The Effect of the Method of Plant Protection on the Quality of Remontant Strawberry Cultivars Grown in a Gutter System under Covers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Treatments
2.3. Harvest
2.4. Fruit Quality Measurement
2.5. Statistical Analysis
3. Results and Discussion
3.1. Fruit Yield
3.2. Fruit Quality
3.3. Infested Fruits
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abu-Zahra, T.R. Effect of Cold Storage and Modified Atmosphere Packaging on Strawberry (Fragaria × ananassaDuch.) cv. ‘Arben’ Fruit Keeping Quality. Biosci. Biotechnol. Res. Asia 2017, 14, 1251–1258. [Google Scholar] [CrossRef]
- Forney, F.C.; Kalt, W.; Jordan, M.A. The Composition of Strawberry Aroma is Influenced by Cultivar, Maturity, and Storage. HortScience. 2000, 35, 1022–1026. [Google Scholar] [CrossRef][Green Version]
- Mishra, R.; Kar, A. Effect of Storage on the Physicochemical and Flavour Attributes of Two Cultivars of Strawberry Cultivated in Northern India. Sci. World J. 2014, 2, 794926. [Google Scholar] [CrossRef]
- Mazur, S.P.; Nes, A.; Wold, A.B.; Remberg, S.F.; Martinsen, B.K.; Aaby, K. Effects of ripeness and cultivar on chemical composition of strawberry (Fragaria × ananassa Duch.) fruits and their suitability for jam production as a stable product at different storage temperatures. Food Chem. 2014, 146, 412–422. [Google Scholar] [CrossRef]
- Domínguez, P.; Medina, J.J.; Miranda, L.; López-Aranda, J.M.; Ariza, M.T.; Soria, C.; Bielinski, M.S.; Torres-Quezada, E.A.; Hernández-Ochoa, I. Effect of Planting and Harvesting Dates on Strawberry Fruit Quality under High Tunnels. Int. J. Fruit Sci. 2016, 16, 228–238. [Google Scholar] [CrossRef]
- Whitaker, V.M.; Hasing, T.; Chandler, C.K.; Plotto, A.; Baldwin, E. Historical Trends in Strawberry Fruit Quality Revealed by a Trial of University of Florida Cultivars and Advanced Selections. HortScience 2011, 46, 553–557. [Google Scholar] [CrossRef][Green Version]
- Battino, M.; Beekwilder, J.; Denoyes-Rothan, B.; Laimer, M.; McDougall, G.J.; Mezzetti, B. Bioactive compounds in berries relevant to human health. Nutr. Rev. 2009, 67 (Suppl. S1), 145–150. [Google Scholar] [CrossRef] [PubMed]
- Sa Yang, D.; Xie, H.; Jiang, Y.; Wei, X. Phenolics from strawberry cv. Falandi and their antioxidant and α-glucosidase inhibitory activities. Food Chem. 2016, 194, 857–863. [Google Scholar] [CrossRef]
- Tournas, V.H.; Katsoudas, E. Mould and yeast flora in fresh berries, grapes and citrus fruits. Int. J. Food Microbiol. 2005, 23, 684–688. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Cordenunsi, B.R.; Genovese, M.I.; Nascimento, J.R.O.; Hassimotto, N.M.A.; Santos, R.J.; Lajolo, F.M. Effects of temperature on the chemical composition and antioxidant activity of three strawberry cultivars. Food Chem. 2005, 91, 113–121. [Google Scholar] [CrossRef]
