Effects of Sphingobium yanoikuyae SJTF8 on Rice (Oryza sativa) Seed Germination and Root Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Isolation Bacteria
2.3. Strain Identification
2.4. Hemolysis Test
2.5. Phosphate Solubilization Test
2.6. Seed Sterilization
2.7. Bacterial Concentration
2.8. Seed Germination
2.9. Indole-3-Acetic Acid Production
2.10. Plant Growth Parameters
2.11. Observations under Microscope
2.12. Statistical Analysis
3. Results and Discussion
3.1. Strain Identification
3.2. Hemolysis Test
3.3. Phosphate Solubilization
3.4. Effects of S. yanoikuyae SJTF8 on Seed Germination and Root and Shoot Lengths
3.5. Physical Observations of Effects of S. yanoikuyae SJTF8 on Rice Root Systems
3.6. Indole Acetic Acid Production
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, X.; Asano, M.; Tamura, K.; Zhao, R.; Nakatsuka, H.; Wuyunna; Wang, T. Physicochemical Properties and Micromorphology of Degraded Alpine Meadow Soils in the Eastern Qinghai-Tibet Plateau. Catena 2020, 194, 104649. [Google Scholar] [CrossRef]
- Lal, R. Restoring Soil Quality to Mitigate Soil Degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef] [Green Version]
- Ding, L.; Zhang, S.; Wang, X.; Yang, X.; Zhang, C.; Qi, Y.; Guo, X. The Occurrence and Distribution Characteristics of Microplastics in the Agricultural Soils of Shaanxi Province, in North-Western China. Sci. Total Environ. 2020, 720, 137525. [Google Scholar] [CrossRef] [PubMed]
- Baude, M.; Meyer, B.C.; Schindewolf, M. Land Use Change in an Agricultural Landscape Causing Degradation of Soil Based Ecosystem Services. Sci. Total Environ. 2019, 659, 1526–1536. [Google Scholar] [CrossRef] [PubMed]
- Savci, S. An Agricultural Pollutant: Chemical Fertilizer. Int. J. Environ. Sci. Dev. 2012, 3, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Sammauria, R.; Kumawat, S.; Kumawat, P.; Singh, J.; Jatwa, T.K. Microbial Inoculants: Potential Tool for Sustainability of Agricultural Production Systems. Arch. Microbiol. 2020, 202, 677–693. [Google Scholar] [CrossRef] [PubMed]
- Paustian, K.; Lehmann, J.; Ogle, S.; Reay, D.; Robertson, G.P.; Smith, P. Climate-Smart Soils. Nature 2016, 532, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Kumar, M.; Sharma, S.; Prasad, R. Probiotics and Plant Health; Springer: Singapore, 2017. [Google Scholar] [CrossRef]
- Ahmad, P.; Abdel Latef, A.A.H.; Rasool, S.; Akram, N.A.; Ashraf, M.; Gucel, S. Role of Proteomics in Crop Stress Tolerance. Front. Plant Sci. 2016, 7, 1336. [Google Scholar] [CrossRef] [Green Version]
- Meena, V.S.; Maurya, B.R.; Verma, J.P.; Meena, R.S. Potassium Solubilizing Microorganisms for Sustainable Agriculture; Springer: New Delhi, India, 2016. [Google Scholar] [CrossRef]
- Kloepper, J.W.; Schroth, M.N. Plant Growth-Promoting Rhizobacteria and Plant Growth Under Gnotobiotic Conditions. Phytopathology 1981, 71, 642–644. [Google Scholar] [CrossRef]
- Reddy, P.P. Plant Growth Promoting Rhizobacteria for Horticultural Crop Protection; Springer: New Delhi, India, 2014. [Google Scholar] [CrossRef]
- Altomare, C.; Norvell, W.A.; Björkman, T.H.O.M.A.S.; Harman, G. Solubilization of Phosphates and Micronutrients by the Plant-Growth-Promoting and Biocontrol Fungus Trichoderma Harzianum Rifai 1295-22. Appl. Environ. Microbiol. 1999, 65, 2926–2933. [Google Scholar] [CrossRef] [Green Version]
