Growth Performance, Carcass and Pork Quality Traits of Growing-Finishing Pigs with High and Low Breeding Values for Residual Feed Intake Fed Diets with Macauba (Acrocomia aculeata) Pulp as Alternative Raw Material
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethic Statement
2.2. Animals, Experimental Design, and Diets
Ingredients | 0–20 Days (G1) | 21–40 Days (G2) | 41–65 Days (F1) | 66–90 Days (F2) | ||||
---|---|---|---|---|---|---|---|---|
Control | Macauba | Control | Macauba | Control | Macauba | Control | Macauba | |
Corn, % | 65.91 | 59.00 | 66.53 | 63.43 | 66.08 | 65.77 | 74.34 | 72.69 |
Macauba, % | 0.00 | 5.00 | 0.00 | 5.00 | 0.00 | 5.00 | 0.00 | 5.00 |
Soybean oil, % | 0.70 | 2.20 | 0.35 | 1.36 | 0.15 | 1.10 | 0.00 | 0.75 |
Soybean meal, % | 30.50 | 30.90 | 31.00 | 28.00 | 32.00 | 26.35 | 24.00 | 19.90 |
Limestone, % | 0.61 | 0.61 | 0.62 | 0.61 | 0.58 | 0.59 | 0.58 | 0.58 |
Dicalcium phosphate, % | 1.40 | 1.40 | 0.84 | 0.84 | 0.56 | 0.56 | 0.46 | 0.46 |
NaCl, % | 0.50 | 0.50 | 0.40 | 0.40 | 0.37 | 0.37 | 0.36 | 0.36 |
L-Lys HCl, % | 0.09 | 0.09 | 0.00 | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 |
DL-Methionine, % | 0.03 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Vitamin-trace mineral premix 1, % | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 |
BHT, % | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
Choline chloride, % | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
Calculated content | ||||||||
Metabolizable energy, kcal/kg * | 3251 | 3251 | 3250 | 3250 | 3250 | 3250 | 3261 | 3250 |
CP, % | 19.20 | 19.13 | 19.37 | 18.14 | 19.79 | 17.47 | 16.79 | 15.08 |
SID Lysine, % | 1.076 | 1.071 | 1.021 | 1.010 | 1.048 | 0.889 | 0.843 | 0.724 |
Ca, % | 19.20 | 19.13 | 19.37 | 18.14 | 19.79 | 17.47 | 16.79 | 15.08 |
Total P, % | 0.64 | 0.66 | 0.53 | 0.52 | 0.45 | 0.45 | 0.41 | 0.41 |
Item | |
---|---|
Dry matter, % | 94.17 |
Ash, % | 5.02 |
Crude protein, % | 4.74 |
Crude fiber, % | 43.39 |
Ether extract, % | 24.23 |
Phosphorus, % | 0.05 |
Calcium, % | 0.315 |
Gross energy, kcal/kg | 3974 |
Metabolizable energy, kcal/kg * | 2225 |
2.3. Performance Measurements
2.4. Slaughter Procedure and Carcass Traits
2.5. Pork Quality
2.6. Data Analysis
3. Results
3.1. Performance
3.2. Carcass Traits
3.3. Carcass pH and Temperature
3.4. Pork Quality Traits
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ali, B.M.; van Zanten, H.H.; Berentsen, P.; Bastiaansen, J.W.; Bikker, P.; Lansink, A.O. Environmental and economic impacts of using co-products in the diets of finishing pigs in Brazil. J. Clean. Prod. 2017, 162, 247–259. [Google Scholar] [CrossRef]
- Woyengo, T.A.; Beltranena, E.; Zijlstra, R.T. Nonruminant nutrition symposium: Controlling feed cost by including alternative ingredients into pig diets: A review. J. Anim. Sci. 2014, 92, 1293–1305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- An, J.Y.; Yong, H.I.; Kim, S.Y.; Yoo, H.B.; Kim, Y.Y.; Jo, C. Quality of frozen pork from pigs fed diets containing palm kernel meal as an alternative to corn meal. Korean J. Food Sci. Anim. Resour. 2017, 37, 191. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Nath, C.; Doering, A.; Goihl, J.; Baidoo, S.K. Effects of liquid feeding of corn condensed distiller’s solubles and whole stillage on growth performance, carcass characteristics, and sensory traits of pigs. J. Anim. Sci. Biotechnol. 2017, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Queiroga, V.D.P.; Almeida, F.D.A.C.; De Albuquerque, E.M.B.; Neto, J.J.D.S.B. Tecnologias de Plantio da Macaubeira na Região Nordeste e Aproveitamento Energético, 1st ed.; AREPB: Campina Grande, Brazil, 2016; p. 210. [Google Scholar]
