Optimal Irrigation under the Constraint of Water Resources for Winter Wheat in the North China Plain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. DSSAT Model
2.3.2. Optimal Irrigation Amount for High Yield of the Winter Wheat (OIy)
2.3.3. Optimal Irrigation Amount for Water Saving of the Winter Wheat (OIWUE)
2.3.4. Optimal Irrigation Amount for the Trade-Off between High Yield and Water Saving of the Winter Wheat (OIt)
2.3.5. Optimal Irrigation Amount Constrained by the Irrigation Availability (OI)
3. Results
3.1. Validation of CERES-Wheat Model
3.2. Optimal Irrigation Amount for High Yield of Winter Wheat (OIy)
3.3. Optimal Irrigation Amount for Water Saving of the Winter Wheat (OIWUE)
3.4. Optimal Irrigation Amount for the Trade-Off between High Yield and Water Saving (OIt)
3.5. Optimal Irrigation Amount Constrained by the Irrigation Availability (OI)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Lei, M.; Zhang, Y.Q.; Dang, Y.X.; Kong, X.B.; Yao, J.T. Does crop rotation enhance groundwater health? A review of the Winter Wheat Fallow Policy in the North China Plain. Water 2019, 11, 2416. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.J.; Yu, L.P.; Luo, Y.; Wang, X.P.; Huang, G.H. Responses of winter wheat evapotranspiration and yield to sprinkler irrigation regimes. Agric. Water Manag. 2011, 98, 483–492. [Google Scholar] [CrossRef]
- Sun, H.Y.; Shen, Y.J.; Yu, Q.; Flerchinger, G.N.; Zhang, Y.Q.; Liu, C.M.; Zhang, X.Y. Effect of precipitation change on water balance and WUE of the winter wheat-summer maize rotation in the North China Plain. Agric. Water Manag. 2010, 97, 1139–1145. [Google Scholar] [CrossRef]
- Boumaza, K.; Kalboussi, N.; Rapaport, A.; Roux, S.; Sinfort, C. Optimal control of a crop irrigation model under water scarcity. Optim. Contr. Appl. Met. 2021, 42, 1612–1631. [Google Scholar] [CrossRef]
- Zhang, C.; Xie, Z.A.; Wang, Q.J.; Tang, M.; Feng, S.Y.; Cai, H.J. AquaCrop modeling to explore optimal irrigation of winter wheat for improving grain yield and water productivity. Agric. Water Manag. 2022, 266, 107580. [Google Scholar] [CrossRef]
- Yang, X.L.; Wang, G.Y.; Chen, Y.Q.; Sui, P.; Pacenka, S.; Steenhuis, T.S.; Siddique, K.H.M. Reduced groundwater use and increased grain production by optimized irrigation scheduling in winter wheat-summer maize double cropping system-A 16-year field study in North China Plain. Field Crop. Res. 2022, 275, 108364. [Google Scholar] [CrossRef]
- Xu, X.X.; Zhang, M.; Li, J.P.; Liu, Z.Q.; Zhao, Z.G.; Zhang, Y.H.; Zhou, S.L.; Wang, Z.M. Improving water use efficiency and grain yield of winter wheat by optimizing irrigations in the North China Plain. Field Crop. Res. 2018, 221, 219–227. [Google Scholar] [CrossRef]
- Kheir, A.M.S.; Alrajhi, A.A.; Ghoneim, A.M.; Ali, E.F.; Magrashi, A.; Zoghdan, M.G.; Sedhom, A.M.; Abdelkhalik, F.; Ahmed, E.; Fahmy, G.; et al. Modeling deficit irrigation-based evapotranspiration optimizes wheat yield and water productivity in arid regions. Agric. Water Manag. 2021, 256, 107122. [Google Scholar] [CrossRef]
