The Effect of Mineral N Fertilization and Bradyrhizobium japonicum Seed Inoculation on Productivity of Soybean (Glycine max (L.) Merrill)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment and Cultivation Management
2.2. Data Collection
2.3. Chemical Analysis of Soybean Seeds
2.4. Statistical Analysis
2.5. Weather Conditions
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stein, H.H.; Berger, L.L.; Drackley, J.K.; Fahey, G.C., Jr.; Hernot, D.C.; Parsons, C.M. Nutritional properties and feeding values of soybeans and their co-products. In Soybeans. Chemistry Production Processing and Utilization; Johnson, L.A., White, P.J., Galloway, R., Eds.; AOCS Press: Urbana, IL, USA, 2008; pp. 613–660. [Google Scholar] [CrossRef]
- de Visser, C.L.M.; Remco, S.; Stoddard, F. The EU’s dependency on soya bean import for the animal feed industry and potential for EU produced alternatives. OCL 2014, 21, D407. [Google Scholar] [CrossRef] [Green Version]
- Thrane, M.; Paulsen, P.V.; Orcutt, M.W.; Krieger, T.M. Soy protein: Impacts. production. and applications (Ch. 2). In Sustainable Protein Sources; Nadathu, S.R., Wanasundara, J.P.D., Scanlin, L., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 23–45. Available online: http://www.sciencedirect.com/science/article/pii/B9780128027783000020 (accessed on 6 December 2021).
- Available online: http://www.fao.org/faostat/en/#data/QCL (accessed on 6 December 2021).
- SOYSTATS 2020. Available online: http://soystats.com/ (accessed on 22 January 2021).
- Anwar, F.; Kamal, G.M.; Nadeemb, F.; Shabir, G. Variations of quality characteristics among oils of different soybean varieties. J. King Saud Univ. Sci. 2016, 28, 332–338. [Google Scholar] [CrossRef] [Green Version]
- Naresh, S.; Ong, M.K.; Thiagarajah, K.; Mutiah, N.B.S.J.; Kunasundari, B.; Lye, H.S. Engineered soybean-based beverages and their impact on human health. Non-Alcohol. Beverages 2019, 6, 329–361. [Google Scholar]
- Subramanian, S.; Smith, D.L. A Proteomics Approach to Study Soybean and Its Symbiont Bradyrhizobium japonicum—A Review; IntechOpen: London, UK, 2013. [Google Scholar]
- Medic, J.; Atkinson, C.; Hurburgh, C.R. Current knowledge in soybean composition. J. Am. Oil Chem. Soc. 2014, 91, 363–384. [Google Scholar] [CrossRef]
- James, A.T.; Yang, A. Interactions of protein content and globulin subunit composition of soybean proteins in relation to tofu gel properties. Food Chem. 2016, 194, 284–289. [Google Scholar] [CrossRef] [PubMed]
- Luboiński, A.; Markowicz, M. Effect of nitrogen fertilization system on yielding of three non-GMO soybean varieties. Fragm. Agron. 2017, 34, 66–75. [Google Scholar]
- Patil, G.; Vuong, T.D.; Kale, S.; Valliyodan, B.; Deshmukh, R.; Zhu, C.; Wu, X.; Bai, Y.; Yungbluth, D.; Lu, F.; et al. Dissecting genomic hotspots underlying seed protein. oil. and sucrose content in an interspecific mapping population of soybean using high-density linkage mapping. Plant Biotechnol. J. 2018, 16, 1939–1953. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, X.; Lu, Y.; Bhusal, S.J.; Song, Q.; Cregan, P.B.; Yen, Y.; Brown, M.; Jiang, G.L.; Zimmer, S.; et al. Effects of soybean variety and Bradyrhizobium strains on yield, protein content and biological nitrogen fixation under cool growing conditions in Germany. Eur. J. Agron. 2016, 72, 38–46. [Google Scholar] [CrossRef]
- Collino, D.J.; Salvagiotti, F.; Perticari, A.; Piccinetti, C.; Ovando, G.; Urquiaga, S.; Racca, R.W. Biological nitrogen fixation in soybean in Argentina: Relationships with crop. soil. and meteorological factors. Plant Soil 2015, 392, 239–252. [Google Scholar] [CrossRef]
