Development of Basil Essential Oil (BEO) as a Novel Alternative to Prolong the Storage of Tomato (Lycopersicum esculentum L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Material
2.3. Sampling
2.4. Analytical Methods
2.5. Extraction
2.6. Total Phenolic Content Evaluation
2.7. Antioxidant Activity Evaluation
2.8. Color Evaluation
2.9. Bacteriological Analysis
2.10. Sensory Analysis
2.11. Statistical Analysis
3. Results
3.1. Components of Basil Essential Oil
3.2. Weight Loss
3.3. Dry Matter (DM %)
3.4. Total Soluble Solids Content (TSS %)
3.5. Total Phenolic Content (TP, mg GAE/100 g fw)
3.6. Antioxidant Activity (AOA, µmol TE/100 g fw)
3.7. Color Variation
3.8. Bacteriological Analysis
3.9. Sensory Analysis of Tomato at the End of Storage
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holley, R.A.; Patel, D. Improvement in shelf-life and safety of perishable foods by plant essential oils and smoke antimicrobials. Food Microbiol. 2005, 22, 273–292. [Google Scholar] [CrossRef]
- Carocho, M.; Barreiro, M.F.; Morales, P.; Ferreira, I.C. Adding molecules to food, pros and cons: A review on synthetic and natural food additives. CRFSFS 2014, 13, 377–399. [Google Scholar] [CrossRef] [PubMed]
- da Silva, W.M.F.; Kringel, D.H.; de Souza, E.J.D.; da Rosa Zavareze, E.; Dias, A.R.G. Basil essential oil: Methods of extraction, chemical composition, biological activities, and food applications. Food Bioproc. Tech. 2021, 1, 27. [Google Scholar] [CrossRef]
- Riveros, C.G.; Nepote, V.; Grosso, N.R. Thyme and basil essential oils included in edible coatings as a natural preserving method of oilseed kernels. J. Sci. Food Agric. 2016, 96, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Quintana, S.E.; Llalla, O.; García-Risco, M.R.; Fornari, T. Comparison between essential oils and supercritical extracts into chitosan-based edible coatings on strawberry quality during cold storage. J Supercrit Fluids. 2021, 171, 105198. [Google Scholar] [CrossRef]
- Elsayed, M.I.; Al-Qurashi, A.D.; Almasaudi, N.M.; Abo-Elyousr, K.A. Efficacy of essential oils against gray mold and effect on fruit quality during cold storage in table grapes. S. Afr. J. Bot. 2022, 146, 481–490. [Google Scholar] [CrossRef]
- Tangpao, T.; Charoimek, N.; Teerakitchotikan, P.; Leksawasdi, N.; Jantanasakulwong, K.; Rachtanapun, P.; Sommano, S.R. Volatile organic compounds from basil essential oils: Plant taxonomy, biological activities, and their applications in tropical fruit productions. Horticulturae 2022, 8, 144. [Google Scholar] [CrossRef]
- Sonmezdag, A.S.; Amanpour, A.; Kelebek, H.; Selli, S. The most aroma-active compounds in shade-dried aerial parts of basil obtained from Iran and Turkey. Ind. Crops Prod. 2018, 124, 692–698. [Google Scholar] [CrossRef]
- Ilić, Z.S.; Milenković, L.; Tmušić, N.; Stanojević, L.; Stanojević, J.; Cvetković, D. Essential oils content, composition and antioxidant activity of lemon balm, mint and sweet basil from Serbia. LWT 2022, 153, 112210. [Google Scholar] [CrossRef]
- Ciriello, M.; Kyriacou, M.C.; De Pascale, S.; Rouphael, Y. An appraisal of critical factors configuring the composition of basil in minerals, bioactive secondary metabolites, micronutrients and volatile aromatic compounds. J. Food Compos. Anal. 2022, 111, 104582. [Google Scholar] [CrossRef]
- Perumal, A.B.; Huang, L.; Nambiar, R.B.; He, Y.; Li, X.; Sellamuthu, P.S. Application of essential oils in packaging films for the preservation of fruits and vegetables: A review. Food Chem. 2021, 375, 131810. [Google Scholar] [CrossRef] [PubMed]
