The Use of the Polish Germplasm Collection of Nicotiana tabacum in Research and Tobacco Breeding for Disease Resistance
Abstract
:1. Introduction
2. Characterisation of Tobacco Accessions in Terms of Resistance to Diseases
3. Tobacco Breeding
3.1. Breeding for PVY Resistance
3.2. Breeding for TSWV Resistance
3.3. Breeding for Resistance to Fungal Diseases
4. Cultivars with Cytoplasmic Male Sterility (cms) and Their Application in Breeding for Disease Resistance
5. Studies on Viral Pathogens
6. Seed Response for Long-Term Preservation
7. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Spring, O.; Gomez-Zeledon, J.; Hadziabdic, D.; Trigiano, R.N.; Thines, M.; Lebeda, A. Biological Characteristics and Assessment of Virulence Diversity in Pathosystems of Economically Important Biotrophic Oomycetes. Crit. Rev. Plant Sci. 2019, 37, 439–495. [Google Scholar] [CrossRef]
- Laskowska, D. Różnorodność biologiczna w kolekcji Nicotiana tabacum L. zgromadzonej w Instytucie Uprawy Nawożenia i Gleboznawstwa—PIB w Puławach. Zeszyty Problemowe Postępów Nauk Rolniczych 2007, 517, 73–81. [Google Scholar]
- Zhang, S.; Zaitlin, D. Genetic resistance to Peronospora tabacina in Nicotiana langsdorffii, a South American wild tobacco. Phytopathology 2008, 98, 519–528. [Google Scholar] [CrossRef] [Green Version]
- Shava, J.G.; Richardson-Kageler, S.; Dari, S.; Magama, F.; Rukuni, D. Breeding for Flue-cured Tobacco (Nicotiana tabacum L.) Foliar Pest and Disease Resistance in Zimbabwe: A Review. Agric. Rev. 2019, 40, 104–112. [Google Scholar] [CrossRef] [Green Version]
- Julio, E.; Verrier, J.L.; Dorlhac de Borne, F. Development of SCAR markers linked to three disease resistances based on AFLP within Nicotiana tabacum L. Theor. Appl. Genet. 2006, 112, 335–346. [Google Scholar] [CrossRef]
- Fujimura, T.; Sato, S.; Tajima, T.; Arai, M. Powdery mildew resistance in the Japanese domestic tobacco cultivar Kokubu is associated with aberrant splicing of MLO orthologues. Plant Pathol. 2016, 65, 1358–1365. [Google Scholar] [CrossRef]
- Berbeć, A.; Doroszewska, T. The Use of Nicotiana Species in Tobacco Improvement In The Tobacco Plant Genome; Ivanov, N.V., Sierro, N., Peitsch, M.C., Eds.; Springer: Cham, Switzerland, 2020; pp. 101–146. [Google Scholar]
- Hood, M.E.; Shew, H.D. Pathogenesis of Thielaviopsis basicola on a susceptible and a resistant cultivar of burley tobacco. Phytopathology 1996, 86, 38–44. [Google Scholar] [CrossRef]
- Chaplin, J.F.; Mann, T.J. Evaluation of tobacco mosaic resistance factor transferred from burley to flue-cured tobacco. J Hered. 1987, 69, 175–178. [Google Scholar] [CrossRef]
- Depta, A.; Kursa, K.; Doroszewska, T.; Laskowska, D.; Trojak-Goluch, A. Reaction of Nicotiana species and cultivars of tobacco to Tobacco mosaic virus and detection of the N gene that confers hypersensitive resistance. Czech J. Genet. Plant Breed. 2018, 54, 143–146. [Google Scholar]
- Koelle, G. Genetische Analyse einer Y-virus (Rippen-braune) resistenten Mutante der Tabaksorte Virgin A. Der Zuchter 1961, 31, 71–72. [Google Scholar]
- Dluge, K.L.; Song, Z.; Wang, B.; Tyler Steede, W.; Xiao, B.; Liu, Y.; Dewey, R.E. Characterization of Nicotiana tabacum genotypes possessing deletion mutations that affect potyvirus resistance and the production of trichome exudates. BMC Genom. 2018, 19, 484. [Google Scholar] [CrossRef]
- Depta, A.; Doroszewska, T.; Czubacka, A. Zróżnicowanie reakcji odpornościowej wybranych odmian tytoniu (Nicotiana tabacum) w zależności od użytego izolatu wirusa Y ziemniaka (PVY). Pol. J. Agron. 2020, 42, 3–13. [Google Scholar]