- Hungria, M.; Mendes, I.C. Nitrogen fixation with soybean: The perfect symbiosis. In Biological Nitrogen Fixation; de Bruijn, F.J., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 1009–1023. [Google Scholar]
- Albuquerque, T.M.; Ortez, O.; Carmona, G.I.; Ciampitti, I.A. Soybean: Evaluation of Inoculation. Kans. Agric. Exp. Stn. Res. Rep. 2017, 3, 6. [Google Scholar]
- Moretti, L.G.; Crusciol, C.A.; Kuramae, E.E.; Bossolani, J.W.; Moreira, A.; Costa, N.R.; Alves, C.J.; Pascoaloto, I.M.; Rondina, A.B.L.; Hungria, M. Effects of growth-promoting bacteria on soybean root activity, plant development, and yield. Agron. J. 2020, 112, 418–428. [Google Scholar] [CrossRef]
- Kaschuk, G.; Nogueira, M.A.; Luca, M.J.; Hungria, M. Response of determinate and indeterminate soybean cultivars to basal and topdressing N fertilization compared to sole inoculation with Bradyrhizobium. Field Crop. Res. 2016, 195, 21–27. [Google Scholar] [CrossRef]
- Tain, C.F.; Zhou, Y.J.; Zhang, Y.M.; Li, Q.Q.; Zhang, Y.Z.; Li, D.F.; Chen, W.X. Comparative genomics of rhizobia nodulating soybean suggest extensive recruitment of lineage-specific genes in adaptation. Proc. Natl. Acad. Sci. USA 2012, 109, 8629–8634. [Google Scholar]
- Carciochi, W.D.; Rosso, L.H.M.; Secchi, M.A.; Torres, A.R.; Naeve, S.; Casteel, S.N.; Kovács, P.; Davidson, D.; Purcell, L.C.; Archontoulis, S.; et al. Soybean yield. biological N2 fixation and seed composition responses to additional inoculation in the United States. Sci. Rep. 2019, 9, 19908. [Google Scholar] [CrossRef]
- Hungria, M.; Araujo, R.S.; Ju’nior, S.; Barbosa, E.; Zilli, J.E. Inoculum rate effects on the soybean symbiosis in new or old fields under tropical conditions. Agron. J. 2017, 109, 1106–1112. [Google Scholar] [CrossRef]
- Ambrosini, V.G.; Fontoura, S.M.; de Moraes, R.P.; Tamagno, S.; Ciampitti, I.A.; Bayer, C. Soybean yield response to Bradyrhizobium strains in fields with inoculation history in Southern Brazil. J. Plant Nutr. 2019, 42, 1941–1951. [Google Scholar] [CrossRef]
- Moretti, L.G.; Lazarini, E.; Bossolani, J.W.; Parente, T.L.; Caioni, S.; Araujo, R.S.; Hungria, M. Can additional inoculations increase soybean nodulation and grain yield? Agron. J. 2018, 110, 715–721. [Google Scholar] [CrossRef] [Green Version]
- Legget, M.; Diaz-Zorita, M.; Koivunen, M.; Bowman, R.; Pesek, R.; Stevenson, C.; Leister, T. Soybean response to inoculation with Bradyrhizobium japonicum in the United States and Artentina. Agron. J. 2017, 109, 1031–1038. [Google Scholar] [CrossRef] [Green Version]
- Zilli, J.E.; Pacheco, R.S.; Gianluppi, V.; Smiderle, O.J.; Urquiaga, S.; Hungria, M. Biological N2 fixation and yield performance of soybean inoculated with Bradyrhizobium. Nutr. Cycl. Agroecosyst. 2021, 119, 323–336. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World reference base for soil resources 2014, update 2015. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Dolijanowic, Z.; Kovacevic, D.; Oliaca, S.; Jovovic, Z.; Stipesevic, B.; Jug, D. The multi-year soybean grain yield depending on weather conditions. In Proceedings of the Medunarodni Simpozij Agronoma, Dubrovnik, Croatia, 17–22 October 2013; pp. 422–477. [Google Scholar]
- Bujak, K.; Jędruszczak, M.; Frant, M. The effect of simplified cultivation and foliar fertilization of macro and microelements on yielding of soybean grown in monoculture. Ann. Univ. Mariae Curie-Skłodowska Sect. E 2004, 59, 139–147. [Google Scholar]
- Candráková, E.; Macák, M.; Szombathová, N.; Hanáčková, E. The influence of fertilization on yield and yield component formation of soybean varieties. J. Cent. Eur. Agric. 2008, 9, 511–518. [Google Scholar]
- Stojmenova, L.; Alexieva, S. Impacts of climate condition on soybean yield. Pochvoznanie. Agrokhimiya Ekol. 2009, 43, 10–14. [Google Scholar]