- Evaristo, A.B.; Grossi, J.A.S.; Pimentel, L.D.; de Melo Goulart, S.; Martins, A.D.; dos Santos, V.L.; Motoike, S. Harvest and post-harvest conditions influencing macauba (Acrocomia aculeata) oil quality attributes. Ind. Crops Prod. 2016, 85, 63–73. [Google Scholar] [CrossRef]
- Dias, E.F.; Hauschild, L.; Moreira, V.E.; Caetano, R.P.; Veira, A.M.; Lopes, M.S.; Guimarães, S.E.F.; Bastiaansen, J.; Campos, P.H.R.F. Macauba (Acrocomia aculeata) pulp meal as alternative raw material for growing pigs. Liv. Sci. 2021, 252, 104675. [Google Scholar] [CrossRef]
- Costa, M.B.D., Jr.; Arouca, C.L.C.; Maciel, M.P.; Aiura, F.S.; Fontes, D.D.O.; Rosa, B.O.; Lima, C.D.A.; Fernandes, I.S. Torta da polpa da macaúba para suínos em terminação. Rev. Bras. De Saúde E Produção Anim. 2015, 16, 325–336. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, H.; Billon, Y.; Brossard, L.; Faure, J.; Gatellier, P.; Gondret, F.; Labussière, E.; Lebret, B.; Lefaucheur, L.; Le Floch, N.; et al. Divergent selection for residual feed intake in the growing pig. Animal 2017, 11, 1427–1439. [Google Scholar] [CrossRef] [Green Version]
- Hoque, M.A.; Suzuki, K. Genetics of residual feed intake in cattle and pigs: A review. Asian-Australas. J. Anim. Sci. 2009, 22, 747–755. [Google Scholar] [CrossRef]
- Koch, R.M.; Swiger, L.A.; Chambers, D.; Gregory, K.E. Efficiency of feed use in beef cattle. J. Anim. Sci. 1963, 22, 486–494. [Google Scholar] [CrossRef]
- Patience, J.F.; Rossoni-Serão, M.C.; Gutiérrez, N.A. A review of feed efficiency in swine: Biology and application. J. Anim. Sci. Biotechnol. 2015, 6, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grubbs, J.K.; Fritchen, A.N.; Huff-Lonergan, E.; Dekkers, J.C.; Gabler, N.K.; Lonergan, S.M. Divergent genetic selection for residual feed intake impacts mitochondria reactive oxygen species production in pigs. J. Anim. Sci. 2013, 91, 2133–2140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godinho, R.M.; Bastiaansen, J.W.; Sevillano, C.A.; Silva, F.F.; Guimarães, S.E.; Bergsma, R. Genotype by feed interaction for feed efficiency and growth performance traits in pigs. J. Anim. Sci. 2018, 96, 4125–4135. [Google Scholar] [CrossRef] [PubMed]
- Sevillano, C.A.; Nicolaiciuc, C.V.; Molist, F.; Pijlman, J.; Bergsma, R. Effect of feeding cereals–alternative ingredients diets or corn–soybean meal diets on performance and carcass characteristics of growing–finishing gilts and boars. J. Anim. Sci. 2018, 96, 4780–4788. [Google Scholar] [CrossRef] [PubMed]
- Rostagno, H.S.; Albino, L.F.T.; Hannas, M.I.; Donzele, J.L.; Sakomura, N.K.; Perazzo, F.G.; Barreto, S.L.T. Tabelas Brasileiras Para aves e Suínos: Composição de Alimentos e Exigências Nutricionais, 4th ed.; UFV: Viçosa, Brazil, 2017. [Google Scholar]
- Food, C.; Kjeldahl, T.M.C. Changes in AOAC® Official Methods of Analysis. J. AOAC Int. 2020, 79, 1060–3271. [Google Scholar]
- Helrich, K. Official methods of analysis of the Association of Official Analytical Chemists, 15th ed.; Association of Official Analytical Chemists (AOAC): Arlington, VA, USA, 1990. [Google Scholar]
- Sauvant, D.; Perez, J.M.; Tran, G. Tables de Composition et de Valeur Nutritive des Matieres Premieres Destinees aux Animaux D’elevage; INRA: Versailles, France, 2002. [Google Scholar]