- Michel, V.; Julio, E.; Candresse, T.; Cotucheau, J.; Decorps, C.; Volpatti, R.; Moury, B.; Glais, L.; Jacquot, E.; de Borne, F.D.; et al. A complex eIF4E locus impacts the durability of va resistance to Potato virus Y in tobacco. Mol. Plant Pathol. 2019, 20, 1051–1066. [Google Scholar] [CrossRef] [Green Version]
- Michel, V.; Julio, E.; Candresse, T.; Cotucheau, J.; Decorps, C.; Volpatti, R.; Moury, B.; Glais, L.; Dorlhac de Borne, F.; Decroocq, V.; et al. NtTPN1: A RPP8-like R gene required for Potato virus Y-induced veinal necrosis in tobacco. Plant J. 2018, 95, 700–714. [Google Scholar] [CrossRef]
- Laskowska, D.; Doroszewska, T.; Depta, A.; Kursa, K.; Olszak-Przybyś, H.; Czubacka, A. A survey of Nicotiana germplasm for resistance to Tomato spotted wilt virus (TSWV). Euphytica 2013, 193, 207–219. [Google Scholar] [CrossRef] [Green Version]
- Glais, L.; Bellstedt, D.U.; Lacomme, C. The Diversity of PVY: A Constant Challenge for Its Classification and Characterisation. In Potato Virus Y: Biodiversity, Pathogenicity, Epidemiology and Management; Lancome, C., Glais, L., Bellstedt, D.U., Dupuis, B., Karasev, A.V., Jacquot, E., Eds.; Springer International Publishing AG: Cham, Switzerland, 2017. [Google Scholar]
- Depta, A.; Olszak-Przybyś, H.; Korbecka, G. Development of Potato virus Y (PVY) infection in susceptible and resistant tobacco cultivars. Pol. J. Agron. 2014, 18, 3–6. [Google Scholar]
- Korbecka-Glinka, G.; Czubacka, A.; Przybys, M.; Doroszewska, T. Resistance vs. tolerance to Potato virus Y in tobacco-comparing effectiveness using virus isolates from Central Europe. Breed. Sci. 2017, 67, 459–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doroszewska, T. Transfer of tolerance to different Potato virus Y (PVY) isolates from Nicotiana africana Merxm. to Nicotiana tabacum L. Plant Breed. 2010, 129, 76–81. [Google Scholar] [CrossRef]
- Acosta-Leal, R.; Xiong, Z. Complementary functions of two recessive R-genes determine resistance durability of tobacco ‘Virgin A Mutant’ (VAM) to Potato virus Y. Virology 2008, 379, 275–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Julio, E.; Cotucheau, J.; Decorps, C.; Volpatti, R.; Sentenac, C.; Candresse, T.; Dorlhac de Borne, F. A Eukaryotic Translation Initiation Factor 4E (eIF4E) is Responsible for the “va” Tobacco Recessive Resistance to Potyviruses. Plant Mol. Biol. Rep. 2015, 33, 609–623. [Google Scholar] [CrossRef]
- Bindler, G.; Bakaher, N.; Gunduz, I.; Ivanov, N.; Van der Hoeven, R.; Donini, P. A high density genetic map of tobacco (Nicotiana tabacum L.) obtained from large scale microsatellite marker development. Theor. Appl. Genet. 2011, 123, 219–230. [Google Scholar] [CrossRef] [Green Version]
- Moon, H.; Nicholson, J.S. AFLP and SCAR Markers Linked to Tomato Spotted Wilt Virus Resistance in Tobacco. Crop Sci. 2007, 47, 1887–1894. [Google Scholar] [CrossRef]
- Gajos, Z. Polalta—Odmiana tytoniu odporna na wirus brązowej plamistości pomidora (TSWV) i czarną zgniliznę korzeni (Thielaviopsis basicola Ferr.) [Polalta—A tobacco cultivar resistant to Tomato spotted wilt virus and black root rot (Thielaviopsis basicola Ferr.)]. Biuletyn CLPT 1988, 1–4, 7–25. [Google Scholar]
- Korbecka-Glinka, G.; Trojak-Goluch, A.; Doroszewska, T.; Goepfert, S. The influence of Nicotiana alata-derived introgression on plant malformations of tobacco breeding lines resistant to tomato spotted wilt virus. In Proceedings of the CORESTA Congress, Kunming, China, 22–26 October 2018. Agronomy/Phytopathology Groups, AP 49. [Google Scholar]