- Ohyama, T.; Minagawa, R.; Ishikawa, S.; Yamamoto, M.; Hung, N.V.P.; Ohtake, N.; Sueyoshi, K.; Sato, T.; Nagumo, Y.; Takahashi, Y. Soybean Seed Production and Nitrogen Nutrition. In A Comprehensive Survey of International Soybean Research—Genetics, Physiology, Agronomy and Nitrogen Relationships; IntechOpen: London, UK, 2013; pp. 115–157. [Google Scholar]
- Faligowska, A.; Szukała, J. Influence of organic polymer on yield components and seed yield of soybean. Nauka Przyr. Technol. 2014, 8, 9. (In Polish) [Google Scholar]
- Toleikiene, M.; Slepetys, J.; Sarunaite, L.; Lazauskas, S.; Deveikyte, I.; Kadziuliene, Z. Soybean Development and Productivity in Response to Organic Management above the Northern Boundary of Soybean Distribution in Europe. Agronomy 2021, 11, 214. [Google Scholar] [CrossRef]
- Lu, W.; Misselbrook, T.H.; Feng, L.; Wu, L. Assessment of Nitrogen Uptake and Biological Nitrogen Fixation Responses of Soybean to Nitrogen Fertiliser with SPACSYS. Sustainability 2020, 12, 5921. [Google Scholar] [CrossRef]
- Prusiński, J.; Baturo-Cieśniewska, A.; Borowska, M. Response of Soybean (Glycine max (L.) Merrill) to Mineral Nitrogen Fertilization and Bradyrhizobium japonicum Seed Inoculation. Agronomy 2020, 10, 1300. [Google Scholar] [CrossRef]
- Montanez, A.; Danso, S.; Hardarson, G. The effect of temperature on nodulation and nitrogen fixation by five Bradyrhizobium japonicum strains. Appl. Soil Ecol. 1995, 2, 165–174. [Google Scholar] [CrossRef]
- Seneviratne, M.; Gunaratne, S.; Bandara, T.; Weerasundara, L.; Rajakaruna, N.; Seneviratne, G.; Vithanage, M. Plant growth promotion by Bradyrhizobium japonicum under heavy metal stress. S. Afr. J. Bot. 2016, 105, 19–24. [Google Scholar] [CrossRef]
- Mourtzinis, S.; Kaur, G.; Orlowski, J.M.; Shapiro, C.A.; Lee, C.D.; Wortmann, C.; Holshouser, D.; Nafziger, E.D.; Kandel, H.; Niekamp, J. Soybean response to nitrogen application across the United States: A synthesis-analysis. Field Crops Res. 2018, 215, 74–82. [Google Scholar] [CrossRef]
- La Menza, N.C.; Monzon, J.P.; Specht, J.E.; Grassini, P. Is soybean yield limited by nitrogen supply? Field Crops Res. 2017, 213, 204–212. [Google Scholar] [CrossRef]
- Capatana, N.; Bolohan, C.; Marin, D.I. Research regarding the influence of mineral fertilization along with Bradyrhizobium japonicum on soybean grain yield (Glycine max (L.) Merrill) under the conditions of south-east Romania. Sci. Pap. Agron. 2017, 60, 207–214. [Google Scholar]
- Albareda, M.; Rodríguez-Navarro, D.N.; Temprano, F.J.; Contreras, M.A. Soybean inoculation: Dose, Nfertilizer supplementation and rhizobia persistence in soil. Field Crops Res. 2009, 113, 352–356. [Google Scholar] [CrossRef]
- Jarecki, W.; Buczek, J.; Bobrecka-Jamro, D. Response of soybean (Glycine max (L.) Merr.) to bacterial soil inoculants and foliar fertilization. Plant Soil Environ. 2016, 62, 422–427. [Google Scholar] [CrossRef] [Green Version]
- Debela, C.; Tana, T.; Wogi, L. Effect of Rhizobium Inoculation, NPS Fertilizer and Vermicompost on Nodulation and Yield of Soybean (Glycine max (L). Merrill) at Bako, Western Ethiopia. J. Chem. Environ. Biol. Eng. 2021, 5, 49–61. [Google Scholar] [CrossRef]
- Saturno, D.F.; Cerezini, P.; Da Silva, P.M.; De Oliveira, A.B.; De Oliveira, M.C.N.; Hungria, M.; Nogueira, M.A.; Moreira, P.D.S. Mineral Nitrogen Impairs the Biological Nitrogen Fixation in Soybean of Determinate and Indeterminate Growth Types. J. Plant Nutr. 2017, 3, 1690–1701. [Google Scholar] [CrossRef]
- Chibeba, A.M.; Kyei-Boahen, S.; Guimarāes, M.F.; Nogueira, M.A.; Hungria, M. Feasibility of transference of inoculation- related technologies: A case study of evaluation of soybean rhizobial strains under the agro-climatic conditions of Brazil and Mozambique. Agric. Ecosyst. Environ. 2018, 261, 230–240. [Google Scholar] [CrossRef]