- Yan, H.; Cao, S.; Li, Y.; Zhang, H.; Liu, J. Reduced meal frequency alleviates high-fat diet-induced lipid accumulation and inflammation in adipose tissue of pigs under the circumstance of fixed feed allowance. Eur. J. Nutr. 2020, 59, 595–608. [Google Scholar] [CrossRef] [PubMed]
- Bridi, A.M.; Silva, C.A. Métodos de Avaliação de Carcaça e da Carne Suína; Midiograf: Londrina, Brasil, 2006; 97p. [Google Scholar]
- Bouton, P.E.; Harris, P.T.; Shorthose, W.R. Effect of ultimate pH upon the water-holding capacity and tenderness of mutton. J. Food Sci. 1971, 36, 435–439. [Google Scholar] [CrossRef]
- Brewer, M.S.; Zhu, L.G.; Bidner, B.; Meisinger, D.J.; McKeith, F.K. Measuring pork color: Effects of bloom time, muscle, pH and relationship to instrumental parameters. Meat Sci. 2001, 57, 169–176. [Google Scholar] [CrossRef]
- Karamucki, T.; Jakubowska, M.; Rybarczyk, A.; Szaruga, R.; Gardzielewska, J.; Natalczyk-Szymkowska, W. Relationship between CIE L*a*b* and CIE L*C*h scale colour parameters determined when applying illuminant C and observer 2° and illuminant D65 and observer 10° and proximate chemical composition and quality traits of porcine longissimus lumborum muscle. Pol. J. Food Nutr. 2006, 15, 129. [Google Scholar]
- Bruce, H.L.; Stark, J.L.; Beilken, S.L. The effects of finishing diet and postmortem ageing on the eating quality of the M. longissimus thoracis of electrically stimulated Brahman steer carcasses. Meat Sci. 2004, 67, 261–268. [Google Scholar]
- Silva, L.H.P.; Assis, D.E.F.; Estrada, M.M.; Assis, G.J.F.; Zamudio, G.D.R.; Carneiro, G.B.; Filho, S.C.V.; Paulino, M.F.; Chizzotti, M.L. Carcass and meat quality traits of Nellore young bulls and steers throughout fattening. Liv. Sci. 2019, 229, 28–36. [Google Scholar] [CrossRef]
- Colle, M. Research Guidelines for Cookery, Sensory Evaluation, and Instrumental Tenderness Measurements of Meat, 2nd ed.; American Meat Science Association (AMSA): Champaign, IL, USA, 2016. [Google Scholar]
- Cross, H.R.; West, R.L.; Dutson, T.R. Comparison of methods for measuring sarcomere length in beef semitendinosus muscle. Meat Sci. 1981, 5, 261–266. [Google Scholar] [CrossRef]
- Schinckel, A.P.; Einstein, M.E.; Jungst, S.; Matthews, J.O.; Booher, C.; Dreadin, T.; Fralick, C.; Wilson, E.; Boyd, R.D. Daily feed intake, energy intake, growth rate and measures of dietary energy efficiency of pigs from four sire lines fed diets with high or low metabolizable and net energy concentrations. Asian-Australas. J. Anim. Sci. 2012, 25, 410. [Google Scholar] [CrossRef] [PubMed]
- Braña, D.V.; Rojo-Gómez, G.A.; Ellis, M.; Cuaron, J.A. Effect of gender (gilt and surgically and immunocastrated male) and ractopamine hydrochloride supplementation on growth performance, carcass, and pork quality characteristics of finishing pigs under commercial conditions. J. Anim. Sci. 2013, 91, 5894–5904. [Google Scholar] [CrossRef] [PubMed]
- Puls, C.L.; Ellis, M.; McKeith, F.K.; Gaines, A.M.; Schroeder, A.L. Effects of ractopamine on growth performance and carcass characteristics of immunologically and physically castrated barrows and gilts. J. Anim. Sci. 2014, 92, 4725–4732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elsbernd, A.J.; Stalder, K.J.; Karriker, L.A.; Patience, J.F. Comparison among gilts, physical castrates, entire males, and immunological castrates in terms of growth performance, nitrogen and phosphorus retention, and carcass fat iodine value. J. Anim. Sci. 2015, 93, 5702–5710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonneau, M.; Weiler, U. Pros and cons of alternatives to piglet castration: Welfare, boar taint, and other meat quality traits. Animals 2019, 9, 884. [Google Scholar] [CrossRef] [Green Version]
