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Abstract: The feeding behavior of laying hens is closely related to their health and welfare status.
In large-scale breeding farms, monitoring the feeding behavior of hens can effectively improve
production management. However, manual monitoring is not only time-consuming but also reduces
the welfare level of breeding staff. In order to realize automatic tracking of the feeding behavior of
laying hens in the stacked cage laying houses, a feeding behavior detection network was constructed
based on the Faster R-CNN network, which was characterized by the fusion of a 101 layers-deep
residual network (ResNet101) and Path Aggregation Network (PAN) for feature extraction, and
Intersection over Union (IoU) loss function for bounding box regression. The ablation experiments
showed that the improved Faster R-CNN model enhanced precision, recall and F1-score from 84.40%,
72.67% and 0.781 to 90.12%, 79.14%, 0.843, respectively, which could enable the accurate detection
of feeding behavior of laying hens. To understand the internal mechanism of the feeding behavior
detection model, the convolutional kernel features and the feature maps output by the convolutional
layers at each stage of the network were then visualized in an attempt to decipher the mechanisms
within the Convolutional Neural Network(CNN) and provide a theoretical basis for optimizing the
laying hens’ behavior recognition network.

Keywords: laying hens; feeding behavior; Faster R-CNN; model visualization

1. Introduction

In recent years, researchers have studied the health and welfare of animals by monitor-
ing their individual behaviors [1,2]. A laying hen’s behavioral activities can be divided into
feeding, drinking, resting, fighting, etc. Feeding is one of the most important behaviors in
the life of laying hens, and it accounts for more than 40% of total activity time [3]. In the
large-scale poultry breeding farm, abnormal feeding behavior of laying hens could reflect a
health and welfare problem in the long term. For example, the decline in feed frequency
and feed intake of some hens may indicate the possibility of disease, while the large-scale
deterioration of the feed frequency may indicate that timely feeding is needed. On the
contrary, the simultaneous and unexpected occurrence of high feed intake and low egg
production may also reflect a health problem of laying hens. Thus, monitoring the feeding
behavior of laying hens is significant in the breeding farm.

Traditionally, image processing technology is used to identify or classify poultry be-
haviors. However, it has the disadvantages of poor model generality, robustness, and
difficulty in feature extraction [4–7]. Deep learning technology can learn the character-
istics of the data itself through a large number of samples and has the advantages of
speed, accuracy, and robustness; it is widely used in image detection and segmentation
of animals. Some researchers have utilized deep learning and machine vision methods to
detect typical behaviors of livestock and poultry, such as feeding, climbing, drinking, and
excretion [8–14]. Wang et al. [15] built a laying hens behavior detection model based on
the YOLOv3 network, which could recognize the feeding, mating, standing, and fighting

Agriculture 2022, 12, 2141. https://doi.org/10.3390/agriculture12122141 https://www.mdpi.com/journal/agriculture

https://doi.org/10.3390/agriculture12122141
https://doi.org/10.3390/agriculture12122141
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com
https://orcid.org/0000-0001-8775-9623
https://doi.org/10.3390/agriculture12122141
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com/article/10.3390/agriculture12122141?type=check_update&version=1


Agriculture 2022, 12, 2141 2 of 12

behaviors of laying hens. To identify broilers’ lameness, Nasiri et al. [16] used CNN to
extract the key points of the broiler’s body and Long Short-Term Memory (LSTM) to classify
the lameness of broilers. Fang et al. [17] employed a similar method for pose estimation
and behavior classification of broiler chickens, which could identify broiler behaviors such
as eating, standing, walking, running, resting, and preening. Geffen et al. [18] detected and
counted the laying hens in the battery cages with the Faster R-CNN network and achieved
89.6% accuracy at cage level. Fang et al. [19] constructed a laying hens behavior detection
network based on the Faster R-CNN network and knowledge-distillation technology, which
significantly improved model performance while reducing the model inference time.

Previous research has proved that CNN could realize the analysis and recognition of
image content and effectively solve the problems related to animal behaviors. However,
we lack an understanding of its internal implementation mechanism, and the outstanding
recognition performance lacks explanation. Therefore, during the model development
process, a model with better performance can only be obtained through continuous trial
and error [20].