- Zilli, J.E.; Alves, B.J.R.; Rouws, L.F.M.; Simões-Araujo, J.L.; Soares, L.H.B.; Cassa´n, F.; Castellanos, M.O.; O’Hara, G. The importance of denitrification performed by nitrogen-fixing bacteria used as inoculants in South America. Plant Soil. 2020, 451, 5–24. [Google Scholar] [CrossRef]
- Zuffo, A.M.; Ratke, R.F.; Aguilera, J.G.; Steiner, F. Bradyrhizobium spp. inoculation associated with nitrogen application enhances the quality of soybean seeds. Ciencia e Agrotecnologia. Science and Agrotechnology. Agric. Sci. 2021, 45, e018721. [Google Scholar] [CrossRef]
- Zerpa, M.; Mayz, J.; Méndez, J. Effects of Bradyrhizobium japonicum inoculants on soybean (Glycine max (L.) Merr.) growth and nodulation. Ann. Biol. Res. 2013, 4, 193–199. [Google Scholar]
- Korsak-Adamowicz, M.; Starczewski, J.; Dopka, D. Influence of selected agrotechnological operations on soybean. Fragm. Agron. 2007, 24, 238–244. (In Polish) [Google Scholar]
- Jarecki, W.; Bobrecka-Jamro, D. Reaction of soybean plants to the vaccination of seeds with nitragina and initial nitrogen fertilization. Nauka Przyr. Technol.2016, 10, 12(In Polish). Available online: http://www.npt.up-poznan.net.
- Boros, L. Assessment of the interdependence of selected quantitative characteristics determining the seed yield in pea (Pisum sativum L.), dwarf bean (Ph. Vulgaris, L.) and soybean (Glycine max L. Merrill). Biul. Inst. Hod. Aklim. Rośl. 2003, 2, 481–486. (In Polish) [Google Scholar]
- Mrkovacki, N.; Morinkovic, J. Effect of fertilizer application on growth and yield of inoculated soybean. Not. Bot. Hort. Cluj-Napoca 2008, 36, 48–51. [Google Scholar]
- Martyniuk, S. Scientific and practical aspects of legumes symbiosis with root-nodule bacteria. Pol. J. Agron. 2012, 9, 17–22. (In Polish) [Google Scholar]
- De Bruin, J.L.; Pedersen, P.; Conley, S.P.; Gaska, J.M.; Naeve, S.L.; Kurle, J.E.; Elmore, W.; Giesler, L.J.; Abendroth, L.J. Probability of yield response to inoculants in fields with a history of soybean. Crop Sci. 2010, 50, 265–272. [Google Scholar] [CrossRef]
- Mason, S.; Galusha, T.; Kmail, Z. Soybean yield and nodulation response to crop history and inoculation. Agron. J. 2016, 108, 309–312. [Google Scholar] [CrossRef] [Green Version]
- Shahid, M.Q.; Saleem, M.F.; Khan, Z.H.; Anjum, S.A. Performance of soybean (Glycine max L.) under different phosphorus levels and inoculation. Pak. J. Agric. Sci. 2009, 46, 1–5. [Google Scholar]
- Afzal, A.; Bano, A.; Fatima, M. Higher soybean yield by inoculation with N-fixing and P-solubilizing bacteria. Agron. Sust. Dev. 2010, 30, 487–495. [Google Scholar] [CrossRef] [Green Version]
- Vratarić, M.; Sudarić, A.; Kovačević, V.; Duvnjak, T.; Krizmanić, M.; Mijić, A. Response of soybean to foliar fertilization with magnesium sulfate (Epsom salt). Cereal Res. Commun. 2006, 34, 709–712. [Google Scholar] [CrossRef]
- Jarecki, W.; Bobrecka-Jamro, D. Effect of fertilization with nitrogen and seed inoculation with nitragina on seed quality of soya bean (Glycine max (L.) Merrill). Acta Sci. Pol. Agric. 2015, 14, 51–59. [Google Scholar]
Cultivar | Treatment Nitrogen Rates (kg ha−1) | Seed Yield (t ha−1) | Protein Yield (kg ha−1) | ||||
---|---|---|---|---|---|---|---|
Year | Mean | Year | Mean | ||||
2017 | 2018 | 2017 | 2018 | ||||
Aldana | 0 | 1.43 ± 0.023 * | 2.01 ± 0.072 | 1.72 | 402.2 ± 25.20 | 800.2 ± 35.62 | 601.2 |
30 | 1.73 ± 0.127 | 2.12 ± 0.086 | 1.93 | 530.0 ± 29.30 | 750.4 ± 36.50 | 640.2 | |
60 | 1.66 ± 0.079 | 2.26 ± 0.138 | 1.96 | 508.4 ± 23.60 | 780.9 ± 36.60 | 644.6 | |