- Elbert, K.; Matthews, N.; Wassmuth, R.; Tetens, J. Effects of sire line, birth weight and sex on growth performance and carcass traits of crossbred pigs under standardized environmental conditions. Arch. Anim. Breed. 2020, 63, 367–376. [Google Scholar] [CrossRef]
- Schinckel, A.P.; Mahan, D.C.; Wiseman, T.G.; Einstein, M.E. Impact of alternative energy systems on the estimated feed requirements of pigs with varying lean and fat tissue growth rates when fed corn and soybean meal-based diets. Prof. Anim. Sci. 2008, 24, 198–207. [Google Scholar] [CrossRef]
- van den Broeke, A.; Leen, F.; Aluwé, M.; Ampe, B.; Van Meensel, J.; Millet, S. The effect of GnRH vaccination on performance, carcass, and meat quality and hormonal regulation in boars, barrows, and gilts. J. Anim. Sci. 2016, 94, 2811–2820. [Google Scholar] [CrossRef] [Green Version]
- Dunshea, F.R.; Allison, J.R.D.; Bertram, M.; Boler, D.D.; Brossard, L.; Campbell, R.; Crane, J.P.; Hennessy, D.P.; Huber, L.; de Lange, C. The effect of immunization against GnRF on nutrient requirements of male pigs: A review. Animal 2013, 7, 1769–1778. [Google Scholar] [CrossRef] [Green Version]
- Claus, R.; Weiler, U. Endocrine regulation of growth and metabolism in the pig: A review. Livest. Prod. Sci. 1994, 37, 245–260. [Google Scholar] [CrossRef]
- Puls, C.L.; Rojo, A.; Matzat, P.D.; Schroeder, A.L.; Ellis, M. Behavior of immunologically castrated barrows in comparison to gilts, physically castrated barrows, and intact male pigs. J. Anim. Sci. 2017, 95, 2345–2353. [Google Scholar] [CrossRef] [PubMed]
- de Lange, C.F.; Birkett, S.H.; Morel, P.C.; Lewis, A.J.; Southern, L. Protein, Fat, and Bone Tissue Growth in Swine. In Swine Nutrition; CRC Press LLC: Boca Raton, FL, USA, 2001; pp. 65–81. [Google Scholar]
- Campbell, R.G.; Taverner, M.R.; Curic, D.M. Effects of sex and energy intake between 48 and 90 kg live weight on protein deposition in growing pigs. Anim. Sci. 1985, 40, 497–503. [Google Scholar] [CrossRef]
- Whittemore, C.T.; Fawcett, R.H. Theoretical aspects of a flexible model to stimulate protein and lipid growth in pigs. Anim. Sci. 1976, 22, 87–96. [Google Scholar] [CrossRef]
- Millet, S.; Gielkens, K.; de Brabander, D.; Janssens, G.J. Considerations on the performance of immunocastrated male pigs. Animal 2011, 5, 1119–1123. [Google Scholar] [CrossRef] [Green Version]
- van den Broeke, A.; Aluwé, M.; Kress, K.; Stefanski, V.; Škrlep, M.; Batorek, N.; Ampe, B.; Millet, S. Effect of dietary energy level in finishing phase on performance, carcass and meat quality in immunocastrates and barrows in comparison with gilts and entire male pigs. Animal 2022, 16, 100437. [Google Scholar] [CrossRef]
- Björntorp, P. Hormonal control of regional fat distribution. Hum. Reprod. 1997, 12 (Suppl. 1), 21–25. [Google Scholar] [CrossRef] [Green Version]
- Tomasevic, I.; Djekic, I.; Font-I-Furnols, M.; Terjung, N.; Lorenzo, J.M. Recent advances in meat color research. Curr. Opin. Food Sci. 2021, 41, 81–87. [Google Scholar] [CrossRef]