In this research, we developed a feeding behavior detection model for stacked cage
hens based on an improved Faster R-CNN network [21]. To solve the problem of loss of
low-level features in the network, a feature extraction network based on the path aggre-
gation network was constructed, and the regression loss function was improved, which
significantly improved the performance of the feeding behavior detection network. Follow-
ing this, the convolutional kernel features and the feature maps output by the convolutional
layers at each stage of the network were visualized in an attempt to interpret the mecha-
nism within the convolutional neural network and provide a theoretical foundation for the
continuous optimization of the hens’ behavior detection network.

2. Materials and Methods
2.1. Experimental Setup

The experiment in this research was conducted in Deqingyuan Ecological Park, Yan-
qing, Beijing, China. Laying hens (Jinghong 1) were reared in a 4 layers-stacked cage
breeding house. There was a total of 9200 cages; each cage was 45 cm wide, 60 cm deep,
and 50 cm high. A nipple drinker was installed inside the cage, and a feed trough was
seated outside, with a light source located directly above the passageway. Six laying hens
were reared in a single cage, and usually, 2–4 laying hens were in the feeding position for
feeding, and the rest were drinking or resting.

The image acquisition system in this experiment consisted of three digital cameras
(XCG-CG240C, SONY, Shanghai, China) with a resolution of 1920 × 1200 pixels, three
fixed focus lenses (Ricoh FLCC0614A 2M, RICHO, Philippines), and a mobile inspection
platform. The cameras were mounted on the mobile inspection platform at an angle of
30 degrees downward horizontally and were controlled by a microcomputer (Dell OptiPlex
7080MFF, Dell Inc., Xiamen, China) to capture images of the laying hens. Figure 1 shows
the image acquisition system and the housing condition of laying hens. The inspection
platform traveled to the front of each cage to collect images of the hens. Images were
collected without adding additional light to minimize stress on the hens.

2.2. Data Collection and Labeling

Images were collected from November to December 2021. We selected 100 cages of
laying hens for image acquisition and finally selected 1000 images as the original dataset.
The data collection followed the Experimental Animal Welfare and Animal Experiment
Ethics Committee of China Agricultural University guidelines. As shown in Figure 2, due
to the difference in light intensity between hen layers, images collected from the first and
second layers were enhanced using the Retinex enhancement algorithm to improve the
image readability. After that, the original image set was labeled with the free image label
tool “Labelme”, in which hens whose heads were near or in the feeding trough were labeled
as “feeding” and the others were labeled as “resting”. In the detection work, the CNN
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does not have scale invariance and rotation invariance due to the fixed characters of the
convolution itself. The adaptive ability of the CNN to target changes almost comes from
the diversity of data itself. The more and more comprehensive the data, the higher the
accuracy of the trained model [10]. Therefore, the dataset was expanded to 2000 images
by 90◦ random rotation, adding Gaussian noise and randomly adjusting image contrast to
improve the model’s generalization ability. Finally, the dataset contained 4268 samples of
hens labeled as “feeding” and 4836 samples of hens labeled as “resting”, and was randomly
divided into a training set, validation set, and test set (7:2:1).
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2.3. Faster R-CNN Network

The feeding behavior detection model was constructed based on the Faster R-CNN
network in this research. As shown in Figure 3, the Faster R-CNN network can be divided
into four parts: feature extraction network, Region Proposal Network (RPN), Region of
interest (ROI) pooling network, bounding box regression and classification. The feature
extraction network is used to extract the feature maps. The features maps are then shared
with the region proposal network and the ROI pooling network, where the region proposal
network extracts the candidate bounding boxes to the ROI pooling network, and through
the ROI pooling layer, each ROI generates a fixed-size feature map; finally, regression and
classification of the bounding boxes are performed.
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2.4. Construction of Feature Extraction Network Based on Path Aggregation Network

In CNN, low-level layers focus on image details such as edge shape and object position,
while deep layers will focus on strong semantic information. The object detection network
needs to be concerned about the image’s semantic information, position information, and
pixel details. Therefore, it is necessary to fully use the features extracted by each level of the
backbone network so that the input feature maps of the region proposal network get both
semantically vital information and low-level localization information. The Faster R-CNN
network achieves this through the Feature Pyramid Network (FPN), which significantly
improves the detection ability of the Faster R-CNN network for small objects. However,
in the “bottom-up” transmission architecture of FPN networks, the path from the shallow
features to the top layer is too long. As shown by the red dotted path in Figure 4, the
features extracted from the last convolutional layer of the second stage (stage 2) of the
ResNet 101 network pass through hundreds of layers to the top layer (P5). The low-level
feature information suffers severe losses through the transmission over long paths, which
makes it difficult to preserve accurate target location information in the top-level feature
map. Liu et al. [22] proposed a path aggregation network (PAN), for instance segmentation,
which significantly improved the performance of an instance segmentation network by
creating a bottom-up path augmentation, adaptive feature pooling structure and fully
connected fusion method.