- Vinale, F.; Sivasithamparam, K.; Ghisalberti, E.L.; Marra, R.; Barbetti, M.J.; Li, H.; Woo, S.L.; Lorito, M. A Novel Role for Trichoderma Secondary Metabolites in the Interactions with Plants. Mol. Plant Pathol. 2008, 72, 80–86. [Google Scholar] [CrossRef]
- Inbar, J.; Abramsky, M.; Cohen, D.; Chet, I. Plant Growth Enhancement and Disease Control ByTrichoderma Harzianum in Vegetable Seedlings Grown under Commercial Conditions. Eur. J. Plant Pathol. 1994, 100, 337–346. [Google Scholar] [CrossRef]
- Deshwal, V.K.; Devi, M.S.; Bhajanka, N.; Mistri, J.; Bose, A.; Saini, N. Pseudomonas Aeruginosa Strains and Their Role in Plant Growth Promotion in Medicinal Plant. Glob. J. Appl. Agric. Res. 2011, 1, 49–55. [Google Scholar]
- Ahemad, M. Implications of Bacterial Resistance against Heavy Metals in Bioremediation: A Review. IIOAB J. 2012, 3, 39–46. [Google Scholar]
- Ahemad, M.; Malik, A. Bioaccumulation of Heavy Metals by Zinc Resistant Bacteria Isolated from Agricultural Soils Irrigated with Wastewater. Bacteriol. J. 2011, 2, 12–21. [Google Scholar] [CrossRef] [Green Version]
- Parray, J.A.; Jan, S.; Kamili, A.N.; Qadri, R.A.; Egamberdieva, D.; Ahmad, P. Current Perspectives on Plant Growth-Promoting Rhizobacteria. J. Plant Growth Regul. 2016, 35, 877–902. [Google Scholar] [CrossRef]
- Kalam, S.; Basu, A.; Podile, A.R. Functional and Molecular Characterization of Plant Growth Promoting Bacillus Isolates from Tomato Rhizosphere. Heliyon 2020, 6, e04734. [Google Scholar] [CrossRef]
- Gouda, S.; Kerry, R.G.; Das, G.; Paramithiotis, S.; Shin, H.S.; Patra, J.K. Revitalization of Plant Growth Promoting Rhizobacteria for Sustainable Development in Agriculture. Microbiol. Res. 2018, 206, 131–140. [Google Scholar] [CrossRef]
- Singh, J.S.; Gupta, V.K. Soil Microbial Biomass: A Key Soil Driver in Management of Ecosystem Functioning. Sci. Total Environ. 2018, 634, 497–500. [Google Scholar] [CrossRef]
- Cassán, F.; Coniglio, A.; López, G.; Molina, R.; Nievas, S.; de Carlan, C.L.N.; Donadio, F.; Torres, D.; Rosas, S.; Pedrosa, F.O.; et al. Everything You Must Know about Azospirillum and Its Impact on Agriculture and Beyond. Biol. Fertil. Soils 2020, 56, 461–479. [Google Scholar] [CrossRef]
- Takeuchi, M.; Hamana, K.; Hiraishi, A. Proposal of the Genus Sphingomonas Sensu Stricto and Three New Genera, Sphingobium, Novosphingobium and Sphingopyxis, on the Basis of Phylogenetic and Chemotaxonomic Analyses. Int. J. Syst. Evol. Microbiol. 2001, 51, 1405–1417. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, H.; Peng, Y.; Tong, L.; Feng, L.; Ma, K. New Pathways for the Biodegradation of Diethyl Phthalate by Sphingobium Yanoikuyae SHJ. Proc. Biochem. 2018, 71, 152–158. [Google Scholar] [CrossRef]