- Timudo-Torevilla, O.E.; Everett, K.R.; Waipara, N.W.; Boyd-Wilson Weeds, K.S.H.; Langford, G.I.; Walters, M. Present Status of Strawberry Fruit Rot Diseases in New Zealand. N. Z. Plant Prot. 2005, 58, 74–79. [Google Scholar] [CrossRef][Green Version]
- Walter, M.; Braithwaite, B.; Smith, B.J.; Langdorf, G.I. Nutrient Nitrogen Management for Disease Control in Strawberry. N. Z. Plant Prot. 2008, 61, 70–79. [Google Scholar] [CrossRef]
- Meszka, B.; Michalecka, M. Identification of Phytophthora spp. isolated from plants and soil samples on strawberry plantations in Poland. J. Plant Dis. Prot. 2016, 123, 29–36. [Google Scholar] [CrossRef][Green Version]
- Palmer, M.G.; Holmes, G.J. Fungicide Sensitivity in Strawberry Powdery Mildew Caused by Podosphaera aphanis in California. Plant Dis. 2021, 105, 2601–2605. [Google Scholar] [CrossRef]
- Blanco, C.; de los Santos, B.; Barrau, C.; Arroyo, F.T.; Porras, M.; Romero, F. Relationship Among Concentration of Sphaerotheca macularis Conidia in the Air, Environmental Conditions, and the Incidence of Powdery Mildew in Strawberry. Plant Dis. 2004, 88, 878–881. [Google Scholar] [CrossRef][Green Version]
- Cordova, L.G.; Amiri, A.; Peres, N.A. Effectiveness of fungicide treatments following the Strawberry Advisory System for control of Botrytis fruit rot in Florida. Crop Prot. 2017, 100, 163–167. [Google Scholar] [CrossRef]
- Camprubi, A.; Estaun, V.; El Bakali, M.A.; Garcia-Figueres, F.; Calvet, C. Alternative strawberry production using solarization, metham sodium and beneficial soil microbes as plant protection methods. Agron. Sustain. Dev. 2007, 27, 179–184. [Google Scholar] [CrossRef]
- Mouden, N.; Chiliyeh, M.; Benkirane, R.; Touhami, A.O.; Douira, A. Chemical Control of Some Strawberries Fungal Pathogens by Foliar Fungicides Under In Vitro and In Vivo Conditions. Int. J. Recent Sci. Res. 2016, 7, 9037–9051. [Google Scholar]
- El-Mougy, N.S.; El-Gamal, N.G.; Abdalla, M.A. The use of fungicide alternatives for controlling postharvest decay of strawberry and orange fruits. J. Plant Protect. Res. 2008, 48, 385–395. [Google Scholar] [CrossRef]
- Wszelaki, A.L.; Mitcham, E.J. Effect of superatmospheric oxygen on strawberry fruit quality and decay. Postharvest Biol. Technol. 2000, 20, 125–133. [Google Scholar] [CrossRef]
- Brischetto, C.; Bove, F.; Fedele, G.; Rossi, V. A Weather-Driven Model for Predicting Infections of Grapevines by Sporangia of Plasmopara viticola. Front. Plant Sci. 2021, 12, 636607. [Google Scholar] [CrossRef]
- Garrido, C.; Carbú, M.; Fernández-Acero, F.J.; González-Rodríguez, V.E.; Cantoral, J.M. New Insights in the Study of Strawberry Fungal Pathogens. Genes Genomes Genom. 2011, 5, 24–39. [Google Scholar]
- Jarmoliča, S.; Bankina, B. Powdery mildew of strawberries in Latvia under field conditions. Sodinink. Ir Daržininkyste. 2009, 28, 79–83. [Google Scholar]
- Siefkes-Boer, H.J.; Boyd-Wilson, K.S.H.; Petley, M.; Walter, M. Influence of cold-storage temperatures on strawberry leak caused by Rhizopus spp. N. Z. Plant Prot. 2009, 62, 243–249. [Google Scholar] [CrossRef]
