Understanding Arbuscular Mycorrhizal Colonization in Walnut Plantations: The Contribution of Cover Crops and Soil Microbial Communities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Sampling and Analyses
2.2.1. Soil Physicochemical Analyses
2.2.2. Microbiological Analyses
2.3. Statistical Analysis
3. Results
3.1. Bacterial and Fungal Abundance in Walnut Rhizosphere Soil
3.2. AM Fungal Community Colonization in Walnut Plantations
3.3. Soil Enzyme Activity
3.4. Principal Component Analysis of Cover Crops, Soil Microbial Communities and Physicochemical Soil Properties
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Wolz, K.J.; DeLucia, E.H. Alley cropping: Global patterns of species composition and function. Agric. Ecosyst. Environ. 2018, 252, 61–68. [Google Scholar] [CrossRef]
- FAO. Food and Agriculture Organization of United Nations. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 25 January 2021).
- Agence BIO. La bio en France, des Producteurs aux Consommateurs, 2nd ed. 2016. Available online: http://www.agencebio.org/sites/default/files/upload/documents/4_Chiffres/BrochureCC/cc2016_france_1.pdf (accessed on 1 September 2021).
- Lupwayi, N.Z.; Larney, F.J.; Blackshaw, R.E.; Kanashiro, D.A.; Pearson, D.C. Phospholipid fatty acid biomarkers show positive soil microbial community responses to conservation soil management of irrigated crop rotations. Soil Tillage Res. 2017, 168, 1–10. [Google Scholar] [CrossRef]
- Sahu, P.K.; Singh, D.P.; Prabha, R.; Meena, K.K.; Abhilash, P.C. Connecting microbial capabilities with the soil and plant health: Options for agricultural sustainability. Ecol. Indic. 2019, 105, 601–612. [Google Scholar] [CrossRef]
- Yao, H.; He, Z.; Wilson, M.; Campbell, C.D. Microbial Biomass and Community Structure in a Sequence of Soils with Increasing Fertility and Changing Land Use. Microb. Ecol. 2000, 40, 223–237. [Google Scholar] [CrossRef] [PubMed]
- Jangid, K.; Williams, M.A.; Franzluebbers, A.J.; Sanderlin, J.S.; Reeves, J.H.; Jenkins, M.B.; Endale, D.M.; Coleman, D.C.; Whitman, W.B. Relative impacts of land-u.se, management intensity and fertilization upon soil microbial community structure in agricultural systems. Soil Biol. Biochem. 2008, 40, 2843–2853. [Google Scholar] [CrossRef]
- Katulanda, P.M.; Walley, F.L.; Janzen, H.H.; Helgason, B.L. Land use legacy regulates microbial community composition in transplanted Chernozems. Appl. Soil Ecol. 2018, 129, 13–23. [Google Scholar] [CrossRef]
- Lehman, R.M.; Cambardella, C.A.; Stott, D.E.; Acosta-Martinez, V.; Manter, D.K.; Buyer, J.S.; Maul, J.E.; Smith, J.L.; Collins, H.P.; Halvorson, J.J.; et al. Understanding and enhancing soil biological health: The solution for reversing soil degradation. Sustainability 2015, 7, 988–1027. [Google Scholar] [CrossRef] [Green Version]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, E.R.; de Deyn, G.; de Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; et al. Soil quality—A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Blaszkowski, J.; Chwat, G.; Goralska, A. Acaulospora ignota and Cloroideoglomus hanlinii, two nexw species of arbuscular mycorrhizal fungi (Glomeromycota) from Brazil and Cuba. Mycol. Prog. 2015, 14, 18. [Google Scholar] [CrossRef]
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis, 3rd ed.; Academic Press: London, UK, 2008. [Google Scholar]
- Pande, M.; Tarafdar, J.C. Arbuscular mycorrhizal fungal diversity in neem-based agroforestry systems in Rajasthan. Appl. Soil Ecol. 2004, 26, 233–241. [Google Scholar] [CrossRef]
- Thioye, B.; Sanguin, H.; Kane, A.; Faria, S.M.; Fall, D.; Prin, Y.; Sanogo, D.; Ndiaye, C.; Duponnois, R.; Sylla, S.N.; et al. Impact of mycorrhiza-based inoculation strategies on Ziziphus mauritiana Lam. and its native mycorrhizal communities on the route of the Great Green Wall (Senegal). Ecol. Eng. 2019, 128, 66–76. [Google Scholar] [CrossRef]