- Huang, C.; Liu, Y.; Yu, H.; Yuan, C.; Zeng, J.; Zhao, L.; Tong, Z.; Tao, X. Non-Structural Protein NSm of Tomato Spotted Wilt Virus Is an Avirulence Factor Recognized by Resistance Genes of Tobacco and Tomato via Different Elicitor Active Sites. Viruses 2018, 10, 660. [Google Scholar] [CrossRef] [Green Version]
- Gajos, Z. Virginia ZG-4 (Wiktoria)—Nowa odmiana tytoniu odporna na wirus brązowej plamistości pomoidora (TSWV) i czarną zgniliznę korzeni (Thielaviopsis basicola) (Virginia ZG-4 (Wiktoria)—A new variety resistant to Tomato spotted wilt virus (TSWV) and black root rot (Thielaviopsis basicola). Biuletyn CLPT 1993, 1–4, 5–19. [Google Scholar]
- Berbeć, A.; Trojak-Goluch, A. Response to black root rot Thielaviopsis tabacina Ferr. of several flue-cured tobacco Nicotiana tabacum L. genotypes in different testing environments. Plant Breed. Seed Sci. 2001, 45, 11–20. [Google Scholar]
- Marathe, R.; Anandalakshmi, R.; Liu, Y.; Dinesh-Kumar, S.P. The tobacco mosaic virus resistance gene, N. Mol. Plant Pathol. 2002, 3, 167–172. [Google Scholar] [CrossRef]
- Lewis, R.S.; Milla, S.R.; Levin, J.S. Molecular and Genetic Characterization of Nicotiana glutinosa L. Chromosome Segments inTobacco mosaic virus-Resistant Tobacco Accessions. Crop Sci. 2005, 45, 2355–2362. [Google Scholar] [CrossRef]
- Doroszewska, T. Wide Hybridization and Genetic Transformation in Breeding for Resistance to Potato virus Y (PVY) in Tobacco (Nicotiana tabacum L.). In Habilitation Proceedings, Monographs and Dissertations; IUNG: Puławy, Poland, 2004; Volume 9. (In Polish) [Google Scholar]
- Czubacka, A.; Doroszewska, T. Estimating agronomic traits of transgenic tobacco lines. Euphytica 2009, 172, 35–47. [Google Scholar] [CrossRef]
- Czubacka, A.; Doroszewska, T. Resistance of transgenic tobacco lines to Potato Virus Y (in Polish). Biotechnologia 2010, 2, 72–82. [Google Scholar]
- Czubacka, A.; Doroszewska, T.; Trojak-Goluch, A. Agronomic characteristics of transgenic tobacco doubled haploids resistant to Potato virus Y. J. Food Agric. Environ. 2012, 10, 374–378. [Google Scholar]
- Berbeć, A. Chromosome pairing and pollen fertility in the interspecific F1 hybrids Nicotiana tabacum L. × N. benavidesii Goodspeed, N. knightiana Goodspeed × N. tabacum, and N. raimondii Macbride × N. tabacum. Genet. Pol. 1987, 28, 263–269. [Google Scholar]
- Berbeć, A.; Głażewska, Z. Transfer of resistance to Potato virus Y from Nicotiana benavidesii Goodspeed to N. tabacum L. Genet. Pol. 1988, 29, 323–333. [Google Scholar]
- Trojak-Goluch, A.; Berbeć, A. Cytological investigations of the interspecific hybrids of Nicotiana tabacum L. × N. glauca Grah. J. Appl. Genet. 2003, 44, 45–54. [Google Scholar]
- Trojak-Goluch, A.; Berbeć, A. Potential of Nicotiana glauca Grah. as a source of resistance to black root rot Thielaviopsis basicola (Berk. and Broome) Ferr. in tobacco improvement. Plant Breed. 2005, 124, 507–510. [Google Scholar] [CrossRef]
- Czubacka, A.; Doroszewska, T. Evaluation of agronomic characteristics of transgenic tobacco doubled haploids. In Proceedings of the CORESTA Meeting, Agronomy/Phytopathology, AP 30, Santiago, Chile, 6–10 November 2011. [Google Scholar]
- Trojak-Goluch, A.; Berbeć, A. Resistance to black root rot (Chalara elegans Nag. Raj and Kendrick) and some growth characteristics in doubled haploid derivatives of the F1 hybrid of tobacco (Nicotiana tabacum L.). Pol. J. Agron. 2009, 1, 52–55. [Google Scholar]