- Cunliffe, M.; Kertesz, M.A. Effect of Sphingobium Yanoikuyae B1 Inoculation on Bacterial Community Dynamics and Polycyclic Aromatic Hydrocarbon Degradation in Aged and Freshly PAH-Contaminated Soils. Environ. Pollut. 2006, 144, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Okai, M.; Kihara, I.; Yokoyama, Y.; Ishida, M.; Urano, N. Isolation and Characterization of Benzo[a]Pyrene-Degrading Bacteria from the Tokyo Bay Area and Tama River in Japan. FEMS Microbiol. Lett. 2015, 362, fnv143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.; Yang, J.; Lv, Y.; He, J. SPAD Values and Nitrogen Nutrition Index for the Evaluation of Rice Nitrogen Status. Plant Prod. Sci. 2014, 17, 81–92. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, Y.; Rafiq, M.T.; Khan, K.Y.; Pan, F.; Yang, X.; Feng, Y. Improvement of Cadmium Uptake and Accumulation in Sedum Alfredii by Endophytic Bacteria Sphingomonas SaMR12: Effects on Plant Growth and Root Exudates. Chemosphere 2014, 117, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Castanheira, N.L.; Dourado, A.C.; Pais, I.; Semedo, J.; Scotti-Campos, P.; Borges, N.; Carvalho, G.; Barreto Crespo, M.T.; Fareleira, P. Colonization and Beneficial Effects on Annual Ryegrass by Mixed Inoculation with Plant Growth Promoting Bacteria. Microbiol. Res. 2017, 198, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Castanheira, N.; Dourado, A.C.; Alves, P.I.; Cortés-Pallero, A.M.; Delgado-Rodríguez, A.I.; Prazeres, Â.; Borges, N.; Sánchez, C.; Barreto Crespo, M.T.; Fareleira, P. Annual Ryegrass-Associated Bacteria with Potential Forplant Growth Promotion. Microbiol. Res. 2014, 169, 768–779. [Google Scholar] [CrossRef]
- Arunthavasu, R.; Thangavel, K.; Uthandi, S. Impact of Drought-Tolerant Rice Apoplastic Fluid Endophyte (Sphingobium Yanoikuyae MH394206) on the Morphological and Physiological Characteristics of Rice (CO51) Grown in Moisture Deficit Condition. Madras Agric. J. 2019, 106, 217–224. [Google Scholar] [CrossRef]
- Lopez, E.S.; Elufisan, T.O.; Bustos, P.; Charles, C.P.M.; Mendoza-Herrera, A.; Guo, X. Complete Genome Report of a Hydrocarbon-Degrading Sphingobium Yanoikuyae S72. Appl. Sci. 2022, 12, 6201. [Google Scholar] [CrossRef]
- Kant Bhatia, S.; Gurav, R.; Choi, Y.K.; Choi, T.R.; Kim, H.-J.; Song, H.S.; Mi Lee, S.; Lee Park, S.; Soo Lee, H.; Kim, Y.G.; et al. Bioprospecting of Exopolysaccharide from Marine Sphingobium Yanoikuyae BBL01: Production, Characterization, and Metal Chelation Activity. Bioresour. Technol. 2021, 324, 124674. [Google Scholar] [CrossRef] [PubMed]
- Mitra, M.; Nguyen, K.M.A.K.; Box, T.W.; Gilpin, J.S.; Hamby, S.R.; Berry, T.L.; Duckett, E.H. Isolation and Characterization of a Novel Sphingobium Yanoikuyae Strain Variant That Uses Biohazardous Saturated Hydrocarbons and Aromatic Compounds as Sole Carbon Sources. F1000Research 2020, 9, 767. [Google Scholar] [CrossRef] [PubMed]
- Rincón-Molina, C.I.; Martínez-Romero, E.; Aguirre-Noyola, J.L.; Manzano-Gómez, L.A.; Zenteno-Rojas, A.; Rogel, M.A.; Rincón-Molina, F.A.; Ruíz-Valdiviezo, V.M.; Rincón-Rosales, R. Bacterial Community with Plant Growth-Promoting Potential Associated to Pioneer Plants from an Active Mexican Volcanic Complex. Microorganisms 2022, 10, 1568. [Google Scholar] [CrossRef] [PubMed]
- Kobua, C.K.; Jou, Y.T.; Wang, Y.M. Advantages of Amending Chemical Fertilizer with Plant-Growth-Promoting Rhizobacteria under Alternate Wetting Drying Rice Cultivation. Agric. 2021, 11, 605. [Google Scholar] [CrossRef]