- Giannakas, A.E.; Salmas, C.E.; Leontiou, A.; Baikousi, M.; Moschovas, D.; Asimakopoulos, G.; Avgeropoulos, A. Synthesis of a novel chitosan/basil oil blend and development of novel low-density poly-ethylene/chitosan/basil oil active packaging films following a melt-extrusion process for enhancing chicken breast fillets shelf-life. Molecules 2021, 26, 1585. [Google Scholar] [CrossRef]
- Aboutalebzadeh, S.; Esmaeilzadeh-Kenari, R.; Jafarpour, A. Nano-encapsulation of sweet basil essential oil based on native gums and its application in controlling the oxidative stability of Kilka fish oil. J. Food Meas. Charact. 2022, 16, 2386–2399. [Google Scholar] [CrossRef]
- Shehata, S.A.; Abdelrahman, S.Z.; Megahed, M.M.; Abdeldaym, E.A.; El-Mogy, M.M.; Abdelgawad, K.F. Extending shelf-life and maintaining quality of tomato fruit by calcium chloride, hydrogen peroxide, chitosan, and ozonated water. Horticulturae 2021, 7, 309. [Google Scholar] [CrossRef]
- López, A.F.; Gómez, P.A. Comparison of color indexes for tomato ripening. Hortic. Bras. 2004, 22, 534–537. [Google Scholar] [CrossRef]
- Shimeles, T.; Do, S.P.; Mu, H.S.; Cheon, S.J. Review on factors affecting the quality and antioxidant properties of tomatoes. AJB 2017, 16, 1678–1687. [Google Scholar] [CrossRef] [Green Version]
- Tilahun, S.; Choi, H.R.; Baek, M.W.; Cheol, L.H.; Kwak, K.W.; Park, D.S.; Jeong, C.S. Antioxidant properties, γ-aminobutyric acid (gaba) content, and physicochemical characteristics of tomato cultivars. Agronomy 2021, 11, 1204. [Google Scholar] [CrossRef]
- Shah, K.K.; Modi, B.; Lamsal, B.; Shrestha, J.; Aryal, S.P. Bioactive compounds in tomato and their roles in disease prevention. FAA 2021, 6, 210–224. [Google Scholar] [CrossRef]
- Petruccelli, R.; Bonetti, A.; Traversi, M.L.; Faraloni, C.; Valagussa, M.; Pozzi, A. Influence of biochar application on nutritional quality of tomato (Lycopersicon esculentum). Crop Pasture Sci. 2015, 66, 747–755. [Google Scholar] [CrossRef] [Green Version]
- Lumpkin, H. A Comparison of Lycopene and Other Phytochemicals in Tomatoes Grown under Conventional and Organic Management Systems; Technical Bulletin; The World Vegetable Center: Tainan, Taiwan, 2005; p. 34. [Google Scholar]
- Leonardi, C.; Ambrosino, P.; Esposito, F.; Fogliano, V. Antioxidative activity and carotenoid and tomatine contents in different typologies of fresh consumption tomatoes. J. Agric. Food Chem. 2000, 48, 4723–4727. [Google Scholar] [CrossRef]
- Lavelli, V.; Peri, C.; Rizzolo, A. Antioxidant activity of tomato products as studied by model reactions using xanthine oxidase, myeloperoxidase, and copper-induced lipid peroxidation. J. Agric. Food Chem. 2000, 48, 1442–1448. [Google Scholar] [CrossRef] [PubMed]
- Hanson, P.M.; Yang, R.Y.; Wu, J.; Chen, J.T.; Ledesma, D.; Tsou, S.C.; Lee, T.C. Variation for antioxidant activity and antioxidants in tomato. J. Am. Soc. Hortic. Sci. 2004, 129, 704–711. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Maguer, M.L. Lycopene in tomatoes: Chemical and physical properties affected by food processing. Crit. Rev. Food Sci. Nutr. 2000, 40, 1–42. [Google Scholar] [CrossRef] [PubMed]
- Barry, C.S.; Giovannoni, J.J. Ethylene and fruit ripening. J. Plant Growth Regul. 2007, 26, 143–159. [Google Scholar] [CrossRef]
- Deshwal, G.K.; Tiwari, S.; Panjagari, N.R.; Masud, S. Active packaging of fruits and vegetables: Quality preservation and shelf-life enhancement. In Packaging and Storage of Fruits and Vegetables; Aple Academic Press: Palm Bay, FL, USA, 2021; pp. 109–131. [Google Scholar]