- Doroszewska, T.; Berbeć, A. Chromosome pairing and microsporogenesis in interspecific F1 hybrids of Nicotiana africana with different cultivars of N. tabacum. J. Genet. Breed. 1996, 50, 75–82. [Google Scholar]
- Doroszewska, T.; Berbeć, A. Cytogenetical investigations of poliploid interspecific hybrids of Nicotiana africana with different cultivars of N. tabacum. J. Genet. Breed. 2000, 54, 77–82. [Google Scholar]
- Berbeć, A. Cytogenetical study on Nicotiana tabacum L. cv. Nadwiślański Mały (2x and 4x) x Nicotiana alata Link et Otto hybrids. Genet. Pol. 1987, 28, 253–261. [Google Scholar]
- Laskowska, D.; Berbeć, A. Production and characterization of amphihaploid hybrids between Nicotiana wuttkei Clarkson et Symon and N. tabacum L. Euphytica 2011, 183, 75–82. [Google Scholar] [CrossRef] [Green Version]
- Laskowska, D.; Berbeć, A. Cytology and fertility of viable hybrids of Nicotiana tabacum L. cv. TB-566 with N. alata Link et Otto. J. Appl. Genet. 2005, 46, 11–18. [Google Scholar] [PubMed]
- Depta, A.; Doroszewska, T. Development and cytometric evaluation of interspecific F1 hybrids Nicotiana tabacum × N. africana. Pol. J. Agron. 2019, 38, 3–14. [Google Scholar]
- Laskowska, D.; Berbeć, A. TSWV resistance in DH lines of tobacco (Nicotiana tabacum L.) obtained from a hybrid between ‘Polalta’ and ‘Wiślica’. Plant Breed. 2010, 129, 731–733. [Google Scholar] [CrossRef]
- Laskowska, D.; Berbeć, A.; Van Laere, K.; Kirov, I.; Czubacka, A.; Trojak-Goluch, A. Cytology and fertility of amphidiploid hybrids between Nicotiana wuttkei Clarkson et Symon and N. tabacum L. Euphytica 2015, 206, 597–608. [Google Scholar] [CrossRef]
- Trojak-Goluch, A.; Berbeć, A. Meiosis and fertility in interspecific hybrids of Nicotiana tabacum L. × N. glauca Grah. and their derivatives. Plant Breed. 2007, 126, 201–206. [Google Scholar] [CrossRef]
- Trojak-Goluch, A.; Berbeć, A. Growth, development and chemical characteristics of tobacco lines carrying black root rot resistance derived from Nicotiana glauca (Grah.). Plant Breed. 2011, 130, 92–95. [Google Scholar] [CrossRef]
- Doroszewska, T.; Depta, A. Resistance of wild Nicotiana species to different PVY isolates. Phytopathologia 2011, 59, 9–24. [Google Scholar]
- Doroszewska, T.; Institute of Soil Science and Plant Cultivation—State Research Institute, Puławy, Poland; Berbeć, A.; Institute of Soil Science and Plant Cultivation—State Research Institute, Puławy, Poland. Characterics of cv. BP-210. Personal communication, 2022. [Google Scholar]
- Korbecka-Glinka, G.; Czubacka, A.; Depta, A.; Doroszewska, T. Inheritance of Potato virus Y tolerance introgressed from Nicotiana africana to cultivated tobacco. Pol. J. Agron. 2017, 31, 39–44. [Google Scholar]
- Berbeć, A. Morphology, cytogenetics, and resistance of amphidiploid Nicotiana raimondii Macbride × N. tabacum L. (F1 cv. Zamojska 4 × cv. LB-838) to Potato virus Y. Genet. Pol. 1988, 29, 41–52. [Google Scholar]
- Czubacka, A.; Sacco, E.; Olszak-Przybys, H.; Doroszewska, T. Inheritance and effectiveness of two transgenes determining PVY resistance in progeny from crossing independently transformed tobacco lines. J. Appl. Genet. 2017, 58, 179–184. [Google Scholar] [CrossRef]
- Czubacka, A.; Doroszewska, T. Obtaining resistant to PVY tobacco double haploids containing different sources of resistance. In Proceedings of the 44th TWC—Tobacco Workers’ Conference, Lexington, KY, USA, 19–21 January 2010. abstr. 115. [Google Scholar]
