffen, O.; Yitzhaky, Y.; Barchilon, N.; Druyan, S.; Halachmi, I. A Machine Vision System to Detect and Count Laying Hens in Battery Cages. Animal 2020, 14, 2628–2634. [Google Scholar] [CrossRef]
- Fang, P.; Hao, H.; Wang, H. Behavior Recognition Model of Stacked-cage Layers Based on Knowledge Distillation. Trans. Chin. Soc. Agric. Mach. 2021, 52, 300–306. [Google Scholar] [CrossRef]
- Zeiler, M.D.; Fergus, R. Visualizing and understanding convolutional networks. In European Conference on Computer Vision(ECCV); Springer: Cham, Switzerland, 2014; p. 8689. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path Aggregation Network for Instance Segmentation. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8759–8768. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Jiang, Y.; Wang, Z.; Cao, Z.; Huang, T. UnitBox: An Advanced Object Detection Network. In Proceedings of the 24th ACM international conference on Multimedia, Amsterdam, The Netherlands, 15–19 October 2016; pp. 516–520. [Google Scholar] [CrossRef] [Green Version]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. Int. J. Comput. Vis. 2020, 128, 336–359. [Google Scholar] [CrossRef] [Green Version]
- Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning Deep Features for Discriminative Localization. arXiv 2015, arXiv:1512.04150. [Google Scholar] [CrossRef]
- Jiang, K.; Xie, T.; Yan, R.; Wen, X.; Li, D.; Jiang, H.; Jiang, N.; Feng, L.; Duan, X.; Wang, J. An Attention Mechanism-Improved YOLOv7 Object Detection Algorithm for Hemp Duck Count Estimation. Agriculture 2022, 12, 1659. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, T.; Fang, C.; Zheng, H. A Defencing Algorithm Based on Deep Learning Improves the Detection Accuracy of Caged Chickens. Comput. Electron. Agric. 2023, 204, 107501. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In European Conference on Computer Vision; Springer: Cham, Switzerland, 2016; Volume 9905, pp. 21–37. [Google Scholar] [CrossRef]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. YOLO v4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
Models | Precision/% | Recall/% | F1-Score | Average Inference Time/s |
---|---|---|---|---|
ResNet_fpn_smooth | 84.40 | 72.67 | 0.781 | 0.143 |
ResNet_pafpn_smooth | 87.20 | 71.31 | 0.785 | 0.145 |
ResNet_fpn_iou | 88.73 | 73.49 | 0.804 | 0.143 |
ResNet_pafpn_iou | 90.12 | 79.14 | 0.843 | 0.144 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, H.; Fang, P.; Jiang, W.; Sun, X.; Wang, L.; Wang, H. Research on Laying Hens Feeding Behavior Detection and Model Visualization Based on Convolutional Neural Network. Agriculture 2022, 12, 2141. https://doi.org/10.3390/agriculture12122141
Hao H, Fang P, Jiang W, Sun X, Wang L, Wang H. Research on Laying Hens Feeding Behavior Detection and Model Visualization Based on Convolutional Neural Network. Agriculture. 2022; 12(12):2141. https://doi.org/10.3390/agriculture12122141
Chicago/Turabian StyleHao, Hongyun, Peng Fang, Wei Jiang, Xianqiu Sun, Liangju Wang, and Hongying Wang. 2022. "Research on Laying Hens Feeding Behavior Detection and Model Visualization Based on Convolutional Neural Network" Agriculture 12, no. 12: 2141. https://doi.org/10.3390/agriculture12122141
APA StyleHao, H., Fang, P., Jiang, W., Sun, X., Wang, L., & Wang, H. (2022). Research on Laying Hens Feeding Behavior Detection and Model Visualization Based on Convolutional Neural Network. Agriculture, 12(12), 2141. https://doi.org/10.3390/agriculture12122141