- Aluoch, S.O.; Li, Z.T.; Li, X.X.; Hu, C.S.; Mburu, D.M.; Yang, J.Y.; Xu, Q.S.; Yang, Y.Z.; Su, H.X. Effect of mineral N fertilizer and organic input on maize yield and soil water content for assessing optimal N and irrigation rates in Central Kenya. Field Crop. Res. 2022, 277, 108420. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Zhang, Y.H.; Zhang, R.; Li, J.P.; Zhang, M.; Zhou, S.L.; Wang, Z.M. Reduced irrigation increases the water use efficiency and productivity of winter wheat-summer maize rotation on the North China Plain. Sci. Total Environ. 2018, 618, 112–120. [Google Scholar] [CrossRef]
- Chen, X.Z.; Wang, P.X.; Muhammad, T.; Xu, Z.C.; Li, Y.K. Subsystem-level groundwater footprint assessment in North China Plain–The world’s largest groundwater depression cone. Ecol. Indic. 2020, 117, 106662. [Google Scholar] [CrossRef]
- Liu, R.L.; Zhong, B.; Li, X.P.; Zheng, K.Y.; Liang, H.; Cao, J.M.; Yan, X.; Lyu, H.X. Analysis of groundwater changes (2003–2020) in the North China Plain using geodetic measurements. J. Hydrol.-Reg. Stud. 2022, 41, 101085. [Google Scholar] [CrossRef]
- Van, L.P.E.; Sanchez, G.A. Mapping PAR using MODIS atmosphere products. Remote Sens. Environ. 2005, 94, 554–563. [Google Scholar]
- Zhang, H.; Tao, F.L.; Zhou, G.S. Potential yields, yield gaps, and optimal agronomic management practices for rice production systems in different regions of China. Agric. Syst. 2019, 171, 100–112. [Google Scholar] [CrossRef]
- Xiao, D.P.; Tao, F.L.; Liu, Y.J.; Shi, W.J.; Wang, M.; Liu, F.S.; Zhang, S.; Zhu, Z. Observed changes in winter wheat phenology in the North China Plain for 1981–2009. Int. J. Biometeorol. 2013, 57, 275–285. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.H.; Li, L.R. Atlas of Groundwater Resources and Environment in China; China Map Press: Beijing, China, 2004. [Google Scholar]
- Jones, J.W.; Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Batchelor, W.D.; Hunt, L.A.; Wilkens, P.W.; Singh, U.; Gijsman, A.J.; Ritchie, J.T. The DSSAT cropping system model. Eur. J. Agron. 2003, 18, 235–265. [Google Scholar] [CrossRef]
- Zhou, L.L.; Liao, S.H.; Wang, Z.M.; Wang, P.; Zhang, Y.H.; Yan, H.J.; Gao, Z.; Shen, S.; Liang, X.G.; Wang, J.H.; et al. A simulation of winter wheat crop responses to irrigation management using CERES-Wheat model in the North China Plain. J. Integr. Agric. 2018, 17, 1181–1193. [Google Scholar] [CrossRef] [Green Version]
- Bannayan, M.; Hoogenboom, G. Using pattern recognition for estimating cultivar coefficients of a crop simulation model. Field Crop. Res. 2009, 111, 290–302. [Google Scholar] [CrossRef]
- Willmott, C.J. Some comments on the evaluation of model performance. Bull. Am. Meteorol. Soc. 1982, 63, 1309–1313. [Google Scholar] [CrossRef]
- Zheng, J.Q.; Wang, J.; Ren, W.; Tang, J.Z.; He, D.; Huang, M.X.; Bai, H.Q.; Wu, B.J. Modeling the impacts of climate, soil, and cultivar on optimal irrigation amount of winter wheat in the North China Plain. Agron. J. 2020, 112, 1176–1189. [Google Scholar] [CrossRef]