- Chen, J.; Chen, F.; Lin, X.; Wang, Y.; He, J.; Zhao, Y. Effect of Excessive or Restrictive Energy on Growth Performance, Meat Quality, and Intramuscular Fat Deposition in Finishing Ningxiang Pigs. Animals 2021, 11, 27. [Google Scholar] [CrossRef]
- Arkfeld, E.K.; Mohrhauser, D.A.; King, D.A.; Wheeler, T.L.; Dilger, A.C.; Shackelford, S.D.; Boler, D.D. Characterization of variability in pork carcass composition and primal quality. J. Anim. Sci. 2017, 95, 697–708. [Google Scholar] [CrossRef]
- Fortin, A.; Robertson, W.M.; Tong, A.K.W. The eating quality of Canadian pork and its relationship with intramuscular fat. Meat Sci. 2005, 69, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Font-I-Furnols, M.; Tous, N.; Esteve-Garcia, E.; Gispert, M. Do all the consumers accept marbling in the same way? The relationship between eating and visual acceptability of pork with different intramuscular fat content. Meat Sci. 2012, 91, 448–453. [Google Scholar] [CrossRef] [PubMed]
- Aaslyng, M.D.; Jensen, H.; Karlsson, A.H. The gender background of texture attributes of pork loin. Meat Sci. 2018, 136, 79–84. [Google Scholar] [CrossRef] [PubMed]
- D’Souza, D.N.; Mullan, B.P. The effect of genotype, sex and management strategy on the eating quality of pork. Meat Sci. 2002, 60, 95–101. [Google Scholar] [CrossRef]
- Quiniou, N.; Noblet, J.; Dourmad, J.Y.; van Milgen, J. Influence of energy supply on growth characteristics in pigs and consequences for growth modelling. Livest. Prod. Sci. 1999, 60, 317–328. [Google Scholar] [CrossRef]
- Dekkers, J.C.; Gilbert, H. Genetic and Biological Aspect of Residual Feed Intake in Pigs. In Proceedings of the 9th World Congress on Genetics Applied to Livestock Production, Leipzig, Germany, August 2010; HAL-01193545, Abstract no. 287. pp. 1–8. [Google Scholar]
- Soleimani, T.; Gilbert, H. Evaluating environmental impacts of selection for residual feed intake in pigs. Animal 2020, 14, 2598–2608. [Google Scholar] [CrossRef]
- Cai, W.; Casey, D.S.; Dekkers, J.C.M. Selection response and genetic parameters for residual feed intake in Yorkshire swine. J. Anim. Sci. 2008, 86, 287–298. [Google Scholar] [CrossRef]
- Lonergan, S.M.; Huff-Lonergan, E.; Rowe, L.J.; Kuhlers, D.L.; Jungst, S.B. Selection for lean growth efficiency in Duroc pigs influences pork quality. J. Anim. Sci. 2001, 79, 2075–2085. [Google Scholar] [CrossRef] [Green Version]
- Faure, J.; Lefaucheur, L.; Bonhomme, N.; Ecolan, P.; Meteau, K.; Coustard, S.M.; Kouba, M.; Gilbert, H.; Lebret, B. Consequences of divergent selection for residual feed intake in pigs on muscle energy metabolism and meat quality. Meat Sci. 2013, 93, 37–45. [Google Scholar] [CrossRef]
- Barea, R.; Dubois, S.; Gilbert, H.; Sellier, P.; van Milgen, J.; Noblet, J. Energy utilization in pigs selected for high and low residual feed intake. J. Anim. Sci. 2010, 88, 2062–2072. [Google Scholar] [CrossRef] [Green Version]
- Saintilan, R.; Merour, I.; Brossard, L.; Tribout, T.; Dourmad, J.Y.; Sellier, P.; Bidanel, J.; van Milgen, J.; Gilbert, H. Genetics of residual feed intake in growing pigs: Relationships with production traits, and nitrogen and phosphorus excretion traits. J. Anim. Sci. 2013, 91, 2542–2554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smulders, F.J.M.; Toldra, F.; Flores, J.; Prieto, M. New technologies for meat and meat products. Utrecht Audet Tijdschr. 1992, 182, 186–188. [Google Scholar]