In this research, the bottom-up path augmentation of the PAN was introduced into the
Faster R-CNN network. The four feature fusion layers were added after the FPN network
by lateral connection, the architecture of which is shown in Figure 4b. With the addition
of the bottom-up pathway augmentation, the low-level features extracted in the second
stage of the ResNet 101 network were transmitted to feature map P2 by a lateral connection
and subsequently passed through the feature map N2 to the top feature layer N5 (the path
shown by the green dotted line in Figure 4). It took less than ten layers to transmit the low-
level features to the top layer, which significantly shortened the information transmission
path; the low-level feature information can be better retained in the top feature map, which
is conducive to the accurate localization of the targets.
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2.5. Optimisation of the Loss Function

The regression loss and classification loss composed the loss of Faster R-CNN network.
Among them, the Faster R-CNN network utilized the smoothL1 loss as the regression loss,
as shown in Equations (1) and (2).

Lreg = λ
1

Nreg
∑

i
p∗i smoothL1(ti, t∗i ) (1)

smoothL1(ti, t∗i ) =
{

0.5(ti − t∗)2(|ti − t∗| < 1)
|ti − t∗| − 0.5(|ti − t∗| ≥ 1)

(2)

where Lreg is the regression loss of the Faster R-CNN, Nreg is the number of anchors, p∗i is
1 if the anchor is positive and is 0 if the anchor is negative, ti is a vector representing the
4 parameterized coordinates of the predicted bounding box, t∗i is that of the ground-truth
box associated with a positive anchor.

When calculating the regression loss of the network by the smoothL1 function, the
4 points of the predicted bounding boxes are treated as independent of each other, and their
respective loss values are calculated and then summed up to obtain the total regression
loss. In fact, the four points are related to each other. IoU is usually used to evaluate the
proximity between the predicted bounding boxes and the ground truth. When multiple
predicted bounding boxes get the same smoothL1 loss value, their IoU values may vary
greatly. Thus, performing regression on the 4 points in isolation is inappropriate, and the
predicted bounding boxes composed of the 4 points should be regarded as a whole for the
regression. In this research, IoU loss [23], is used to replace the smoothL1 loss in the Faster
R-CNN network. The IoU loss function is defined as:

IoUloss = − ln(IoU) (3)

IoU =
I

U
(4)

where IoU is the intersection and union ratio of the predicted bounding boxes and the
ground truth; I is the area of the intersection region of the predicted bounding boxes and
the ground truth; U is the union region of the predicted bounding boxes and the ground
truth.
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2.6. Model Training

In this research, the training work was performed on a Dell computer with an Intel(R)
Core (TM) i7—9700K, an NVIDIA GeForce GTX2080 GPU (11 GB), and 16 GB of memory.
The operating environment was Ubantu18.04, CUDA 10.2, cuDNN 8.0.1, and Python 3.7.
The model was trained for 16,000 steps, with an initial learning rate of 0.001, a momentum
of 0.9, Stochastic Gradient Descent (SGD) optimizer, and a weight decay of 0.0001. The
learning rate increased to 0.002 after 8000 steps. In order to obtain the best model, weights
were saved every 2000 steps.

3. Results

Different optimization methods of the feeding behavior detection network were tested
in this experiment: 1© Faster R-CNN network with Resnet101 and feature pyramid network
as the feature extraction network, and smoothL1 function as the regression loss function
(ResNet_fpn_smooth). 2© Faster R-CNN network with the Resnet101, path aggregation
network, and feature pyramid network as the feature extraction network, and smoothL1
function as the regression loss function (ResNet_pafpn_smooth). 3© Faster R-CNN network
with the Resnet101 and feature pyramid network as the feature extraction network, and
IoU loss as the regression loss function (ResNet_fpn_iou) 4© Faster R-CNN network with
the Resnet101, path aggregation network and feature pyramid network as the feature
extraction network, and IoU loss as the regression loss function (ResNet_pafpn_iou). The
performance of the above four recognition models was tested with the test set, and the
same image was input into each of the above four models to obtain the four sets of output
results in Figure 5; all models could accurately identify the feeding and resting behaviors
of hens.
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Figure 5. Detection results of different models.