Hi Stick + 0 | 1.63 ± 0.124 | 2.60 ± 0.464 | 2.12 | 499.3 ± 18.90 | 789.3 ± 35.60 | 644.3 | |
Hi Stick + 30 | 1.74 ± 0.136 | 3.13 ± 0.276 | 2.43 | 543.7 ± 55.00 | 932.6 ± 68.20 | 738.2 | |
Hi Stick + 60 | 1.72 ± 0.124 | 3.39 ± 0.275 | 2.56 | 580.1 ± 59.80 | 1008.3 ± 72.20 | 794.2 | |
Nitragina + 0 | 1.52 ± 0.104 | 2.42 ± 0.268 | 1.97 | 456.0 ± 29.80 | 753.2 ± 45.60 | 604.6 | |
Nitragina + 30 | 1.71 ± 0.092 | 2.90 ± 0.187 | 2.31 | 534.4 ± 32.20 | 864.6 ± 36.90 | 699.5 | |
Nitragina + 60 | 1.74 ± 0.072 | 3.11 ± 0.266 | 2.42 | 576.5 ± 56.20 | 917.9 ± 65.20 | 747.2 | |
mean | 1.65 | 2.66 | - | 514.6 | 844.2 | - | |
Annushka | 0 | 1.36 ± 0.206 | 2.03 ± 0.157 | 1.69 | 357.0 ± 18.50 | 751.6 ± 25.50 | 554.3 |
30 | 1.65 ± 0.068 | 2.29 ± 0.093 | 1.97 | 464.1 ± 19.20 | 814.4 ± 55.60 | 639.3 | |
60 | 1.86 ± 0.108 | 2.42 ± 0.231 | 2.14 | 558.0 ± 56.60 | 856.6 ± 65.20 | 707.3 | |
Hi Stick + 0 | 1.78 ± 0.059 | 2.51 ± 0.064 | 2.14 | 522.8 ± 35.60 | 817.8 ± 55.80 | 670.3 | |
Hi Stick + 30 | 1.98 ± 0.121 | 2.87 ± 0.168 | 2.43 | 594.4 ± 22.20 | 876.3 ± 30.40 | 735.4 | |
Hi Stick + 60 | 1.89 ± 0.125 | 3.14 ± 0.425 | 2.51 | 602.3 ± 25.70 | 954.4 ± 45.90 | 778.4 | |
Nitragina + 0 | 1.56 ± 0.065 | 2.48 ± 0.384 | 2.02 | 448.5 ± 32.20 | 813.4 ± 45.20 | 630.9 | |
Nitragina + 30 | 1.75 ± 0.041 | 2.76 ± 0.166 | 2.26 | 513.9 ± 33.50 | 852.6 ± 39.90 | 683.2 | |
Nitragina + 60 | 2.08 ± 0.179 | 3.00 ± 0.462 | 2.54 | 624.0 ± 48.20 | 897.3 ± 40.10 | 760.6 | |
mean | - | 1.77 | 2.61 | - | 520.5 | 848.3 | - |
Mean for cultivar | - | 1.71 | 2.63 | - | 517.5 | 846.2 | - |
LSD (α = 0.05): Cultivar (A) Treatment (B) B/A A/B | - | n.s. ** 0.233 n.s. n.s. | n.s. 0.523 n.s. n.s. | - | 2.802 5.493 7.769 5.102 | n.s. 47.69 67.45 43.85 | - |
Cultivar | Treatment Nitrogen Rates (kg ha−1) | Weight of 1000 Seeds (g) | ||
---|---|---|---|---|
Year | Mean | |||
2017 | 2018 | |||
Aldana | 0 | 146.6 ± 3.192 * | 166.3 ± 6.218 | 156.4 |
30 | 153.9 ± 6.350 | 169.2 ± 2.607 | 161.6 | |
60 | 150.3 ± 4.024 | 167.4 ± 12.958 | 158.9 | |
Hi Stick + 0 | 154.7 ± 3.556 | 175.6 ± 4.170 | 165.2 | |
Hi Stick + 30 | 154.6 ± 2.010 | 180.3 ± 9.127 | 167.5 | |
Hi Stick + 60 | 154.1 ± 7.800 | 180.4 ± 5.406 | 167.3 | |
Nitragina + 0 | 148.8 ± 7.005 | 187.1 ± 11.165 | 168.0 | |
Nitragina + 30 | 148.6 ± 8.361 | 177.6 ± 4.195 | 163.1 | |
Nitragina + 60 | 148.3 ± 11.237 | 179.2 ± 4.565 | 163.8 | |
mean | 151.1 | 175.9 | - | |
Annushka | 0 | 115.3 ± 3.456 | 119.9 ± 11.173 | 117.6 |
30 | 114.5 ± 1.979 | 130.5 ± 4.161 | 122.5 | |
60 | 116.2 ± 6.313 | 127.3 ± 7.093 | 121.8 | |
Hi Stick + 0 | 118.3 ± 5.347 | 132.4 ± 7.068 | 125.4 | |
Hi Stick + 30 | 118.5 ± 0.829 | 135.1 ± 10.401 | 126.8 | |
Hi Stick + 60 | 116.3 ± 5.874 | 138.2 ± 11.258 | 127.3 | |
Nitragina + 0 | 111.6 ± 5.354 | 131.5 ± 3.583 | 121.6 | |
Nitragina + 30 | 115.7 ± 5.325 | 134.6 ± 4.710 | 125.2 | |
Nitragina + 60 | 110.9 ± 3.566 | 133.5 ± 14.679 | 122.2 | |
mean | - | 115.3 | 131.7 | - |
Mean for cultivar | - | 133.2 | 153.8 | - |
LSD (α = 0.05): Cultivar (A) Treatment (B) B/A A/B | 0.897 ** 1.661 2.350 1.565 | 0.278 0.641 0.906 0.576 | - |
Cultivar | Treatment Nitrogen Rates (kg ha−1) | Pod Number per Plant | Seed Number per Pod | ||||
---|---|---|---|---|---|---|---|
Year | Mean | Year | Mean | ||||
2017 | 2018 | 2017 | 2018 | ||||
Aldana | 0 | 8.20 ± 0.406 * | 12.08 ± 2.143 | 10.14 | 1.63 ± 0.138 | 1.85 ± 0.109 | 1.74 |
30 | 8.13 ± 0.163 | 12.18 ± 1.883 | 10.16 | 1.55 ± 0.172 | 1.92 ± 0.065 | 1.74 | |
60 | 8.03 ± 1.101 | 12.80 ± 2.253 | 10.41 | 1.58 ± 0.141 | 1.82 ± 0.157 | 1.70 | |
Hi Stick + 0 | 8.40 ± 1.387 | 13.04 ± 2.258 | 10.72 | 1.88 ± 0.143 | 1.86 ± 0.010 | 1.87 | |
Hi Stick + 30 | 8.33 ± 0.352 | 14.25 ± 2.693 | 11.29 | 1.64 ± 0.140 | 1.82 ± 0.089 | 1.73 | |