- Verbruggen, E.; Kiers, E.T. Evolutionary ecology of mycorrhizal functional diversity in agricultural systems. Evol. Appl. 2010, 3, 547–560. [Google Scholar] [CrossRef]
- Mendes, R.; Garbeva, P.; Raaijmakers, J.M. The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 2013, 37, 634–663. [Google Scholar] [CrossRef]
- Galvez, L.; Douds, D.; Wagoner, P.; Longnecker, L.; Drinkwater, L.; Janke, R. An Overwintering Cover Crop Increases Inoculum of VAM Fungi in Agricultural Soil. Am. J. Altern. Agric. 1995, 10, 152–156. [Google Scholar] [CrossRef]
- Boswell, E.P.; Koide, R.T.; Shumway, D.L.; Addy, H.A. Winter wheat cover cropping, VA mycorrhizal fungi and maize growth and yield. Agric. Ecosyst. Environ. 1998, 67, 55–65. [Google Scholar] [CrossRef] [Green Version]
- Kabir, Z.; Koide, R.T. Effect of autumn and winter mycorrhizal cover crops on soil properties, nutrient uptake and yield of sweet corn in Pennsylvania, USA. Plant Soil 2002, 238, 205–215. [Google Scholar] [CrossRef]
- Hontoria, C.; Garcia-Gonzalez, I.; Quemada, M.; Roldan, A.; Alguacil, M.M. The cover crop determines the AMF community composition in soil and in roots of maize after a ten-year continuous crop rotation. Sci. Total Environ. 2019, 660, 913–922. [Google Scholar] [CrossRef]
- Zhang, R.; Mu, Y.; Li, X.; Li, S.; Sang, P.; Wang, X.; Wu, H.; Xu, N. Response of the arbuscular mycorrhizal fungi diversity and community in maize and soybean rhizosphere soil and roots to intercropping systems with different nitrogen application rates. Sci. Total Environ. 2020, 740, 139810. [Google Scholar] [CrossRef] [PubMed]
- Walder, F.; Boller, T.; Wiemken, A.; Courty, P.E. Regulation of plants’ phosphate uptake in common mycorrhizal networks: Role of intraradical fungal phosphate transporters. Plant Signal. Behav. 2016, 11, e1131372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowles, T.M.; Jackson, L.E.; Loeher, M.; Cavagnaro, T.R. Ecological intensification and arbuscular mycorrhizas: A meta-analysis of tillage and cover crop effects. J. Appl. Ecol. 2017, 54, 1785–1793. [Google Scholar] [CrossRef] [Green Version]
- Battie-Laclau, P.; Taschen, E.; Plassard, C.; Dezette, D.; Abadie, J.; Arnal, D.; Benezech, P.; Duthoit, M.; Pablo, A.L.; Jourdan, C.; et al. Role of trees and herbaceous vegetation beneath trees in maintaining arbuscular mycorrhizal communities in temperate alley cropping systems. Plant Soil 2020, 45, 153–171. [Google Scholar] [CrossRef]
- Bremner, J.M. Determination of nitrogen in soil by the Kjeldahl method. J. Agric. Sci. 1960, 55, 11–33. [Google Scholar] [CrossRef]
- Weil, R.R.; Islam, K.R.; Melissa, M.A.; Joel, B.G.; Samson-Liebig, S.E. Estimating active carbon for soil quality assessment, a simplified method for laboratory and field use. Am. J. Altern. Agric. 2003, 18, 3–17. [Google Scholar]
- Bressan, M.; Blum, A.; Castel, L.; Trinsoutrot-Gattin, I.; Laval, K.; Gangneux, C. Assessment of Verticillium flax inoculum in agroecosystem soils using real-time PCR assay. Appl. Soil Ecol. 2016, 108, 176–186. [Google Scholar] [CrossRef]
- Wright, S.F.; Upadhyaya, A. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 1998, 198, 97–107. [Google Scholar] [CrossRef]
- Montgomery, H.J.; Monreal, C.M.; Young, J.C.; Seifert, K.A. Determination of soil fungal biomass from soil ergosterol analyses. Soil Biol. Biochem. 2000, 32, 1207–1217. [Google Scholar] [CrossRef]
- Phillips, J.M.; Hayman, D.S. Improved procedures for clearing roots and staining parasitic and Vesicular-Arbuscular Mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 1970, 55, 158–161. [Google Scholar] [CrossRef]
- Trouvelot, A.; Kough, J.L.; Gianinazzi-Pearson, V. Mesure du Taux de Mycorhization VA d’un Système Radiculaire. Recherche de Méthodes d’Estimation Ayant une Signification Fonctionnelle. In Physiological and Genetical Aspects of Mycorrhizae; Gianinazzi-Pearson, V., Gianinazzi, S., Eds.; INRA Press: Paris, France, 1986; pp. 217–221. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.R-project.org (accessed on 25 January 2021).