- Tzortzakis, N.G.; Tzanakaki, K.; Economakis, C.D. Effect of origanum oil and vinegar on the maintenance of postharvest quality of tomato. Food Sci. Nutr. 2011, 2, 974–982. [Google Scholar] [CrossRef] [Green Version]
- Raafat, S.M.; Abou-Zaid, M.I.; Tohamy, M.R.; Arisha, H.E. Impact of some plant essential oil treatments on controlling cherry tomatoes spoilage, improvement shelf-life and quality attributes during storage. ZJAR 2016, 43, 785–813. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, F.; Zhang, P.; Lai, S.; Yang, H. Influence of rice bran wax coating on the physicochemical properties and pectin nanostructure of cherry tomatoes. Food Bioproc. Tech. 2017, 10, 349–357. [Google Scholar] [CrossRef]
- Zhou, X.; Yang, R.; Wang, B.; Chen, K. Development and characterization of bilayer films based on pea starch/polylactic acid and use in the cherry tomatoes packaging. Carbohydr. Polym. 2019, 222, 114912. [Google Scholar] [CrossRef]
- Mendes, K.; Mendes, K.F.; Guedes, S.F.; Silva, L.C.A.S.; Arthur, V. Evaluation of physicochemical characteristics in cherry tomatoes irradiated with 60Co gamma-rays on post-harvest conservation. Radiat. Phys. Chem. 2020, 177, 109–139. [Google Scholar] [CrossRef]
- Sun, X.; Wang, J.; Zhang, H.; Dong, M.; Li, L.; Jia, P.; Wang, L. Development of functional gelatin-based composite films incorporating oil-in-water lavender essential oil nano-emulsions: Effects on physicochemical properties and cherry tomatoes preservation. LWT 2021, 142, 110987. [Google Scholar] [CrossRef]
- Xiang, F.; Xia, Y.; Wang, Y.; Wang, Y.; Wu, K.; Ni, X. Preparation of konjac glucomannan based films reinforced with nanoparticles and its effect on cherry tomatoes preservation. Food Packag. 2021, 29, 100701. [Google Scholar] [CrossRef]
- Joint F.A.O. Plant Mutation Reports, June 2010; Plant Breeding and Genetics Section, Joint FAO/IAEA: Vienna, Austria, 2010; Volume 2, Available online: http://www-pub.iaea.org/MTCD/publications/PDF/Newsletters/PMR-02-02.pdf (accessed on 2 August 2022).
- Oxenham, S.K.; Svoboda, K.P.; Walters, D.R. Antifungal activity of the essential oil of basil (Ocimum basilicum). J Phytopathol. 2005, 153, 174–180. [Google Scholar] [CrossRef]
- Nour, V.; Plesoianu, A.M.; Ionica, M.E. Effect of dip wash treatments with organic acids and acidic electrolyzed water combined with ultraviolet irradiation on quality of strawberry fruit during storage. Bragantia 2021, 80, e1921. [Google Scholar] [CrossRef]
- Van Dijk, C.; Boeriu, C.; Peter, F.; Stolle-Smits, T.; Tijsken, L.M.M. The firmness of stored tomatoes (cv. Tradiro). 1. Kinetic and near infrared models to describe firmness and moisture loss. J. Food Eng. 2006, 77, 575–584. [Google Scholar] [CrossRef]
- Nour, V.; Trandafir, I.; Ionica, M.E. Evolution of antioxidant activity and bioactive compounds in tomato (Lycopersicon esculentum Mill.) fruits during growth and ripening. J. Appl. Bot. Food Qual. 2014, 87. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Ionică, M.E.; Nour, V.; Trandafir, I. Bioactive compounds and antioxidant activity of hot pepper fruits at different stages of growth and ripening. J. Appl. Bot. Food Qual. 2017, 90, 232–237. [Google Scholar]
- Oliveira, I.; Sousa, A.; Ferreira, I.C.F.R.; Bento, A.; Estevinho, L.; Pereira, J.A. Total phenols, antioxidant potential and antimicrobial activity of walnut (Juglans regia L.) green husks. Food Chem. Toxicol. 2008, 46, 2326–2331. [Google Scholar] [CrossRef]