- Lei, M.; Kong, X.B.; Wang, J.N. Estimation of sustainable grain productivity for arable land under water balance in the Huang-Huai-Hai Plain. Acta Geogr. Sin. 2018, 73, 535–549. [Google Scholar]
- Dar, E.A.; Brar, A.S.; Mishra, S.K.; Singh, K.B. Simulating response of wheat to timing and depth of irrigation water in drip irrigation system using CERES-Wheat model. Field Crop. Res. 2017, 214, 149–163. [Google Scholar] [CrossRef]
- Jha, S.K.; Ramatshaba, T.S.; Wang, G.; Liang, Y.; Liu, H.; Gao, Y.; Duan, A.W. Response of growth, yield and water use efficiency of winter wheat to different irrigation methods and scheduling in North China Plain. Agric. Water Manag. 2019, 217, 292–302. [Google Scholar]
- Zhang, X.Y.; Chen, S.Y.; Sun, H.Y.; Pei, D.; Wang, Y.M. Dry matter, harvest index, grain yield and water use efficiency as affected by water supply in winter wheat. Irrig. Sci. 2008, 27, 1–10. [Google Scholar] [CrossRef]
- Wang, X.P.; Huang, G.H.; Yang, J.S.; Huang, Q.Z.; Liu, H.J.; Yu, L.P. An assessment of irrigation practices: Sprinkler irrigation of winter wheat in the North China Plain. Agric. Water Manag. 2015, 159, 197–208. [Google Scholar] [CrossRef]
- Ma, Y.; Feng, S.Y.; Song, X.F. Evaluation of optimal irrigation scheduling and groundwater recharge at representative sites in the North China Plain with SWAP model and field experiments. Comput. Electron. Agric. 2015, 116, 125–136. [Google Scholar] [CrossRef]
- Liu, Y.; Guan, X.K.; Yang, M.D.; Ding, C.M.; Cui, J.Y.; Huang, J.; Mei, F.J.; Wang, H.P.; Wang, T.C. Optimizing the summer maize irrigation schedule in North Henan Province based on the DSSAT model. Acta Ecol. Sin. 2019, 39, 5348–5358. [Google Scholar]
- Wang, H.X.; Zhang, L.; Dawes, W.R.; Liu, C.M. Improving water use efficiency of irrigated crops in the North China Plain–Measurements and modelling. Agric. Water Manag. 2001, 48, 151–167. [Google Scholar] [CrossRef]
- Hu, Y.; Moiwo, J.P.; Yang, Y.H.; Han, S.M.; Yang, Y.M. Agricultural water-saving and sustainable groundwater management in Shijiazhuang Irrigation District, North China Plain. J. Hydrol. 2010, 393, 219–232. [Google Scholar] [CrossRef]
- Davis, K.F.; Rulli, M.C.; Seveso, A.; D’Odorico, P. Increased food production and reduced water use through optimized crop distribution. Nat. Geosci. 2017, 10, 919–924. [Google Scholar] [CrossRef]
- Deng, H.B.; Guan, B.Z.; Wang, J.X.; Zuo, A.; Wang, Z.L.; Sun, T.H. Seasonal Land Fallowing Policy in response to groundwater overdraft in the North China Plain. Water Altern. 2021, 14, 371–394. [Google Scholar]
- Zhang, G.Q.; Liu, C.W.; Xiao, C.H.; Xie, R.Z.; Ming, B.; Hou, P.; Liu, G.Z.; Xu, W.J.; Shen, D.P.; Wang, K.R.; et al. Optimizing water use efficiency and economic return of super high yield spring maize under drip irrigation and plastic mulching in arid areas of China. Field Crop. Res. 2017, 211, 137–146. [Google Scholar] [CrossRef]
- Li, J.P.; Zhang, Z.; Liu, Y.; Yao, C.S.; Song, W.Y.; Xu, X.X.; Zhang, M.; Zhou, A.N.; Gao, Y.M.; Wang, Z.M.; et al. Effects of micro-sprinkling with different irrigation amount on grain yield and water use efficiency of winter wheat in the North China Plain. Agric. Water Manag. 2019, 224, 105736. [Google Scholar] [CrossRef]