- Tarigan, E.J.; Prayogo, C.; Weng, Y.-T.; Kobua, C.K.; Jou, Y.-T.; Wang, Y.-M. Influence of Rhizobacteria on Soil Ion Concentration under Paddy Cultivation. AGRIVITA J. Agric. Sci. 2021, 43, 430–439. [Google Scholar] [CrossRef]
- Poonguzhali, S.; Madhaiyan, M.; Sa, T. Cultivation-Dependent Characterization of Rhizobacterial Communities from Field Grown Chinese Cabbage Brassica Campestris Ssp Pekinensis and Screening of Traits for Potential Plant Growth Promotion. Plant Soil 2006, 286, 167–180. [Google Scholar] [CrossRef]
- Gholamalizadeh, R.; Khodakaramian, G.; Ebadi, A.A. Assessment of Rice Associated Bacterial Ability to Enhance Rice Seed Germination and Rice Growth Promotion. BRAZILIAN Arch. Biol. Technol. 2017, 60, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.S.; Spakowicz, D.J.; Hong, B.Y.; Petersen, L.M.; Demkowicz, P.; Chen, L.; Leopold, S.R.; Hanson, B.M.; Agresta, H.O.; Gerstein, M.; et al. Evaluation of 16S RRNA Gene Sequencing for Species and Strain-Level Microbiome Analysis. Nat. Commun. 2019, 10, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Yabuuchi, E.; Yano, I.; Oyaizu, H.; Hashimoto, Y.; Ezaki, T.; Yamamoto, H. Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb, nov., and two genospecies of the genus Sphingomonas. Microbiol. Immunol. 1990, 34, 99–119. [Google Scholar] [CrossRef]
- Barros-Rodríguez, A.; Rangseekaew, P.; Lasudee, K.; Pathom-aree, W.; Manzanera, M. Regulatory Risks Associated with Bacteria as Biostimulants and Biofertilizers in the Frame of the European Regulation (EU) 2019/1009. Sci. Total Environ. 2020, 740, 140239. [Google Scholar] [CrossRef]
- Keswani, C.; Prakash, O.; Bharti, N.; Vílchez, J.I.; Sansinenea, E.; Lally, R.D.; Borriss, R.; Singh, S.P.; Gupta, V.K.; Fraceto, L.F.; et al. Re-Addressing the Biosafety Issues of Plant Growth Promoting Rhizobacteria. Sci. Total Environ. 2019, 690, 841–852. [Google Scholar] [CrossRef]
- Kurniati, T.H.; Rusmana, I.; Suryani, A.; Mubarik, N.R. Biosurfactant-Producing and Anthracene-Degrading Bacteria from Oil Contaminated Soil. J. Phys. Conf. Ser. 2019, 1402, 033049. [Google Scholar] [CrossRef] [Green Version]
- Thavasi, R.; Sharma, S.; Jayalakshmi, S. Evaluation of Screening Methods for the Isolation of Biosurfactant Producing Marine Bacteria. J. Pet. Environ. Biotechnol. 2013, 4, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Beecher, D.J.; Wong, A.C.L. Identification of Hemolysin BL-Producing Bacillus Cereus Isolates by a Discontinuous Hemolytic Pattern in Blood Agar. Appl. Environ. Microbiol. 1994, 60, 1646–1651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savardi, M.; Ferrari, A.; Signoroni, A. Automatic Hemolysis Identification on Aligned Dual-Lighting Images of Cultured Blood Agar Plates. Comput. Methods Programs Biomed. 2018, 156, 13–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, P.D.; Harikesh, S.; Singh, B.; Prabha, R. Microbial Inoculants in Sustainable Agricultural Productivity; Springer: New Delhi, India, 2016; Volume 2. [Google Scholar] [CrossRef]
- Spaepen, S.; Vanderleyden, J. Auxin and Plant-Microbe Interactions. Cold Spring Harb. Perspect. Biol. 2011, 3, a001438. [Google Scholar] [CrossRef] [Green Version]