- Czubacka, A.; Doroszewska, T. Effectiveness of combining va-mediated resistance with a lettuce mosaic virus coat protein gene and a potato virus Y polymerase RNA gene in protection of tobacco hybrids from Potato virus Y. J. Food Agric. Environ. 2015, 13, 36–42. [Google Scholar]
- Gajos, Z. Przeniesienie odporności na wirus brązowej plamistości pomidora (Tomato spotted wilt virus) z Nicotiana alata Link et Otto do tytoniu szlachetnego poprzez skrzyżowanie obu gatunków [Transmission of resistance to Tomato spotted wilt virus from Nicotiana alata Link et Otto to N. tabacum by crossing both species]. Biuletyn CLPT 1981, 1–2, 3–24. [Google Scholar]
- Trojak-Goluch, A.; Institute of Soil Science and Plant Cultivation—State Research Institute, Puławy, Poland. Tobacco breeding processes. Personal communication, 2022. [Google Scholar]
- Trojak-Goluch, A.; Laskowska, D.; Agacka, M.; Czarnecka, D.; Kawka, M.; Czubacka, A. Effectiveness of combining resistance to Thielaviopsis basicola and Tomato spotted wilt virus in haploid tobacco genotypes. Breed Sci. 2011, 61, 389–393. [Google Scholar] [CrossRef]
- Trojak-Goluch, A.; Laskowska, D.; Kursa, K. Morphological and chemical characteristics of doubled haploids of flue-cured tobacco combining resistance to Thielaviopsis basicola and TSWV. Breed Sci. 2016, 66, 293–299. [Google Scholar] [CrossRef] [Green Version]
- Korbecka-Glinka, G.; Trojak-Goluch, A.; Bakaher, N.; Goepfert, S. Agronomic performance of Polalta derived breeding lines resistant to tomato spotted wilt virus. In Proceedings of the CORESTA Meeting, Agronomy/Phytopathology, AP 11, Online, 4–14 October 2021. [Google Scholar]
- Trojak-Goluch, A. Regeneracja pędów i stopień ploidalności roślin uzyskanych w kulturach in vitro fragmentów walca osiowego haploidalnych łodyg tytoniu (Nicotiana tabacum L.). Pol. J. Agron. 2020, 41, 3–10. [Google Scholar]
- Doroszewska, T.; Depta, A.; Czubacka, A. Album Gatunków z Rodzaju Nicotiana/Album of Nicotiana Species; IUNG-PIB: Puławy, Poland, 2009. [Google Scholar]
- Czubacka, A.; Depta, A.; Doroszewska, T. Zróżnicowanie reakcji odpornościowej na wirus Y ziemniaka wśród alloplazmatycznych form tytoniu. Pol. J. Agron. 2019, 39, 27–34. [Google Scholar]
- Berbeć, A. Floral Morphology and Some Other Characteristics of Iso-genomic Alloplasmics of Nicotiana tabacum L. Beitrage zur Tabakforschung Int. 2001, 19, 309–314. [Google Scholar]
- Berbeć, A.; Laskowska, D. Investigations of Isogenomic Alloplasmics of Flue-Cured Tobacco Nicotiana tabacum cv. Wiślica. Beitr. Table Int. 2005, 21, 258–263. [Google Scholar]
- Berbeć, A. Variation among offspring of alloplasmic tobacco Nicotiana tabacum L. cv ‘Zamojska 4’ with the cytoplasm of N. knightiana Goodspeed. Theor. Appl. Genet. 1994, 89, 127–132. [Google Scholar] [CrossRef]
- Berbeć, A.; Laskowska, D. Agronomic Performance of Flue-Cured Tobacco F1 Hybrids Obtained with Different Sources of Male Sterile Cytoplasm. Beitr. Table Int. 2004, 21, 234–239. [Google Scholar] [CrossRef] [Green Version]
- Berbeć, A. Three-Way Crosses vs. Single Crosses in Tobacco: First Agronomic Assessment. Crop Sci. 2017, 57, 1363–1372. [Google Scholar] [CrossRef]
- Berbeć, A.; Institute of Soil Science and Plant Cultivation—State Research Institute, Puławy, Poland. Tobacco breeding processes. Personal communication, 2022. [Google Scholar]
- Schubert, J.; Doroszewska, T.; Chrzanowska, M.; Sztangret-Wiśniewska, J. Natural Infection of Tobacco by Colombian Datura virus in Poland, Germany and Hungary. J. Phytopathol. 2006, 154, 343–348. [Google Scholar] [CrossRef]