- Horodyska, J.; Oster, M.; Reyer, H.; Mullen, A.M.; Lawlor, P.G.; Wimmers, K.; Hamill, R.M. Analysis of meat quality traits and gene expression profiling of pigs divergent in residual feed intake. Meat Sci. 2018, 137, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.M.; Gabler, N.K.; Young, J.M.; Cai, W.; Boddicker, N.J.; Anderson, M.J.; Huff-Lonergan, E.; Dekkers, J.C.M.; Lonergan, S.M. Effects of selection for decreased residual feed intake on composition and quality of fresh pork. J. Anim. Sci. 2011, 89, 192–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noblet, J.; Shi, X.S. Effect of body weight on digestive utilization of energy and nutrients of ingredients and diets in pigs. Livest. Prod. Sci. 1994, 37, 323–338. [Google Scholar] [CrossRef]
- Le Goff, G.; Van Milgen, J.; Noblet, J. Influence of dietary fibre on digestive utilization and rate of passage in growing pigs, finishing pigs and adult sows. Anim. Sci. 2002, 74, 503–515. [Google Scholar] [CrossRef]
- Xie, F.; Li, Y.K.; Zhao, J.B.; Li, Z.C.; Liu, L.; Cao, Y.H.; Zhang, S. Comparative digestibility of energy and nutrients in four fibrous ingredients fed to barrows at three different initial body weights. Can. J. Anim. Sci. 2018, 99, 315–325. [Google Scholar] [CrossRef]
- Varel, V.H.; Yen, J.T. Microbial perspective on fiber utilization by swine. J. Anim. Sci. 1997, 75, 2715–2722. [Google Scholar] [CrossRef] [Green Version]
- Jha, R.; Berrocoso, J.D. Dietary fiber utilization and its effects on physiological functions and gut health of swine. Animal 2015, 9, 1441–1452. [Google Scholar] [CrossRef] [Green Version]
- Calvo, L.; Toldrá, F.; Aristoy, M.C.; López-Bote, C.J.; Rey, A.I. Effect of dietary organic selenium on muscle proteolytic activity and water-holding capacity in pork. Meat Sci. 2016, 121, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Savell, J.W.; Mueller, S.L.; Baird, B.E. The chilling of carcasses. Meat Sci. 2005, 70, 449–459. [Google Scholar] [CrossRef]
- Lindahl, G.; Henckel, P.; Karlsson, A.H.; Andersen, H.J. Significance of early postmortem temperature and pH decline on colour characteristics of pork loin from different crossbreeds. Meat Sci. 2006, 72, 613–623. [Google Scholar] [CrossRef]
- Li, X.; Wei, X.; Wang, H.; Zhang, C.H.; Mehmood, W. Relationship between protein denaturation and water holding capacity of pork during postmortem ageing. Food Biophys. 2018, 13, 18–24. [Google Scholar] [CrossRef]
- den Hertog-Meischke, M.J.A.; Van Laack, R.J.L.M.; Smulders, F.J.M. The water-holding capacity of fresh meat. Vet. Q. 1997, 19, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Lebret, B.; Čandek-Potokar, M. Pork quality attributes from farm to fork. Part I. Carcass and fresh meat. Animal 2021, 16 (Suppl. 1), 100402. [Google Scholar] [CrossRef] [PubMed]
- Huff-Lonergan, E.; Lonergan, S.M. Mechanisms of water-holding capacity of meat: The role of postmortem biochemical and structural changes. Meat Sci. 2005, 71, 194–204. [Google Scholar] [CrossRef] [PubMed]
- Prevolnik, M.; Čandek-Potokar, M.; Škorjanc, D. Predicting pork water-holding capacity with NIR spectroscopy in relation to different reference methods. J. Food Eng. 2010, 98, 347–352. [Google Scholar] [CrossRef]
- Franco, D.; Vazquez, J.A.; Lorenzo, J.M. Growth performance, carcass and meat quality of the Celta pig crossbred with Duroc and Landrace genotypes. Meat Sci. 2014, 96, 195–202. [Google Scholar] [CrossRef]
- Watanabe, G.; Motoyama, M.; Nakajima, I.; Sasaki, K. Relationship between water-holding capacity and intramuscular fat content in Japanese commercial pork loin. Asian-Australas. J. Anim. Sci. 2018, 31, 914. [Google Scholar] [CrossRef]