- Nielsen, K.A.G.; Skårn, M.N.; Strømeng, G.M.; Brurberg, M.B.; Stensvand, A. Pervasive fungicide resistance in Botrytis cinerea from strawberry in Norway: Identification of the grey mould pathogen and mutations. Plant Pathol. 2022, 71, 1392–1403. [Google Scholar] [CrossRef]
- Piwowar, A. The use of pesticides in Polish agriculture after integrated pest management (IPM) implementation. Environ. Sci. Pollut. Res. 2021, 28, 26628–26642. [Google Scholar] [CrossRef]
- Alizadeh, H.R.; Sharifi-Tehrani, A.; Hedjaroude, G.A. Evaluation of the effects of chemical versus biological control on Botrytis cinerea agent of gray mould disease of strawberry. Commun. Agric. Appl. Biol. Sci. 2007, 72, 795–800. [Google Scholar]
- Kader, A.A. Fruit maturity, ripening, and quality relationships. Acta Hortic. 1999, 485, 203–208. [Google Scholar] [CrossRef]
- Nunes, M.C.N.; Brecht, J.C.; Morais, A.M.; Sargent, S.A. Physiochemical changes during strawberry development in the field compared with those that occur in harvested fruits during storage. J. Sci. Food Agric. 2006, 1, 180–190. [Google Scholar] [CrossRef]
- Błaszczyk, J.; Bieniasz, M.; Nawrocki, J.; Kopeć, M.; Mierzwa-Hersztek, M.; Gondek, K.; Zaleski, T.; Knaga, J.; Bogdał, S. The Effect of Harvest Date and Storage Conditions on the Quality of Remontant Strawberry Cultivars Grown in a Gutter System under Covers. Agriculture 2022, 12, 1193. [Google Scholar] [CrossRef]
- Meszka, B.; Labanowska, B.; Bielenin, A. Possibilities of strawberry complex protection against fungal diseases and two-spotted spider mite using strobilurin fungicides. Acta Hortic. 2009, 842, 367–370. [Google Scholar] [CrossRef]
- Bieniasz, M.; Malodobry, M.; Dziedzic, E. The effect of foliar fertilization with calcium on quality of strawberry cultivars ‘Luna’ and ‘Zanta’. Acta Hortic. 2012, 926, 457–461. [Google Scholar] [CrossRef]
- Wysocki, K.; Kopytowski, J.; Bieniek, A.; Bojarska, J. The effect of substrates on yield and quality of strawberry fruits cultivated in a heated foil tunnel. Zemdirb. Agric. 2017, 104, 283–286. [Google Scholar] [CrossRef][Green Version]
- Rutkowski, K.; Łysiak, G.P. Weather Conditions, Orchard Age and Nitrogen Fertilization Influences Yield and Quality of ‘Łutówka’ Sour Cherry Fruit. Agriculture 2022, 12, 2008. [Google Scholar] [CrossRef]
- Łysiak, G.P.; Rutkowski, K.; Walkowiak-Tomczak, D. Effect of Storage Conditions on Storability and Antioxidant Potential of Pears cv. ‘Conference’. Agriculture 2021, 11, 545. [Google Scholar] [CrossRef]
- Mikiciuk, G.; Sas-Paszt, L.; Mikiciuk, M.; Derkowska, E.; Trzciński, P.; Głuszek, S.; Lisek, A.; Wera-Bryl, S.; Rudnicka, J. Mycorrhizal frequency, physiological parameters, and yield of strawberry plants inoculated with endomycorrhizal fungi and rhizosphere bacteria. Mycorrhiza 2019, 29, 489–501. [Google Scholar] [CrossRef]