- Kumar, P.S.; Singh, Y.; Nangare, D.D.; Bhagat, K.; Kumar, M.; Taware, P.B.; Minhas, P.S. Influence of growth stage specific water stress on the yield, physico-chemical quality and functional characteristics of tomato grown in shallow basaltic soils. Sci. Hortic. 2015, 197, 261–271. [Google Scholar] [CrossRef]
- Intelmann, D.; Jaros, D.; Rohm, H. Identification of color optima of commercial tomato catsup. Eur. Food Res. Technol. 2005, 221, 662–666. [Google Scholar] [CrossRef]
- Aycicek, H.; Oguz, U.; Karci, K. Determination of total aerobic and indicator bacteria on some raw eaten vegetables from wholesalers in Ankara, Turkey. Int. J. Hyg. Environ. Health 2006, 209, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.I.; Lee, D.W. Toxicity of basil and orange essential oils and their components against two coleopteran stored products insect pests. J. Asia Pac. Entomol. 2014, 17, 13–17. [Google Scholar] [CrossRef]
- Lutz, M.; Hernández, J.; Henríquez, C. Phenolic content and antioxidant capacity in fresh and dry fruits and vegetables grown in Chile. CYTA J. Food 2015, 13, 541–547. [Google Scholar]
- Stanojevic, L.P.; Marjanovic-Balaban, Z.R.; Kalaba, V.D.; Stanojevic, J.S.; Cvetkovic, D.J.; Cakic, M.D. Chemical composition, antioxidant and antimicrobial activity of basil (Ocimum basilicum L.) essential oil. J. Essent. Oil Bear. Plants 2017, 20, 1557–1569. [Google Scholar] [CrossRef]
- Singh, A.; Kumar, A.; Agrawal, S.P.; Siddharth, B.R. Cultivation, oil extraction and chemical composition of Sweet basil (Ocimum basilicum) in Kannauj Region. Int. J. Innov. Res. Sci. Eng. Technol. 2017, 6, 21272–21275. [Google Scholar] [CrossRef]
- Lawrence, B.M. A further examination of the variation of Ocimum basilicum L. In Flavors and Fragrances, Proceedings of the 10th International Congress of Essential Oils, Fragrances, and Flavors: A World Perspective, Washington, DC, USA, 16–20 November 1986; Elsevier Science Publishers B.V.: Amsterdam, The Netherlands.
- Thapa, S.; Poudel, K.; Limbu, S.K.; Dahal, G.; Pokhrel, S. Phytochemical Screening, GC Analysis and Antibacterial Activity of Citrus lemon Peel Extract and Essential Oil. J. Nepal Chem. Soc. 2022, 43, 69–75. [Google Scholar] [CrossRef]
- Dahham, S.S.; Tabana, Y.M.; Iqbal, M.A.; Ahamed, M.B.; Ezzat, M.O.; Majid, A.S.; Majid, A.M. The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-caryophyllene from the essential oil of Aquilaria crassna. Molecules 2015, 20, 11808–11829. [Google Scholar] [CrossRef]
- Soto-Zamora, G.; Yahia, E.M.; Brecht, J.K.; Gardea, A. Effects of postharvest hot air treatments on the quality and antioxidant levels in tomato fruit. LWT-Food Sci. Technol. 2005, 38, 657–663. [Google Scholar] [CrossRef]
- Pinheiro, J.; Alegria, C.; Abreu, M.; Gonçalves, E.M.; Silva, C.L. Kinetics of changes in the physical quality parameters of fresh tomato fruits (Solanum lycopersicum, cv. ‘Zinac’) during storage. J. Food Eng. 2013, 114, 338–345. [Google Scholar] [CrossRef]
- Alenazi, M.M.; Shafiq, M.; Alsadon, A.A.; Alhelal, I.M.; Alhamdan, A.M.; Solieman, T.H.; Al-Selwey, W.A. Improved functional and nutritional properties of tomato fruit during cold storage. Saudi J. Biol. Sci. 2020, 27, 1467–1474. [Google Scholar] [CrossRef]
- Raffo, A.; Leonardi, C.; Fogliano, V.; Ambrosino, P.; Salucci, M.; Gennaro, L.; Quaglia, G. Nutritional value of cherry tomatoes (Lycopersicon esculentum cv. Naomi F1) harvested at different ripening stages. J. Agric. Food Chem. 2002, 50, 6550–6556. [Google Scholar] [CrossRef] [PubMed]