Hi Stick + 60 | 8.48 ± 0.991 | 14.40 ± 2.577 | 11.44 | 1.64 ± 0.098 | 1.83 ± 0.145 | 1.74 | |
Nitragina + 0 | 8.10 ± 0.831 | 13.43 ± 2.144 | 10.76 | 1.58 ± 0.162 | 1.88 ± 0.045 | 1.73 | |
Nitragina + 30 | 8.07 ± 0.452 | 13.32 ± 2.568 | 10.69 | 1.60 ± 0.131 | 1.79 ± 0.137 | 1.69 | |
Nitragina + 60 | 8.09 ± 0.786 | 13.70 ± 2.395 | 10.89 | 1.57 ± 0.113 | 1.84 ± 0.063 | 1.70 | |
mean | 8.20 | 13.24 | - | 1.63 | 1.85 | - | |
Annushka | 0 | 10.10 ± 1.471 | 16.50 ± 2.028 | 13.30 | 1.76 ± 0.058 | 2.00 ± 0.227 | 1.88 |
30 | 10.53 ± 1.482 | 17.68 ± 2.228 | 14.11 | 1.69 ± 0.095 | 1.92 ± 0.150 | 1.81 | |
60 | 10.36 ± 1.810 | 17.68 ± 1.310 | 14.02 | 1.75 ± 0.116 | 1.85 ± 0.016 | 1.80 | |
Hi Stick + 0 | 10.70 ± 2.089 | 17.53 ± 1.941 | 14.11 | 1.79 ± 0.073 | 1.89 ± 0.329 | 1.84 | |
Hi Stick + 30 | 10.73 ± 0.676 | 18.30 ± 2.239 | 14.52 | 1.79 ± 0.159 | 1.94 ± 0.099 | 1.86 | |
Hi Stick + 60 | 11.35 ± 2.263 | 18.50 ± 3.473 | 14.93 | 1.74 ± 0.174 | 2.02 ± 0.086 | 1.88 | |
Nitragina + 0 | 9.89 ± 1.150 | 17.60 ± 2.424 | 13.74 | 1.69 ± 0.150 | 1.99 ± 0.150 | 1.84 | |
Nitragina + 30 | 9.80 ± 1.922 | 18.20 ± 4.024 | 14.00 | 1.64 ± 0.112 | 2.02 ± 0.121 | 1.83 | |
Nitragina + 60 | 10.00 ± 1.437 | 18.10 ± 3.004 | 14.05 | 1.59 ± 0.245 | 2.01 ± 0.101 | 1.80 | |
mean | - | 10.38 | 17.79 | - | 1.71 | 1.96 | - |
Mean for cultivar | - | 9.29 | 15.51 | - | 1.67 | 1.90 | - |
LSD (α = 0.05): Cultivar (A) (B) B/A A/B | - | 0.377 ** 0.289 0.409 0.416 | 0.020 0.348 0.493 0.285 | - | n.s. 0.096 0.135 0.111 | 0.033 0.037 0.052 0.042 | - |
Cultivar | Treatment Nitrogen Rates (kg ha−1) | Seed Number per Plant | Seed Weight (g plant−1) | ||||
---|---|---|---|---|---|---|---|
Year | Mean | Year | Mean | ||||
2017 | 2018 | 2017 | 2018 | ||||
Aldana | 0 | 13.41 * ± 0.901 | 22.35 ± 4.049 | 17.88 | 1.98 ± 0.161 | 3.72 ± 0.735 | 2.85 |
30 | 12.70 ± 2.750 | 23.28 ± 3.478 | 17.99 | 1.96 ± 0.475 | 3.95 ± 0.607 | 2.96 | |
60 | 12.74 ± 2.818 | 23.05 ± 2.797 | 17.89 | 1.90 ± 0.407 | 4.10 ± 0.497 | 3.00 | |
Hi Stick + 0 | 15.83 ± 2.207 | 24.25 ± 5.455 | 20.04 | 2.35 ± 0.399 | 4.48 ± 1.041 | 3.41 | |
Hi Stick + 30 | 13.72 ± 2.829 | 25.85 ± 4.671 | 19.78 | 2.20 ± 0.465 | 5.09 ± 0.761 | 3.64 | |
Hi Stick + 60 | 13.98 ± 1.299 | 26.35 ± 7.334 | 20.16 | 2.19 ± 0.274 | 5.14 ± 2.020 | 3.66 | |
Nitragina + 0 | 12.90 ± 2.247 | 25.20 ± 4.014 | 19.05 | 1.91 ± 0.336 | 4.76 ± 1.013 | 3.33 | |
Nitragina + 30 | 12.99 ± 3.178 | 23.81 ± 4.379 | 18.04 | 1.90 ± 0.532 | 4.90 ± 0.551 | 3.40 | |
Nitragina + 60 | 12.82 ± 1.483 | 25.21 ± 3.860 | 19.01 | 2.00 ± 0.221 | 4.88 ± 0.521 | 3.44 | |
mean | 13.45 | 24.36 | - | 2.04 | 4.56 | - | |
Annushka | 0 | 17.87 ± 2.770 | 32.65 ± 7.795 | 25.26 | 2.18 ± 0.219 | 3.85 ± 0.765 | 3.02 |
30 | 17.80 ± 3.007 | 33.55 ± 2.403 | 25.67 | 2.22 ± 0.399 | 4.01 ± 0.282 | 3.11 | |
60 | 18.19 ± 7.295 | 32.71 ± 2.331 | 25.45 | 2.20 ± 1.050 | 4.14 ± 0.265 | 3.17 | |
Hi Stick + 0 | 19.21 ± 3.506 | 33.13 ± 5.141 | 26.17 | 2.39 ± 0.373 | 4.40 ± 0.977 | 3.39 | |
Hi Stick + 30 | 19.27 ± 2.257 | 35.50 ± 7.109 | 27.38 | 2.28 ± 0.241 | 4.97 ± 0.885 | 3.62 | |
Hi Stick + 60 | 19.80 ± 2.408 | 37.37 ± 5.836 | 28.58 | 2.39 ± 0.476 | 5.15 ± 0.734 | 3.77 | |
Nitragina + 0 | 16.78 ± 2.021 | 35.00 ± 4.185 | 25.89 | 2.15 ± 0.372 | 4.48 ± 0.612 | 3.31 | |
Nitragina + 30 | 16.23 ± 3.805 | 36.76 ± 5.717 | 26.49 | 2.15 ± 0.661 | 4.88 ± 0.561 | 3.51 | |
Nitragina + 60 | 15.99 ± 3.883 | 46.38 ± 5.588 | 31.18 | 2.13 ± 0.531 | 4.93 ± 0.534 | 3.53 | |
mean | - | 17.90 | 35.89 | - | 2.23 | 4.53 | - |
Mean for cultivar | - | - | 2.14 | 4.55 | - | ||
LSD (α = 0.05): Cultivar (A) Treatment (B) B/A A/B | - | 0.060 ** 0.277 0.392 0.232 | 0.236 0.601 0.849 0.531 | - | 0.053 0.091 0.128 0.087 | n.s. 0.561 n.s n.s. | - |