Year | Plant Protection | Average Marketable Yield per Linear Meter of Coconut Mat [g] | Average Non-Marketable Yieldfrom 1 Linear Meter [g] | Average Weight of 100 Fruits [g] |
---|---|---|---|---|
2018 | Chemical Biological Control | 4108.6 ± 791.8 a 3699.5 ± 546.1 a 3601.9 ± 320.5 a | 362.7 ± 36.9 a 520.7 ± 41.9 b 601.3 ± 54.6 b | 1871.2 ± 32.6 a 1918.3 ± 55.4 a 1870.3 ± 33.1 a |
2019 | Chemical Biological Control | 3623.2 ± 487.0 a 3105.9 ± 306.1 a 3187.2 ± 85.2 a | 177.1 ± 47.9 a 137.0 ± 31.2 a 217.2 ± 66.5 a | 1558.3 ± 0.4 a 1522.6 ± 22.2 a 1573.1 ± 3.8 b |
2020 | Chemical Biological Control | 5237.3 ± 346.6 a 5147.3 ± 407.3 a 4709.3 ± 426.6 a | 370.2 ± 24.5 a 381.7 ± 30.2 a 506.5 ± 0.44 b | 1933.3 ± 161.7 a 2026.7 ± 265.6 a 1780.0 ± 225.4 a |
Year | Plant Protection | Average Marketable Yield per Linear Meter of Coconut Mat [g] | Average Non-Marketable Yield from 1 Linear Meter [g] | Average Weight of 100 Fruits [g] |
---|---|---|---|---|
2018 | Chemical Biological Control | 3473.6 ± 814.5 a 3164.9 ± 733.4 a 2913.0 ± 460.7 a | 617.7 ± 35.6 b 431.4 ± 0.27 a 540.3 ± 0.32 ab | 1862.3 ± 59.4 b 1782.7 ± 26.3 ab 1715.6 ± 5.7 a |
2019 | Chemical Biological Control | 2443.2 ± 90.6 a 2695.5 ± 151.9 b 2227.3 ± 122.6 a | 121.3 ± 19.2 a 172.2 ± 19.5 b 210.4 ± 22.2 b | 1482.7 ± 0.9 b 1417.4 ± 41.0 a 1409.7 ± 0.1 a |
2020 | Chemical Biological Control | 3623.2 ± 14.2 b 3164.6 ± 204.7 a 3048.6 ± 55.3 a | 280.6 ± 1.1 a 336.7 ± 21.8 b 368.2 ± 6.7 c | 1873.3 ± 110.2 a 1700.0 ± 433.1 a 1846.7 ± 161.7 a |
Year | Plant Protection | Average Marketable Yield per Linear Meter of Coconut Mat [g] | Average Non-Marketable Yieldfrom 1 Linear Meter [g] | Average Weight of 100 Fruits [g] |
---|---|---|---|---|
2018 | Chemical Biological Control | 3015.9 ± 144.2 b 2417.9 ± 318.7 a 2626.7 ± 304.9 ab | 765.4 ± 136.1 a 785.1 ± 207.7 a 1016.9 ± 120.9 a | 1552.6 ± 112.6 a 1519.6 ± 38.1 a 1442.5 ± 97.4 a |
2019 | Chemical Biological Control | 3125.7 ± 277.6 a 2694.0 ± 542.3 a 2261.3 ± 467.2 a | 346.6 ± 50.2 a 326.6 ± 50.3 a 367.2 ± 17.8 a | 1241.6 ± 63.0 a 1177.3 ± 46.1 a 1129.3 ± 70.4 a |
2020 | Chemical Biological Control | 3190.3 ± 815.3 a 3054.4 ± 897.0 a 2269.3 ± 658.1 a | 511.3 ± 130.7 a 495.3 ± 145.4 a 637.9 ± 222.6 a | 1426.7 ± 194.3 a 1340.0 ± 64.3 a 1393.3 ± 250.1 a |
Year | Plant Protection | Fruit Firmness [N] | Soluble Solids Content [%] | Total Acidity [% Citric Acid] | Ratio SSC/TA | Respiration Rate [mg CO2 kg−1·h−1] |
---|---|---|---|---|---|---|
2018 | Chemical Biological Control | 4.2 ± 0.12 b 4.3 ± 0.20 b 3.7 ± 0.28 a | 8.3 ± 0.38 a 8.1 ± 0.27 a 8.1 ± 0.32 a | 0.89 ± 0.08 c 0.77 ± 0.04 a 0.82 ± 0.03 b | 9.7 ± 0.96 a 10.5 ± 0.87 b 10.0 ± 0.58 ab | 61.6 ± 11.86 a 77.1 ± 16.32 b 64.7 ± 18.09 ab |
2019 | Chemical Biological Control | 3.9 ± 0.24 b 3.8 ± 0.26 b 3.6 ± 0.30 a | 8.3 ± 0.26 a 8.9 ± 0.42 b 8.9 ± 0.38 b | 0.91 ± 0.06 a 0.93 ± 0.02 a 0.94 ± 0.05 a | 9.3 ± 0.75 a 9.8 ± 0.66 b 9.7 ± 0.80 ab | 61.7 ± 15.95 b 49.1 ± 13.47 a 77.5 ± 16,88 c |