Sex | BV 1 | Diet | RMSE 3 | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Phase/Traits | Barrows | Female | HRFI | LRFI | Control | Macauba 2 | Sex | BV 1 | Diet | |
Experimental units | 71 | 60 | 74 | 57 | 63 | 68 | ||||
0–20 days (G1) | ||||||||||
Initial body weight, kg | 34.9 | 35.1 | 35.5 | 34.4 | 34.8 | 35.1 | 4.26 | 0.72 | 0.13 | 0.65 |
Average daily feed intake, g/day | 2223 | 2045 | 2143 | 2125 | 2144 | 2124 | 190.5 | <0.01 | 0.61 | 0.55 |
Average daily gain, g/day | 1134 | 1061 | 1110 | 1085 | 1096 | 1100 | 98.0 | <0.01 | 0.16 | 0.81 |
Feed conversion rate, g/g | 1.96 | 1.94 | 1.94 | 1.97 | 1.96 | 1.94 | 0.169 | 0.46 | 0.33 | 0.43 |
Final body weight, kg | 57.4 | 56.0 | 57.6 | 55.7 | 56.4 | 56.9 | 5.10 | 0.10 | 0.03 | 0.57 |
21–40 days (G2) | ||||||||||
Initial body weight, kg | 57.4 | 56.0 | 57.6 | 55.7 | 56.4 | 56.9 | 5.10 | 0.10 | 0.03 | 0.57 |
Average daily feed intake, g/day | 3012 | 2610 | 2847 | 2776 | 2819 | 2803 | 249.1 | <0.01 | 0.11 | 0.71 |
Average daily gain, g/day | 1156 | 1130 | 1120 | 1165 | 1148 | 1138 | 103.1 | 0.15 | 0.02 | 0.57 |
Feed conversion rate, g/g | 2.61 | 2.33 | 2.55 | 2.39 | 2.47 | 2.47 | 0.240 | <0.01 | <0.01 | 0.98 |
Final body weight, kg | 81.6 | 78.7 | 81.5 | 78.7 | 80.1 | 80.1 | 6.51 | 0.01 | 0.01 | 0.97 |
41–65 days (F1) | ||||||||||
Initial body weight, kg | 81.6 | 78.7 | 81.5 | 78.7 | 80.1 | 80.1 | 6.51 | 0.01 | 0.01 | 0.97 |
Average daily feed intake, g/day | 3334 | 2869 | 3113 | 3089 | 3096 | 3106 | 279.7 | <0.01 | 0.63 | 0.85 |
Average daily gain, g/day | 1164 | 1076 | 1124 | 1116 | 1106 | 1134 | 101.5 | <0.01 | 0.64 | 0.12 |
Feed conversion rate, g/g | 2.87 | 2.66 | 2.77 | 2.76 | 2.79 | 2.73 | 0.255 | <0.01 | 0.95 | 0.17 |
Final body weight, kg | 105.1 | 110.0 | 109.0 | 106.0 | 107.4 | 107.7 | 7.52 | <0.01 | 0.02 | 0.79 |
66–90 days (F2) | ||||||||||
Initial body weight, kg | 105.1 | 110.0 | 109.0 | 106.0 | 107.4 | 107.7 | 7.52 | <0.01 | 0.02 | 0.79 |
Average daily feed intake, g/day | 3675 | 3241 | 3401 | 3516 | 3528 | 3389 | 286.4 | <0.01 | 0.03 | 0.01 |
Average daily gain, g/day | 1148 | 1061 | 1095 | 1114 | 1102 | 1107 | 101.0 | <0.01 | 0.31 | 0.82 |
Feed conversion rate, g/g | 3.21 | 3.08 | 3.13 | 3.16 | 3.21 | 3.08 | 0.297 | 0.01 | 0.49 | 0.01 |
Final body weight, kg | 137.6 | 129.4 | 134.5 | 132.5 | 133.3 | 133.7 | 7.84 | <0.01 | 0.13 | 0.74 |
Entire fattening period (90 days) | ||||||||||
Initial body weight, kg | 34.9 | 35.1 | 35.5 | 34.4 | 34.8 | 35.1 | 4.26 | 0.72 | 0.13 | 0.65 |
Average daily feed intake, g/day | 3.144 | 2.734 | 2.983 | 2.925 | 2.997 | 2.920 | 221.2 | <0.01 | 0.21 | 0.09 |
Average daily gain, g/day | 1.157 | 1.067 | 1.124 | 1.106 | 1.118 | 1.114 | 62.3 | <0.01 | 0.15 | 0.84 |
Feed conversion rate, g/g | 2.72 | 2.57 | 2.65 | 2.64 | 2.68 | 2.62 | 0.183 | <0.01 | 0.81 | 0.07 |
Final body weight, kg | 137.6 | 129.4 | 134.5 | 132.5 | 133.3 | 133.7 | 7.84 | <0.01 | 0.13 | 0.74 |
Traits | Sex | BV 1 | Diet | RMSE 3 | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|---|
Barrows | Female | HRFI | LRFI | Control | Macauba 2 | Sex | BV 1 | Diet | ||
Experimental units | 71 | 60 | 74 | 57 | 63 | 68 | ||||
Slaughter body weight, kg | 139.3 | 131.2 | 136.7 | 133.8 | 135.4 | 135.1 | 9.49 | <0.01 | 0.09 | 0.90 |
Hot carcass weight, kg | 119.6 | 112.4 | 117.5 | 114.5 | 116.2 | 115.8 | 8.03 | <0.01 | 0.04 | 0.78 |