Treatment Nitrogen Rates (kg ha−1) | 2017 | 2018 | ||||||
---|---|---|---|---|---|---|---|---|
Aldana | Annushka | Aldana | Annushka | |||||
First Pod Height (cm) | Plant Height (cm) | First Pod Height (cm) | Plant Height (cm) | First Pod Height (cm) | Plant Height (cm) | First Pod Height (cm) | Plant Height (cm) | |
0 | 14.0 ± 1.971 * | 47.8 ± 4.071 | 19.7 ± 2.632 | 55.6 ± 5.089 | 10.0 ± 0.884 | 45.2 ± 3.899 | 13.0 ± 0.810 | 55.4 ± 7.693 |
30 | 14.7 ± 1.756 | 49.5 ± 2.921 | 21.6 ± 2.952 | 57.4 ± 2.574 | 12.1 ± 1.003 | 47.5 ± 0.978 | 13.2 ± 1.209 | 57.3 ± 2.222 |
60 | 16.6 ± 2.285 | 50.1 ± 0.805 | 18.9 ± 4.458 | 61.5 ± 1.979 | 9.9 ± 1.186 | 46.9 ± 1.847 | 14.1 ± 1.731 | 55.9 ± 1.965 |
Hi Stick + 0 | 13.6 ± 1.556 | 51.7 ± 5.137 | 21.9 ± 1.803 | 59.2 ± 2.097 | 10.8 ± 1.596 | 46.7 ± 2.804 | 13.8 ± 2.395 | 55.8 ± 1.105 |
Hi Stick + 30 | 13.6 ± 1.728 | 52.9 ± 2.962 | 20.9 ± 3.031 | 57.9 ± 5.018 | 9.8 ± 0.991 | 50.2 ± 4.335 | 13.4 ± 0.804 | 62.1 ± 2.239 |
Hi Stick + 60 | 13.4 ± 1.416 | 59.0 ± 2.129 | 19.6 ± 1.725 | 61.5 ± 6.492 | 9.9 ± 1.390 | 52.3 ± 2.834 | 14.2 ± 2.745 | 59.8 ± 6.717 |
Nitragina + 0 | 16.4 ± 1.859 | 49.3 ± 2.023 | 21.5 ± 2.788 | 57.8 ± 2.812 | 9.9 ± 0.460 | 46.4 ± 3.383 | 14.2 ± 1.424 | 58.4 ± 3.688 |
Nitragina + 30 | 14.3 ± 3.146 | 53.7 ± 2.612 | 21.8 ± 2.481 | 58.2 ± 7.372 | 9.9 ± 1.665 | 50.1 ± 2.794 | 11.9 ± 1.653 | 60.1 ± 4.033 |
Nitragina + 60 | 16.6 ± 2.022 | 53.1 ± 2.859 | 22.5 ± 3.161 | 59.9 ± 7.744 | 10.9 ± 0.865 | 48.3 ± 3.593 | 13.3 ± 2.951 | 60.0 ± 4.004 |
mean | 14.8 | 51.9 | 20.9 | 58.8 | 10.4 | 48.2 | 10.4 | 58.3 |
Cultivar | Treatment Nitrogen Rates (kg ha−1) | Number of Nodules per Plant | Fresh Matter of Nodules (g·Plant−1) | ||||
---|---|---|---|---|---|---|---|
Year | Mean | Year | Mean | ||||
2017 | 2018 | 2017 | 2018 | ||||
Aldana | 0 | 0.10 * | 0.27 | 0.18 | 0.04 | 0.13 | 0.08 |
30 | 0.05 | 0.30 | 1.17 | 0.02 | 0.12 | 0.07 | |
60 | 0.02 | 0.33 | 0.17 | 0.04 | 0.12 | 0.08 | |
Hi Stick + 0 | 0.61 | 5.60 | 3.10 | 0.12 | 1.40 | 0.76 | |
Hi Stick + 30 | 0.52 | 6.11 | 3.31 | 0.07 | 2.30 | 1.18 | |
Hi Stick + 60 | 0.59 | 7.13 | 3.86 | 0.02 | 2.40 | 1.21 | |
Nitragina + 0 | 0.10 | 6.27 | 3.18 | 0.02 | 3.49 | 1.76 | |
Nitragina + 30 | 0.35 | 5.47 | 2.91 | 0.06 | 2.23 | 1.14 | |
Nitragina + 60 | 0.10 | 5.18 | 2.64 | 0.02 | 1.93 | 0.97 | |
mean | 0.27 | 4.07 | - | 0.04 | 1.57 | - | |
Annushka | 0 | 0.11 | 4.20 | 2.16 | 0.05 | 1.24 | 0.64 |
30 | 0.10 | 2.27 | 1.18 | 0.05 | 1.03 | 0.54 | |
60 | 0.11 | 2.60 | 1.36 | 0.05 | 0.99 | 0.52 | |
Hi Stick + 0 | 1.15 | 6.13 | 3.64 | 0.30 | 1.37 | 0.83 | |
Hi Stick + 30 | 1.35 | 5.93 | 3.64 | 0.23 | 1.34 | 0.78 | |
Hi Stick + 60 | 0.92 | 6.12 | 3.52 | 0.19 | 1.60 | 0.89 | |
Nitragina + 0 | 0.40 | 9.80 | 5.10 | 0.14 | 3.29 | 1.71 | |
Nitragina + 30 | 0.15 | 6.20 | 3.17 | 0.04 | 1.73 | 0.88 | |
Nitragina + 60 | 0.20 | 9.00 | 4.60 | 0.03 | 2.63 | 1.33 | |
mean | - | 0.49 | 5.81 | - | 0.12 | 1.69 | - |
Mean for cultivar | - | 0.38 | 4.93 | - | 0.083 | 1.63 | - |
LSD (α = 0.05): Cultivar (A) Treatment (B) B/A A/B | - | 0.091 ** 0.123 n.s. n.s. | 0.192 0.421 n.s. n.s. | - | 0.021 0.014 n.s. n.s. | n.s. 0.032 n.s. n.s | - |
Cultivar | Treatment Nitrogen Rates (kg ha−1) | Protein Concentration (mg·g DW−1) | Fat Concentration (mg·g DW−1) | ||||
---|---|---|---|---|---|---|---|
Year | Mean | Year | Mean | ||||
2017 | 2018 | 2017 | 2018 | ||||
Aldana | 0 | 281.3 * | 271.7 | 276.5 | 270.2 | 251.2 | 260.7 |
30 | 306.3 | 282.5 | 294.4 | 263.3 | 253.1 | 258.2 | |
60 | 306.3 | 289.4 | 297.8 | 270.1 | 259.4 | 264.7 | |
Hi Stick + 0 | 306.3 | 329.4 | 317.8 | 272.2 | 257.5 | 264.8 | |
Hi Stick + 30 | 312.5 | 335.6 | 324.1 | 264.4 | 247.3 | 255.8 | |
Hi Stick + 60 | 337.5 | 336.2 | 336.8 | 263.3 | 246.4 | 254.8 | |