- Harman, G.E. Myths and Dogmas of Biocontrol Changes in Perceptions Derived from Research on Trichoderma Harzinum T-22. Plant Dis. 2000, 84, 377–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, T.R.; James, E.K.; Poole, P.S. The Plant Microbiome. Genome Biol. 2013, 14, 1–10. [Google Scholar] [CrossRef]
- Hardoim, P.R.; Hardoim, C.C.P.; van Overbeek, L.S.; van Elsas, J.D. Dynamics of Seed-Borne Rice Endophytes on Early Plant Growth Stages. PLoS ONE 2012, 7, e30438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Compant, S.; Clément, C.; Sessitsch, A. Plant Growth-Promoting Bacteria in the Rhizo- and Endosphere of Plants: Their Role, Colonization, Mechanisms Involved and Prospects for Utilization. Soil Biol. Biochem. 2010, 42, 669–678. [Google Scholar] [CrossRef] [Green Version]
- White, J.F.; Chen, Q.; Torres, M.S.; Mattera, R.; Irizarry, I.; Tadych, M.; Bergen, M. Collaboration between Grass Seedlings and Rhizobacteria to Scavenge Organic Nitrogen in Soils. AoB Plants 2015, 7, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soares, M.A.; Li, H.Y.; Kowalski, K.P.; Bergen, M.; Torres, M.S.; White, J.F. Functional Role of Bacteria from Invasive Phragmites Australis in Promotion of Host Growth. Microb. Ecol. 2016, 72, 407–417. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y. Auxin Biosynthesis and Its Role in Plant Development. Annu. Rev. Plant Biol. 2010, 61, 49–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Ka, J.O.; Song, H.G. Growth Promotion of Xanthium Italicum by Application of Rhizobacterial Isolates of Bacillus Aryabhattai in Microcosm Soil. J. Microbiol. 2012, 50, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Pirlak, L.; Turan, M.; Sahin, F.; Esitken, A. Floral and Foliar Application of Plant Growth Promoting Rhizobacteria (PGPR) to Apples Increases Yield, Growth, and Nutrient Element Contents of Leaves. J. Sustain. Agric. 2007, 30, 145–155. [Google Scholar] [CrossRef]
- Esitken, A.; Pirlak, L.; Turan, M.; Sahin, F. Effects of Floral and Foliar Application of Plant Growth Promoting Rhizobacteria (PGPR) on Yield, Growth and Nutrition of Sweet Cherry. Sci. Hortic. 2006, 110, 324–327. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E. Plant Physiology Fifth Edition; Sinauer Associates Inc.: Sunderland, MA, USA, 2010. [Google Scholar]
- Stowe, B.B.; Yamaki, T. The History and Physiological Action of the Gibberellins. Annu. Rev. Plant Physiol. 1957, 8, 181–216. [Google Scholar] [CrossRef]
- Gutierrez Manero, F.J.; Acero, N.; Lucas, J.A.; Probanza, A. The Influence of Native Rhizobacteria on European Alder (Alnus glutinosa (L.) Gaertn.) Growth. II. Characterisation and Biological Assays of Metabolites from Growth Promoting and Growth Inhibiting Bacteria. Plant Soil 1996, 182, 67–74. [Google Scholar] [CrossRef]
- Martínez-Viveros, O.; Jorquera, M.A.; Crowley, D.E.; Gajardo, G.; Mora, M.L. Mechanisms and Practical Considerations Involved in Plant Growth Promotion by Rhizobacteria. J. Soil Sci. Plant Nutr. 2010, 10, 293–319. [Google Scholar] [CrossRef]
Entry | Closely Related Taxa | Strain Type (Gene Bank ID) | Similarity |
---|---|---|---|
SP-y | Sphingobium yanoikuyae | SJTF8 | 100.00% |
- | Sphingobium yanoikuyae * | HAMBI 1842 | 100.00% |
- | Sphingomonas sp. * | clone 1 | 100.00% |