- Przybyś, M.; Doroszewska, T.; Berbeć, A. Point mutations in the viral genome-linked (VPg) of Potato virus Y probably correspond with ability to overcome resistance of tobacco. J. Food Agric. Environ. 2013, 11, 986–989. [Google Scholar]
- Masuta, C.; Nishimura, M.; Morishita, H.; Hataya, T. A single amino acid change in viral genome-associated protein of potato virus Y correlates with resistance breaking in ‘Virgin A Mutant’ tobacco. Phytopathology 1999, 89, 118–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lacroix, C.; Glais, L.; Verrier, J.-L.; Jacquot, E. Effect of passage of a Potato virus Y isolate on a line of tobacco containing the recessive resistance gene va2 on the development of isolates capable of overcoming alleles 0 and 2. Eur. J. Plant Pathol. 2011, 130, 259–269. [Google Scholar] [CrossRef]
- Agacka, M.; Depta, A.; Börner, M.; Doroszewska, T.; Hay, F.R.; Börner, A. Viability of Nicotiana spp. seeds stored under ambient temperature. Seed Sci. Technol. 2013, 41, 474–478. [Google Scholar] [CrossRef]
- Agacka, M.; Laskowska, D.; Doroszewska, T.; Hay, F.R.; Börner, A. Longevity of Nicotiana seeds conserved at low temperatures in ex situ genebanks. Seed Sci. Technol. 2014, 42, 355–362. [Google Scholar] [CrossRef]
Cultivar | Origin of Resistance | Inheritance | References |
---|---|---|---|
blue mould (Peronospora tabacina) | |||
Sirogo, Sirone | N. goodspeedii | unknown | [1] |
Criollo Correntino, Chileno Correntino | unknown | - | [2] |
Hicks Resistant, Bel 61-9, Bel 61-10 | N. debneyi | oligogenic, partially dominant | [2,3,4] |
Chemical Mutant | induced mutation of cv. Virginia Gold | monogenic, partially dominant | [2] |
GA 955 | N. excelsior | unknown | [2] |
Wiślica | N. tabacum cv. Ovens 62 | unknown | [5] |
powdery mildew (Erysiphe cichoracearum) | |||
Kokubu | mutation within genes NtMLO1 and NtMLO2 | digenic, recessive | [6] |
black root rot (Berkeleyomyces sp.) | |||
AC Gayed | N. debneyi | monogenic, dominant | [7] |
TN 86, TN 90 | N. debneyi | monogenic, dominant | [2,8] |
tobacco mosaic virus (TMV) | |||
Samsun H, Buley 21, Kutsaga Mammoth, Vamorr 50 | N. glutinosa | monogenic, dominant | [4,7,9,10] |
Ambalema | unknown | digenic, ressessive | [4,10] |
potato virus Y (PVY) | |||
VAM (Virginia A Mutant) | gene va (mutation within susceptibility gene) | monogenic, recessive | [11] |
TN 86, TN 90 | gene va from VAM | monogenic, recessive | [2,12] |
Havana IIC, V.SCR (Virginia SCR), Bursan, Wiecha, Bachus, Wiktoria, Weneda | gene va | monogenic, recessive | [5,13] |
Virginia Kaznowskiego, Wilia, Wisła, Złotolistny IHAR | probably from oriental cultivars | - | [2] |
Wiślica, Elka 245, Wika | gene va | monogenic, recessive | [14] |
Węgierski Ogrodowy | unknown | - | [13] |
Lechia A, Zamojska 4 | gene NtTPN1 | monogenic, recessive | [15] |
tomato spotted wilt virus (TSWV) | |||
Polalta, Wiktoria | N. alata | monogenic, dominant | [16] |
Cultivar | Tobacco Type | Origin | Source of Resistance | Resistance for | Transfer Method | Effect | References |
---|---|---|---|---|---|---|---|
AC Gayed | flue-cured | Canada | transgene with PVY replicase gene | PVY | Agrobacterium transformation | resistant breeding lines | [32,33,34,35] |
BP-210 | flue-cured | Poland | N. africana | PVY | interspecific hybridisation | tolerant breeding line | [20,32] |
N. benavidesii | PVY | interspecific hybridisation | resistant hybrids BC1F3 | [36,37] | |||
BY 103 | air-cured | Japan | N. glauca | black root rot | interspecific hybridisation | amphidiploids, post-sesquidiploids with diverse resistance | [38,39] |