Dressing percentage, % | 85.8 | 85.7 | 86.0 | 85.6 | 85.9 | 85.7 | 1.25 | 0.78 | 0.10 | 0.44 |
Backfat thickness, mm | 22.2 | 16.2 | 17.7 | 20.7 | 18.8 | 19.6 | 4.35 | <0.01 | <0.01 | 0.27 |
Loin eye area, cm2 | 53.9 | 56.8 | 57.2 | 53.6 | 56.1 | 54.6 | 6.78 | 0.01 | <0.01 | 0.20 |
Traits | Sex | BV 1 | Diet | RMSE 3 | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|---|
Barrows | Female | HRFI | LRFI | Control | Macauba 2 | Sex | BV | Diet | ||
Experimental units | 71 | 60 | 74 | 57 | 63 | 68 | ||||
Moisture, % FM | 71.2 | 71.5 | 71.4 | 71.3 | 71.5 | 71.2 | 0.91 | 0.08 | 0.76 | 0.02 |
Protein, % DM | 25.2 | 25.4 | 25.4 | 25.3 | 25.3 | 25.3 | 0.78 | 0.09 | 0.33 | 0.87 |
Fat, % DM | 2.7 | 1.9 | 2.2 | 2.4 | 2.2 | 2.4 | 1.09 | <0.01 | 0.36 | 0.21 |
Ash, % DM | 0.9 | 1.1 | 0.9 | 0.9 | 0.9 | 1.1 | 0.32 | <0.01 | 0.91 | 0.01 |
Collagen, % DM | 0.8 | 0.7 | 0.8 | 0.7 | 0.7 | 0.8 | 0.17 | 0.35 | 0.25 | 0.41 |
WBSF 4, kgf | 3.29 | 3.49 | 3.43 | 3.35 | 3.38 | 3.40 | 0.534 | 0.03 | 0.45 | 0.86 |
WHC 5, % | 88.0 | 87.8 | 87.5 | 88.3 | 88.6 | 87.2 | 2.52 | 0.55 | 0.09 | <0.01 |
Cooking loss, % | 21.6 | 21.8 | 22.1 | 21.3 | 21.1 | 22.2 | 3.95 | 0.80 | 0.26 | 0.11 |
Sarcomere length, µm | 1.56 | 1.55 | 1.55 | 1.56 | 1.56 | 1.54 | 0.136 | 0.46 | 0.73 | 0.44 |
Color parameters | ||||||||||
Lightness (L*) | 57.6 | 57.2 | 57.2 | 57.5 | 57.6 | 57.2 | 3.76 | 0.52 | 0.67 | 0.56 |
Redness (a*) | 6.8 | 6.6 | 6.7 | 6.7 | 6.6 | 6.8 | 1.20 | 0.30 | 0.45 | 0.87 |
Yellowness (b*) | 14.8 | 14.5 | 14.6 | 14.7 | 14.8 | 14.5 | 1.84 | 0.45 | 0.65 | 0.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreira, V.E.; Veroneze, R.; Saraiva, A.; Duarte, M.d.S.; Guimaraes, S.E.F.; Lopes, M.S.; Bastiaansen, J.W.M.; Santos, G.A.; Campos, L.D.; Campos, P.H.R.F. Growth Performance, Carcass and Pork Quality Traits of Growing-Finishing Pigs with High and Low Breeding Values for Residual Feed Intake Fed Diets with Macauba (Acrocomia aculeata) Pulp as Alternative Raw Material. Agriculture 2022, 12, 1860. https://doi.org/10.3390/agriculture12111860
Moreira VE, Veroneze R, Saraiva A, Duarte MdS, Guimaraes SEF, Lopes MS, Bastiaansen JWM, Santos GA, Campos LD, Campos PHRF. Growth Performance, Carcass and Pork Quality Traits of Growing-Finishing Pigs with High and Low Breeding Values for Residual Feed Intake Fed Diets with Macauba (Acrocomia aculeata) Pulp as Alternative Raw Material. Agriculture. 2022; 12(11):1860. https://doi.org/10.3390/agriculture12111860
Chicago/Turabian StyleMoreira, Vinicius E., Renata Veroneze, Alysson Saraiva, Marcio de S. Duarte, Simone E. F. Guimaraes, Marcos S. Lopes, John W. M. Bastiaansen, Gabryele A. Santos, Lorena D. Campos, and Paulo H. R. F. Campos. 2022. "Growth Performance, Carcass and Pork Quality Traits of Growing-Finishing Pigs with High and Low Breeding Values for Residual Feed Intake Fed Diets with Macauba (Acrocomia aculeata) Pulp as Alternative Raw Material" Agriculture 12, no. 11: 1860. https://doi.org/10.3390/agriculture12111860
APA StyleMoreira, V. E., Veroneze, R., Saraiva, A., Duarte, M. d. S., Guimaraes, S. E. F., Lopes, M. S., Bastiaansen, J. W. M., Santos, G. A., Campos, L. D., & Campos, P. H. R. F. (2022). Growth Performance, Carcass and Pork Quality Traits of Growing-Finishing Pigs with High and Low Breeding Values for Residual Feed Intake Fed Diets with Macauba (Acrocomia aculeata) Pulp as Alternative Raw Material. Agriculture, 12(11), 1860. https://doi.org/10.3390/agriculture12111860