- Gianinazzi, S.; Gollotte, A.; Binet, M.-N.; van Tuinen, D.; Redecker, D.; Wipf, D. Agroecology: The key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 2010, 20, 519–530. [Google Scholar] [CrossRef]
- Bainard, L.D.; Klironomos, J.N.; Gordon, A.M. Arbuscular mycorrhizal fungi in tree-based intercropping systems: A review of their abundance and diversity. Pedobiologia 2011, 54, 57–61. [Google Scholar] [CrossRef]
- Mortier, E.; Lamotte, O.; Martin-Laurent, F.; Recorbet, G. Forty years of study on interactions between walnut tree and arbuscular mycorrhizal fungi. Agron. Sustain. Dev. 2020, 40, 43. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Shaver, T.M.; Lindquist, J.L.; Shapiro, C.A.; Elmore, R.W.; Francis, C.A.; Hergert, G.W. Cover crops and ecosystem services: Insights from studies in temperate soils. J. Agron. 2015, 107, 2449–2474. [Google Scholar] [CrossRef] [Green Version]
- Mukumbareza, C.; Muchaonyerwa, P.; Chiduza, C. Effects of oats and grazing vetch cover crops and fertilisation on microbial biomass and activity after five years of rotation with maize. S. Afr. J. Plant Soil 2015, 32, 189–197. [Google Scholar] [CrossRef]
- Ingleby, K.; Wilson, J.; Munro, R.C.; Cavers, S. Mycorrhizas in agroforestry: Spread and sharing of arbuscular mycorrhizal fungi between trees and crops: Complementary use of molecular and microscopic approaches. Plant Soil 2007, 294, 125–136. [Google Scholar] [CrossRef] [Green Version]
- Shukla, A.; Kumar, A.; Jha, A.; Dhyani, S.K.; Vyas, D. Cumulative effects of tree-based intercropping on arbuscular mycorrhizal fungi. Biol. Fertil. Soils 2012, 48, 899–909. [Google Scholar] [CrossRef]
- de Carvalho, A.M.X.; de Castro Tavares, R.; Cardoso, I.M.; Kuyper, T.W. Mycorrhizal associations in agroforestry systems. In Soil Bioloy and Agriculture in the Tropics, 1st ed.; Patrice, D., Ed.; Springer: Heidelberg, Germany, 2010; pp. 185–208. [Google Scholar] [CrossRef]
- Wipf, D.; Krajinski, F.; van Tuinen, D.; Recorbet, G.; Courty, P.E. Trading on the arbuscular mycorrhiza market: From arbuscules to common mycorrhizal networks. New Phytol. 2019, 223, 1127–1142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-González, I.; Quemada, M.; Gabriel, J.L.; Hontoria, C. Arbuscular mycorrhizal fungal activity responses to winter cover crops in a sunflower and maize cropping system. Appl. Soil Ecol. 2016, 102, 10–18. [Google Scholar] [CrossRef]
- Chalk, P.M.; Souza, R.D.F.; Urquiaga, S.; Alves, B.J.R.; Boddey, R.M. The role of arbuscular mycorrhiza in legume symbiotic performance. Soil Biol. Biochem. 2006, 38, 2944–2951. [Google Scholar] [CrossRef]
- Kjøller, R.; Rosendahl, S. Effects of fungicides on arbuscular mycorrhizal fungi: Differential responses in alkaline phoshatase activity of external and internal hyphae. Biol. Fertil. Soils 2000, 5, 361–365. [Google Scholar] [CrossRef]
- Brito, I.; Goss, M.J.; De Carvalho, M. Effect of tillage and crop on arbuscular mycorrhiza colonization of winter wheat and triticale under Mediterranean conditions. Soil Use Manag. 2012, 28, 202–208. [Google Scholar] [CrossRef]