- Guo, Q.; Huang, G.M.; Guo, Y.L.; Zhang, M.C.; Zhou, Y.Y.; Duan, L.S. Optimizing irrigation and planting density of spring maize under mulch drip irrigation system in the arid region of Northwest China. Field Crop. Res. 2021, 266, 108141. [Google Scholar] [CrossRef]
- Long, D.; Yang, W.T.; Scanlon, B.R.; Zhao, J.S.; Liu, D.G.; Burek, P.; Pan, Y.; You, L.Z.; Wada, Y. South-to-North Water Diversion stabilizing Beijing’s groundwater levels. Nat. Commun. 2020, 11, 3665. [Google Scholar] [CrossRef]
- Zhang, X.; Xiao, G.M.; Li, H.; Wang, L.G.; Wu, S.X.; Wu, W.L.; Meng, F.Q. Mitigation of greenhouse gas emissions through optimized irrigation and nitrogen fertilization in intensively managed wheat-maize production. Sci. Rep. 2020, 10, 5907. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Xu, C.C.; Luo, N.; Liu, X.W.; Huang, S.B.; Wang, P. Mitigating global warming potential while coordinating economic benefits by optimizing irrigation managements in maize production. J. Environ. Manag. 2021, 298, 113474. [Google Scholar] [CrossRef]
Soil Parameters | Range |
---|---|
Bulk density (g cm−3) | 0.04–1.83 |
Field capacity (cm3 cm−3) | 0.11–0.56 |
Wilting point (cm3 cm−3) | 0.04–0.48 |
Soil organic carbon (%) | 0.01–30.64 |
pH | 4.0–10.1 |
Total nitrogen content (%) | 0.00–1.10 |
Station | Calibration Dataset | Validation Dataset |
---|---|---|
Tangshan | 1997–2000 | 2004–2007 |
Huanghua | 1995–1999 | 2004–2009 |
Luancheng | 2001 | 2002, 2003 |
Huimin | 2001–2004 | 2005–2009 |
Nangong | 2002, 2003 | 2004–2005 |
Ganyu | 2005, 2006 | 2007–2008 |
Shangqiu | 1997 | 1998 |
Zhumadian | 1987, 1989, 1990 | 1993–1995 |
Shouxian | 2006 | 2007 |
Item | Observed Value | Simulated Value | NRMSE | D Value |
---|---|---|---|---|
Anthesis (BBCH 61) | 176–223 d after sowing | 172–227 d after sowing | 1.51% | 0.98 |
Maturity (BBCH 89) | 210–257 d after sowing | 209–257 d after sowing | 0.95% | 0.99 |
Yield | 1650–7395 kg ha−1 | 1030–7577 kg ha−1 | 14.89% | 0.96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, X.; Shi, W.; Dai, N.; Wang, M. Optimal Irrigation under the Constraint of Water Resources for Winter Wheat in the North China Plain. Agriculture 2022, 12, 2057. https://doi.org/10.3390/agriculture12122057
Shi X, Shi W, Dai N, Wang M. Optimal Irrigation under the Constraint of Water Resources for Winter Wheat in the North China Plain. Agriculture. 2022; 12(12):2057. https://doi.org/10.3390/agriculture12122057
Chicago/Turabian StyleShi, Xiaoli, Wenjiao Shi, Na Dai, and Minglei Wang. 2022. "Optimal Irrigation under the Constraint of Water Resources for Winter Wheat in the North China Plain" Agriculture 12, no. 12: 2057. https://doi.org/10.3390/agriculture12122057
APA StyleShi, X., Shi, W., Dai, N., & Wang, M. (2022). Optimal Irrigation under the Constraint of Water Resources for Winter Wheat in the North China Plain. Agriculture, 12(12), 2057. https://doi.org/10.3390/agriculture12122057