2020 | Chemical Biological Control | 3.8 ± 0.35 b 3.6 ± 0.22 a 3.5 ± 0.18 a | 8.7 ± 0.38 b 8.0 ± 0.30 a 8.3 ± 0.44 ab | 0.88 ± 0.05 a 0.90 ± 0.09 ab 0.92 ± 0.07 b | 9.9 ± 0.34 b 9.0 ± 0.47 a 9.3 ± 0.63 a | 47.9 ± 18.74 a 48.2 ± 16.24 a 68.3 ± 20.12 b |
Year | Plant Protection | Fruit Firmness [N] | Soluble Solids Content [%] | Total Acidity [% Citric Acid] | Ratio SSC/TA | Respiration Rate [mg CO2 kg−1·h−1] |
---|---|---|---|---|---|---|
2018 | Chemical Biological Control | 3.6 ± 0.28 a 3.6 ± 0.32 a 3.5 ± 0.25 a | 9.8 ± 0.36 b 9.3 ± 0.33 a 9.6 ± 0.41 b | 0.91 ± 0.03 b 0.85 ± 0.02 a 0.93 ± 0.04 b | 11.3 ± 0.64 a 10.9 ± 0.56 a 11.2 ± 0.60 a | 34.9 ± 12.18 a 64.7 ± 20.06 b 71.9 ± 17.84 c |
2019 | Chemical Biological Control | 4.1 ± 0.22 b 3.8 ± 0.18 a 3.9 ± 0.30 a | 9.6 ± 0.34 a 9.9 ± 0.27 b 9.5 ± 0.20 a | 0.93 ± 0.05 a 0.92 ± 0.06 a 0.92 ± 0.06 a | 10.6 ± 0.72 a 11.1 ± 0.38 a 10.7 ± 0.54 a | 54.0 ± 20.04 b 49.6 ± 18.94 a 76.4 ± 24.01 c |
2020 | Chemical Biological Control | 4.4 ± 0.44 b 3.8 ± 0.22 a 3.9 ± 0.24 a | 9.3 ± 0.38 b 9.1 ± 0.42 ab 8.9 ± 0.32 a | 0.89 ± 0.04 b 0.84 ± 0.07 a 0.86 ± 0.02 ab | 10.9 ± 0.72 a 10.8 ± 0.66 a 10.4 ± 0.78 a | 44,9 ± 24.26 a 47.5 ± 28.45 a 47.1 ± 16.75 a |
Year | Plant Protection | Fruit Firmness [N] | Soluble Solids Content [%] | Total Acidity [% Citric Acid] | Ratio SSC/TA | Respiration Rate [mg CO2 kg−1·h−1] |
---|---|---|---|---|---|---|
2018 | Chemical Biological Control | 4.2 ± 0.32 b 4.3 ± 0.28 b 3.7 ± 0.16 a | 9.5 ± 0.65 a 9.3 ± 0.50 a 9.7 ± 0.24 a | 0.70 ± 0.04 a 0.70 ± 0.02 a 0.72 ± 0.04 a | 13.8 ± 0.86 a 13.3 ± 0.73 a 13.6 ± 0.78 a | 59.3 ± 14.86 b 41.9 ± 17.22 a 70.7 ± 26.18 c |
2019 | Chemical Biological Control | 3.9 ± 0.10 c 3.5 ± 0.52 b 3.1 ± 0.34 a | 9.5 ± 0.48 a 9.8 ± 0.62 b 9.4 ± 0.70 a | 0.86 ± 0.03 a 0.99 ± 0.05 b 0.86 ± 0.02 a | 11.3 ± 0.66 a 10.8 ± 0.74 a 11.3 ± 0.58 a | 63.3 ± 19.88 a 69.7 ± 15.76 b 68.4 ± 12.73 b |
2020 | Chemical Biological Control | 4.7 ± 0.48 c 4.4 ± 0.42 b 4.1 ± 0.26 a | 9.7 ± 0.38 a 10.2 ± 0.60 b 10.3 ± 0.54 b | 0.75 ± 0.06 a 0.80 ± 0.02 b 0.75 ± 0 03 a | 13.2 ± 0.84 b 12.7 ± 0.88 a 13.6 ± 0.91 b | 26.4 ± 10.67 a 44.9 ± 18.28 b 52.1 ± 14.63 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Błaszczyk, J.; Nawrocki, J.; Łysiak, G.P. The Effect of the Method of Plant Protection on the Quality of Remontant Strawberry Cultivars Grown in a Gutter System under Covers. Agriculture 2022, 12, 2041. https://doi.org/10.3390/agriculture12122041
Błaszczyk J, Nawrocki J, Łysiak GP. The Effect of the Method of Plant Protection on the Quality of Remontant Strawberry Cultivars Grown in a Gutter System under Covers. Agriculture. 2022; 12(12):2041. https://doi.org/10.3390/agriculture12122041
Chicago/Turabian StyleBłaszczyk, Jan, Jacek Nawrocki, and Grzegorz P. Łysiak. 2022. "The Effect of the Method of Plant Protection on the Quality of Remontant Strawberry Cultivars Grown in a Gutter System under Covers" Agriculture 12, no. 12: 2041. https://doi.org/10.3390/agriculture12122041