- Neri, L.; Faieta, M.; Di Mattia, C.; Sacchetti, G.; Mastrocola, D.; Pittia, P. Antioxidant activity in frozen plant foods: Effect of cryoprotectants, freezing process and frozen storage. Foods 2020, 9, 1886. [Google Scholar] [CrossRef] [PubMed]
- Fracchiolla, M.; Renna, M.; Durante, M.; Mita, G.; Serio, F.; Cazzato, E. Cover Crops and Manure Combined with Commercial Fertilizers Differently Affect Yield and Quality of Processing Tomato (Solanum lycopersicum L.) Organically Grown in Puglia. Agriculture 2021, 11, 757. [Google Scholar] [CrossRef]
- Kumar, R.; Paul, V.; Pandey, R.; Sahoo, R.N.; Gupta, V.K. Reflectance based non-destructive determination of color and ripeness of tomato fruits. Physiol. Mol. Biol. Plants. 2022, 28, 275–288. [Google Scholar] [CrossRef]
- Ciptaningtyas, D.; Kagoshima, W.; Iida, R.; Umehara, H.; Johkan, M.; Nakamura, N.; Shiina, T. Development of a prediction model for the pericarp CIE a* value of mature green tomato at different storage temperatures as a function of cumulative ethylene production. J. Food Eng. 2020, 278, 109945. [Google Scholar] [CrossRef]
- Rowland, M.K.; Christian, U.A.; Sunday, A.L.; Adegbola, O.D.; Mutiat, A.B.; Samuel, A.A. Chemical composition and anti-microbial activities of the essential oil of Adansonia digitata stem-bark and leaf on post-harvest control of tomato spoilage. LWT-Food Sci. Technol. 2018, 93, 58–63. [Google Scholar] [CrossRef]
- Bello, O.B.; Habib, U.; Odunayo, O.J.; Opeyemi, A.S.; Alafe, A.H.; Owoade, T.A. Microorganisms causing post-harvest tomato (Solanum lycopersicum L.) fruit decay in Nigeria. J. Entomol. Zool. Stud. 2016, 4, 374–377. [Google Scholar] [CrossRef]
Variant | The Treatment Used |
---|---|
Control | untreated |
V1 | aqueous glycerol solution 2,5% |
V2 | 50 ppm BEO in 2.5% aqueous glycerol solution |
V3 | 100 ppm BEO in 2.5% aqueous glycerol solution |
V4 | 150 ppm BEO in 2.5% aqueous glycerol solution |
V5 | 200 ppm BEO in 2.5% aqueous glycerol solution |
V6 | 250 ppm BEO in 2.5% aqueous glycerol solution |
V7 | 300 ppm BEO in 2.5% aqueous glycerol solution |
Rt | Name | RI | Match |
---|---|---|---|
17.57 | Eucalyptol | 1032 | 940 |
22.23 | Linalool | 1099 | 936 |
28.03 | Estragole | 1196 | 952 |
34.65 | Methyl-cinnamate | 1302 | 923 |
37.80 | Eugenol | 1358 | 932 |
38.52 | Trans-α-Bergamotene | 1435 | 890 |
38.83 | Caryophyllene | 1327 | 938 |
41.89 | Germacrene D | 1481 | 908 |
42.77 | γ-Cadinene | 1513 | 931 |
49.63 | T-Cadinol | 1640 | 927 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ionica, M.E.; Tutulescu, F.; Bita, A. Development of Basil Essential Oil (BEO) as a Novel Alternative to Prolong the Storage of Tomato (Lycopersicum esculentum L.). Agriculture 2022, 12, 2135. https://doi.org/10.3390/agriculture12122135
Ionica ME, Tutulescu F, Bita A. Development of Basil Essential Oil (BEO) as a Novel Alternative to Prolong the Storage of Tomato (Lycopersicum esculentum L.). Agriculture. 2022; 12(12):2135. https://doi.org/10.3390/agriculture12122135
Chicago/Turabian StyleIonica, Mira Elena, Felicia Tutulescu, and Andrei Bita. 2022. "Development of Basil Essential Oil (BEO) as a Novel Alternative to Prolong the Storage of Tomato (Lycopersicum esculentum L.)" Agriculture 12, no. 12: 2135. https://doi.org/10.3390/agriculture12122135
APA StyleIonica, M. E., Tutulescu, F., & Bita, A. (2022). Development of Basil Essential Oil (BEO) as a Novel Alternative to Prolong the Storage of Tomato (Lycopersicum esculentum L.). Agriculture, 12(12), 2135. https://doi.org/10.3390/agriculture12122135