The Precision (P), recall (R), and average inference time (t) were used in this experiment
to evaluate the feeding behavior detection model performance. As shown in Table 1, the
detection precision of all models was above 80%. The accuracy, recall and F1-score of the
ResNet_fpn_smooth were 84.4%, 72.67% and 0.781, respectively, while the corresponding
values were 87.2%, 71.3% and 0.785 for the ResNet_pafpn_smooth. There was a noticeable
improvement in the precision index after adding the path aggregation network to the Faster
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R-CNN network and a slight decrease in the recall index. In addition, the inference time of
both models was similar, which indicated that the path aggregation network improved the
retention rate of low-level feature information and improved the detection precision of the
object without increasing the model complexity too much. The precision, recall and F1-score
of the ResNet_fpn_iou were 88.73%, 73.49% and 0.804, respectively, higher than that of
ResNet_fpn_smooth and ResNet_pafpn_smooth, which means that the IoU loss function
could calculate the error between the predicted and true values of the bounding box more
accurately, to obtain more accurate prediction results. Finally, the ResNet_pafpn_iou got a
precision of 90.12%, a recall of 79.14% and a F1-score of 0.843, which was the best.

Table 1. Performance comparison of different models.

Models Precision/% Recall/% F1-Score Average Inference
Time/s

ResNet_fpn_smooth 84.40 72.67 0.781 0.143
ResNet_pafpn_smooth 87.20 71.31 0.785 0.145

ResNet_fpn_iou 88.73 73.49 0.804 0.143
ResNet_pafpn_iou 90.12 79.14 0.843 0.144

Figure 6 shows the training loss curve of the ResNet_fpn_smooth,
ResNet_pafpn_smooth, ResNet_fpn_iou, and ResNet_pafpn_iou. The training loss de-
creased to a low value within a short time after the training started, then slowly reduced
with the training process. The training loss became flat when the iteration was about
14,000 times and no longer declined. When the number of iterations reached 16,000, the train-
ing process ended, and the model converged. Based on the training loss curves in Figure 6,
ResNet_pafpn_iou achieved the lowest converged loss, which indicated the effectiveness of
the optimization process.
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4. Discussion

In the CNN, each layer of the network extracts different features through the convolu-
tion kernel, and the network will integrate the extracted features to realize the interpretation
of the image content. Visualization of the CNN was first proposed by Zeiler et al. [20].
Subsequently, visualization techniques such as Class Activation Maps (CAM) [24] and
Gradient-weighted Class Activation Maps (Grad-CAM) [25] were developed.

In this research, taking ResNet101 as an example, the features relating to the convolu-
tion kernel and the feature maps generated by the convolution layer of the feeding behavior
detection network were visualized. The aim was to understand the internal mechanism of
the convolutional neural network, providing a theoretical basis for the optimization of the
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behavior recognition network of hens. The ResNet101 network consists of 101 convolution
layers and can be divided into 5 stages. In the Faster R-CNN network, the feature maps
extracted in the first stage of ResNet101 are not sent to the region proposal network. There-
fore, we only visualized the feature maps of the last convolution layers in the second to
fifth stages to analyze the differences between the extracted features of the low-level and
the top ones.

4.1. Visual Analysis of the Feature Maps

The number of feature maps output in the second, third, fourth, and fifth stages of the
ResNet101 network was 256, 512, 1024, and 2048, respectively, and all of the feature maps
were single-channel images. In this section, all the single-channel feature maps of each stage
were merged into a multi-channel image, and the 4 feature maps with the most significant
activation features were output for visualization. Figure 7 shows the visualization results.