- | Sphingomonas sp. * | SaMR12 | 100.00% |
- | Sphingomonas sp. * | P2 | 100.00% |
- | Sphingomonas paucimobilis * | ZFJ-16 | 99.93% |
- | Bacterium * | M24(2011) | 99.93% |
- | Uncultured bacterium * | clone5′-60 | 99.93% |
- | Uncultured bacterium * | EDW07B005_154 | 99.93% |
Treatment | Germination | Speed of Germination | Seed Germination Vigor |
---|---|---|---|
% | No. Seeds/Day | ||
Control | 82.50 b ± 9.57 | 5.78 b ± 1.08 | 301.46 b ± 28.69 |
SP-y 4 | 90.00 b ± 8.16 | 6.10 ab ± 0.88 | 329.23 b ± 29.24 |
SP-y 5 | 90.00 ab ± 8.16 | 6.25 ab ± 0.64 | 399.95 ab ± 30.36 |
SP-y 6 | 100.00 a ± 0.00 | 6.78 ab ± 0.76 | 456.65 a ± 34.78 |
SP-y 7 | 100.00 a ± 0.00 | 7.08 a ± 0.29 | 453.05 a ± 14.17 |
SP-y 8 | 92.50 ab ± 15.00 | 6.48 ab ± 0.63 | 347.68 ab ± 58.23 |
Av. | 92.5 | 6.41 | 381.34 |
Treatment | 6th Day after Germination | 9th Day after Germination | 12th Day after Germination | 14th Day after Germination |
---|---|---|---|---|
cm | ||||
Control | 3.55 a ± 2.11 | 4.38 c ± 2.59 | 5.31 c ± 3.14 | 5.99 c ± 3.40 |
SP-y 4 | 3.64 a ± 2.46 | 5.38 abc ± 3.35 | 6.54 bc ± 3.71 | 7.62 b ± 4.03 |
SP-y 5 | 4.00 a ± 1.84 | 6.32 a ± 2.82 | 7.11 ab ± 3.00 | 8.15 ab ± 3.31 |
SP-y 6 | 4.43 a ± 2.07 | 6.09 ab ± 2.42 | 7.50 ab ± 2.42 | 8.56 ab ± 2.31 |
SP-y 7 | 4.53 a ± 1.39 | 6.56 a ± 2.02 | 8.32 a ± 2.30 | 9.29 a ± 2.25 |
SP-y 8 | 3.66 a ± 2.00 | 4.89 bc ± 2.33 | 6.57 bc ± 2.90 | 7.68 b ± 3.29 |
Av. | 3.97 | 5.60 | 6.89 | 7.88 |
Treatment | 6th Day after Germination | 9th Day after Germination | 12th Day after Germination | 14th Day after Germination |
---|---|---|---|---|
cm | ||||
Control | 1.44 a ± 0.92 | 3.15 b ± 1.78 | 4.40 c ± 2.62 | 5.60 b ± 3.50 |
SP-y 4 | 1.54 a ± 1.02 | 3.61 ab ± 2.16 | 5.13 bc ± 2.78 | 7.27 a ± 3.92 |
SP-y 5 | 1.75 a ± 1.00 | 4.24 a ± 1.83 | 5.46 abc ± 2.44 | 7.21 a ± 3.80 |
SP-y 6 | 1.89 a ± 1.03 | 4.27 a ± 1.37 | 6.36 a ± 2.04 | 7.68 a ± 2.25 |
SP-y 7 | 1.90 a ± 0.70 | 3.97 ab ± 1.44 | 5.82 ab ± 1.18 | 7.55 a ± 1.90 |
SP-y 8 | 1.63 a ± 0.96 | 3.47 ab ± 1.81 | 5.29 abc ± 2.42 | 6.68 ab ± 3.05 |
Av. | 1.69 | 3.79 | 5.41 | 7.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jou, Y.-T.; Tarigan, E.J.; Prayogo, C.; Kobua, C.K.; Weng, Y.-T.; Wang, Y.-M. Effects of Sphingobium yanoikuyae SJTF8 on Rice (Oryza sativa) Seed Germination and Root Development. Agriculture 2022, 12, 1890. https://doi.org/10.3390/agriculture12111890
Jou Y-T, Tarigan EJ, Prayogo C, Kobua CK, Weng Y-T, Wang Y-M. Effects of Sphingobium yanoikuyae SJTF8 on Rice (Oryza sativa) Seed Germination and Root Development. Agriculture. 2022; 12(11):1890. https://doi.org/10.3390/agriculture12111890
Chicago/Turabian StyleJou, Ying-Tzy, Elmi Junita Tarigan, Cahyo Prayogo, Chesly Kit Kobua, Yu-Ting Weng, and Yu-Min Wang. 2022. "Effects of Sphingobium yanoikuyae SJTF8 on Rice (Oryza sativa) Seed Germination and Root Development" Agriculture 12, no. 11: 1890. https://doi.org/10.3390/agriculture12111890
APA StyleJou, Y.-T., Tarigan, E. J., Prayogo, C., Kobua, C. K., Weng, Y.-T., & Wang, Y.-M. (2022). Effects of Sphingobium yanoikuyae SJTF8 on Rice (Oryza sativa) Seed Germination and Root Development. Agriculture, 12(11), 1890. https://doi.org/10.3390/agriculture12111890