transgene with PVY replicase gene; transgene with LMV coat protein gene | PVY | Agrobacterium transformation | resistant breeding lines, DH lines | [32,33,34,40] | |||
Izyda | flue-cured | Poland | N. knightiana | PVY | interspecific hybridisation | amphihaploids | [36] |
K236 | flue-cured | USA | N. debneyi | black root rot | crossing with cv. Wentura | resistant doubled haploids | [41] |
N. glauca | black root rot | interspecific hybridisation | post-sesquidiploids with diverse resistance | [38,39] | |||
transgene with PVY replicase gene; transgene with LMV coat protein gene | PVY | Agrobacterium transformation | resistant breeding lines | [32,33,34] | |||
Mc Nair 944 (MN 944) | flue-cured | USA | transgene with PVY replicase gene; transgene with LMV coat protein gene | PVY | Agrobacterium transformation | resistant breeding lines | [32,33,34] |
Nadwiślański Mały | dark air-cured | Poland | N. africana | PVY | interspecific hybridisation | amphihaploids | [42,43] |
Nadwiślański Mały tetraploid | dark air-cured | Poland | N. alata | TSWV | interspesific hybridisation | sesquidiploids | [44] |
Puławski 66 | dark-cured | Poland | N. wuttkei | blue mould | interspesific hybridisation | amphihaploids | [45] |
TB 566 tetraploid | flue-cured | Poland | N. alata | TSWV | interspecific hybridisation | sesquidiploids | [46] |
TN 90 | air-cured | USA | N. wuttkei | blue mould | interspecific hybridisation | non-viable hybrids | [45] |
VAM | flue-cured | Germany | N. africana | PVY | interspecific hybridisation | amphidiploids | [47] |
Virginia 278 | flue-cured | Germany | N. africana | PVY | interspecific hybridisation | sesquidiploids | [42,43] |
Virginia Gold Dollar | flue-cured | USA | N. africana | PVY | interspecific hybridisation | amphidiploids | [42,43] |
Virginia SCR | flue-cured | Germany | N. africana | PVY | interspecific hybridisation | sesquidiploids | [42,43] |
Virginia Skroniowska 78, V.SCR, Wiślica | flue-cured | Poland | N. alata | TSWV | interspecific hybridisation | resistant cv. Wiktoria | [28] |
Wiślica | flue-cured | Poland | N. alata | TSWV | intercultivar hybridisation with cv. Polalta | resistant DH lines | [48] |
N. africana | PVY | interspecific hybridisation | amphidiploids | [47] | |||
N. wuttkei | blue mould | interspecific hybridisation | sesquidiploids | [45,49] | |||
N. glauca | black root rot | interspecific hybridisation | resistant breeding lines WGL | [50,51] | |||
Zamojska 4 | flue-cured | Poland | N. raimondii | PVY | interspecific hybridisation | amphihaploids | [36] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czubacka, A. The Use of the Polish Germplasm Collection of Nicotiana tabacum in Research and Tobacco Breeding for Disease Resistance. Agriculture 2022, 12, 1994. https://doi.org/10.3390/agriculture12121994
Czubacka A. The Use of the Polish Germplasm Collection of Nicotiana tabacum in Research and Tobacco Breeding for Disease Resistance. Agriculture. 2022; 12(12):1994. https://doi.org/10.3390/agriculture12121994
Chicago/Turabian StyleCzubacka, Anna. 2022. "The Use of the Polish Germplasm Collection of Nicotiana tabacum in Research and Tobacco Breeding for Disease Resistance" Agriculture 12, no. 12: 1994. https://doi.org/10.3390/agriculture12121994
APA StyleCzubacka, A. (2022). The Use of the Polish Germplasm Collection of Nicotiana tabacum in Research and Tobacco Breeding for Disease Resistance. Agriculture, 12(12), 1994. https://doi.org/10.3390/agriculture12121994