The training process of the CNN imitates the cognitive function of the human brain.
The human visual system performs image recognition step by step, and people will first
understand the color and brightness features in the image, then the simple geometric
features such as points, lines, and edges, and after that, the slightly complex features
(high-dimensional information) such as texture in the image, finally, forming the concept of
the whole image. The CNN similarly processed the image. As shown in Figure 7, low-level
layers in the second stage mainly extracted the image’s low-level features, such as contour,
edge, and color features. It focused more on the image’s overall color and line information,
not only the contour of the hen. With the deepening of the network, the third and fourth
stages focused more on the texture of the image. In the third and fourth stages, the network
gradually focused on the contour of hens, and some key features were extracted, including
their head and cockscomb. As the network got more profound, the features extracted by
the network began to be highly abstract, and the naked eye could no longer recognize the
specific content of the extracted features. However, the convolutional neural network can
extract essential information from it, and the area of concern of the network is basically
focused on the hen’s contour, ignoring the background. The subsequent fully connected
convolution layers processed the features extracted from the high-level layer to complete
the detection and classification of the hens.

4.2. Visual Analysis of the Convolution Kernels

The convolution kernel of the CNN is responsible for extracting features from the
image. By visualizing the convolution kernel, we can more intuitively understand the
features extracted by the convolution kernel of the image and clearly understand CNN’s
internal mechanism. The gradient lifting method is used to compute the input image
when the convolution kernel of each layer in ResNet101 reaches the maximum activation
state, and the input image is the feature extracted by the convolution kernel. This section
visualized the first 36 convolution kernels of the last layer in stage 2–stage 5.

From the visualized results in Figure 8, in the second stage of the ResNet101, the
convolution kernel extracted some low-level features such as color, line, and texture features.
The combination of color and line features formed wavy and long strip textures. With
the network getting deeper, the kernels in the fourth and fifth stages extracted more
complicated texture features, spiral, circular, and various shape combinations of texture
features. The convolution kernel became more and more complex, and the extracted
features became more and more refined. A large number of complex and refined texture
features gradually depicted the contour of the detection object (hens) as the network
got deeper. In summary, the low-level layers of the network mainly extracted general
features such as edges, lines, and some simple textures, while deeper layers could extract
complex and semantically strong features (feather, eye), which were similar to the target
characteristic to be detected.
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4.3. Limits and Future Work

It is worth noting that there were still some limitations to this study. In the detection of
the feeding behavior of laying hens, only feeding behavior and resting behavior were taken
into consideration; other behaviors, such as fighting, drinking, and egg laying, were not
considered in this research. The small cage size and the lighting conditions of the stacked
cage breeding house caused this. The drinking and laying behaviors of the hens always
occurred inside the cage, while the feeding and resting laying hens would stay close to the
front door, blocking the camera’s view. Additionally, the low illumination of the house
would result in almost no light inside the cage, which means that the camera cannot collect
valid images for the detection work. Fighting behavior is often observed during feeding
and can be obscured by the trough, making sample collection more complex. In future
work, we will attempt to use an infrared camera to capture images and select a better angle.

Furthermore, the Faster R-CNN model was a two-stage object detection network,
which was slower in detection speed than other networks studied [26,27]. Thus, a one-
stage object detection network such as SSD [28], and YOLOv4 [29] should be considered
to further improve the feeding behavior detection model. Lastly, the feeding behavior
detection model has been developed for the stacked cage laying hens, but is not suitable
for laying hens with other feeding methods. Therefore, the model can be further improved
through the collection of more data from laying hens with different feeding patterns.

5. Conclusions

In this work, an improved Faster-RCNN model was constructed to recognize the
feeding behavior of stacked caged hens based on a path aggregation network and IoU
loss function. The precision, recall and F1-score of the model were improved from 84.40%,
72.67%, 0.781 to 90.12%, 79.14% and 0.843, respectively, and the average detection time was
almost unchanged. After that, an ablation experiment was conducted to demonstrate the
effectiveness of the improvement and visualize the output feature maps of the convolution
layer and the convolution kernel features of the feeding behavior detection network,
respectively. Based on the visualization results, the convolutional neural network’s internal
mechanism was analyzed to explain the CNN ‘s performance and provide a theoretical
basis for further optimization of the detection model. In general, the developed model and
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visual analysis method in this research could provide technical support for the subsequent
monitoring of the health status and welfare status of laying hens and could also provide
a reference for the optimization of other animal detection models. In future work, we
will consider using a one-stage object detection network to optimize the feeding behavior
detection model further and detect more behaviors, such as drinking and egg laying, to
provide further technical support for poultry farm management.
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