Nitragina + 0 | 300.0 | 321.3 | 310.6 | 266.9 | 254.3 | 260.6 | |
Nitragina + 30 | 312.5 | 335.4 | 323.9 | 267.7 | 242.5 | 255.1 | |
Nitragina + 60 | 331.3 | 338.8 | 335.1 | 269.2 | 244.4 | 256.8 | |
mean | 310.4 | 315.6 | - | 268.3 | 250.7 | - | |
Annushka | 0 | 262.5 | 270.1 | 266.3 | 270.1 | 252.3 | 261.2 |
30 | 281.3 | 281.2 | 281.3 | 267.4 | 262.4 | 264.9 | |
60 | 300.0 | 282.5 | 291.3 | 260.3 | 265.5 | 262.9 | |
Hi Stick + 0 | 293.7 | 306.9 | 300.3 | 266.6 | 259.4 | 263.0 | |
Hi Stick + 30 | 300.0 | 327.5 | 313.7 | 266.3 | 244.6 | 255.4 | |
Hi Stick + 60 | 318.7 | 329.0 | 323.8 | 264.2 | 243.8 | 254.0 | |
Nitragina + 0 | 287.5 | 304.9 | 296.2 | 268.1 | 263.2 | 265.6 | |
Nitragina + 30 | 293.7 | 323.7 | 308.7 | 267.4 | 248.6 | 258.0 | |
Nitragina + 60 | 300.0 | 334.3 | 317.2 | 265.5 | 246.3 | 255.9 | |
mean | - | 293.0 | 306.7 | - | 266.2 | 254.0 | - |
Mean for cultivar | - | 301.7 | 311.1 | - | 267.1 | 252.3 | - |
LSD (α = 0.05): Cultivar (A) Treatment (B) B/A A/B | - | 2.30 ** 6.56 9.28 5.64 | 0.82 6.82 9.65 5.62 | - | n.s. 4.11 5.81 4.74 | 0.25 2.18 3.09 1.80 | - |
Cultivar | Treatment Nitrogen Rates (kg ha−1) | Ash Content (%) | Fiber Content (%) | ||||
---|---|---|---|---|---|---|---|
Year | Mean | Year | Mean | ||||
2017 | 2018 | 2017 | 2018 | ||||
Aldana | 0 | 6.20 * | 6.31 | 6.26 | 5.41 | 5.30 | 5.36 |
30 | 5.94 | 6.02 | 5.98 | 5.52 | 5.46 | 5.49 | |
60 | 6.11 | 6.03 | 6.07 | 5.58 | 5.48 | 5.53 | |
Hi Stick + 0 | 5.85 | 5.95 | 5.90 | 5.61 | 5.53 | 5.57 | |
Hi Stick + 30 | 5.91 | 5.91 | 5.91 | 5.35 | 5.22 | 5.28 | |
Hi Stick + 60 | 5.92 | 5.96 | 5.94 | 5.61 | 5.53 | 5.57 | |
Nitragina + 0 | 6.11 | 6.12 | 6.11 | 5.98 | 6.02 | 6.00 | |
Nitragina + 30 | 6.05 | 5.95 | 6.00 | 5.62 | 5.56 | 5.59 | |
Nitragina + 60 | 6.01 | 5.86 | 5.94 | 6.00 | 6.16 | 6.08 | |
mean | 6.01 | 6.01 | - | 5.63 | 5.58 | - | |
Annushka | 0 | 6.01 | 6.12 | 6.06 | 6.32 | 6.24 | 6.28 |
30 | 5.90 | 6.14 | 6.02 | 6.51 | 6.42 | 6.46 | |
60 | 5.95 | 6.03 | 5.99 | 6.48 | 6.60 | 6.54 | |
Hi Stick + 0 | 6.01 | 5.96 | 5.98 | 6.57 | 6.62 | 6.60 | |
Hi Stick + 30 | 5.74 | 5.82 | 5.78 | 6.61 | 6.68 | 6.64 | |
Hi Stick + 60 | 5.86 | 5.78 | 5.82 | 6.44 | 6.39 | 6.41 | |
Nitragina + 0 | 5.93 | 5.85 | 5.89 | 6.76 | 6.89 | 6.82 | |
Nitragina + 30 | 5.82 | 5.74 | 5.78 | 6.43 | 6.38 | 6.40 | |
Nitragina + 60 | 5.71 | 5.76 | 5.73 | 6.62 | 6.73 | 6.67 | |
mean | - | 5.88 | 5.91 | - | 6.53 | 6.55 | - |
Mean for cultivar | - | 5.95 | 5.96 | - | 6.08 | 6.07 | - |
LSD (α = 0.05): Cultivar (A) Treatment (B) B/A A/B | - | 0.127 ** 0.085 0.121 0.136 | 0.017 0.105 0.148 0.087 | - | 0.153 0.112 0.158 0.167 | 0.152 0.170 0.241 0.193 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Księżak, J.; Bojarszczuk, J. The Effect of Mineral N Fertilization and Bradyrhizobium japonicum Seed Inoculation on Productivity of Soybean (Glycine max (L.) Merrill). Agriculture 2022, 12, 110. https://doi.org/10.3390/agriculture12010110
Księżak J, Bojarszczuk J. The Effect of Mineral N Fertilization and Bradyrhizobium japonicum Seed Inoculation on Productivity of Soybean (Glycine max (L.) Merrill). Agriculture. 2022; 12(1):110. https://doi.org/10.3390/agriculture12010110
Chicago/Turabian StyleKsiężak, Jerzy, and Jolanta Bojarszczuk. 2022. "The Effect of Mineral N Fertilization and Bradyrhizobium japonicum Seed Inoculation on Productivity of Soybean (Glycine max (L.) Merrill)" Agriculture 12, no. 1: 110. https://doi.org/10.3390/agriculture12010110
APA StyleKsiężak, J., & Bojarszczuk, J. (2022). The Effect of Mineral N Fertilization and Bradyrhizobium japonicum Seed Inoculation on Productivity of Soybean (Glycine max (L.) Merrill). Agriculture, 12(1), 110. https://doi.org/10.3390/agriculture12010110