- Druille, M.; Cabello, M.N.; Omacini, M.; Golluscio, R.A. Glyphosate reduces spore viability and root colonization of arbuscular mycorrhizal fungi. Appl. Soil Ecol. 2013, 64, 99–103. [Google Scholar] [CrossRef]
- Ekenler, M.; Tabatabai, M.A. Tillage and residue management effects on β-glucosaminidase activity in soils. Soil Biol. Biochem. 2003, 35, 871–874. [Google Scholar] [CrossRef]
- Rankoth, L.M.; Udawatta, R.P.; Veum, K.S.; Jose, S.; Alagele, S. Cover crop influence on soil enzymes and selected chemical parameters for a claypan corn–soybean rotation. Agriculture 2019, 9, 125. [Google Scholar] [CrossRef] [Green Version]
- Sato, T.; Hachiya, S.; Inamura, N.; Ezawa, T.; Cheng, W.; Tawaraya, K. Secretion of acid phosphatase from extraradical hyphae of the arbuscular mycorrhizal fungus Rhizophagus clarus is regulated in response to phosphate availability. Mycorrhiza 2019, 29, 599–605. [Google Scholar] [CrossRef]
- Mille-Lindblom, C.; von Wachenfeldt, E.; Tranvik, L.J. Ergosterol as a measure of living fungal biomass: Persistence in environmental samples after fungal death. J. Microbiol. Methods 2004, 59, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Hart, M.M.; Reader, R.J. Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytol. 2002, 153, 335–344. [Google Scholar] [CrossRef]
- Olsson, P.A.; Larsson, L.; Bago, B.; Wallander, H.; van Aarle, I.M. Ergosterol and Fatty Acids for Biomass Estimation of Mycorrhizal Fungi. New Phytol. 2003, 159, 7–10. [Google Scholar] [CrossRef] [Green Version]
- Fujiyoshi, M.; Nakatsubo, T.; Ogura, A.; Horikoshi, T. Estimation of mycelial biomass of arbuscular mycorrhizal fungi associated with the annual legume Kummerowia striata by ergosterol analysis. Ecol. Res. 2000, 15, 121–131. [Google Scholar] [CrossRef]
- Dinesh, R.; Chaudhuri, S.G.; Sheeja, T.E.; Shiva, K.N. Soil microbial activity and biomass is stimulated by leguminous cover crops. J. Plant Nutr. Soil Sci. 2009, 172, 288–296. [Google Scholar] [CrossRef]
Elements | Farming System | |||
---|---|---|---|---|
Conventional | Organic | |||
Cover | without Cover | Cover | without Cover | |
pH (H2O) | 7.65 ± 0.26 a | 7.17 ± 0.16 a | 7.34 ± 0.28 a | 6.78 ± 0.01 a |
SOM (%) | 4.08 ± 0.63 a | 2.84 ± 1.70 b | 6.40 ± 1.98 a | 4.74 ± 0.84 b |
SOC (%) | 2.37 ± 0.37 a | 1.65 ± 0.99 b | 3.72 ± 1.15 a | 2.76 ± 0.49 b |
POXC (g·kg−1) | 1.01 ± 0.10 a | 0.80 ± 0.15 a | 1.22 ± 0.14 a | 1.06 ± 0.13 a |
Total Nitrogen (%) | 0.31 ± 0.01 a | 0.20 ± 0.07 a | 0.32 ± 0.06 a | 0.32 ± 0.03 a |
C/N ratio | 7.47 ± 1.19 a | 7.29 ± 1.76 a | 11.04 ± 1.70 a | 8.43 ± 1.03 b |
Mineral nitrogen (mg·kg−1) | 8.62 ± 0.47 a | 3.82 ± 1.44 b | 31.90 ± 3.06 a | 8.15 ± 1.63 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thioye, B.; Legras, M.; Castel, L.; Hirissou, F.; Chaftar, N.; Trinsoutrot-Gattin, I. Understanding Arbuscular Mycorrhizal Colonization in Walnut Plantations: The Contribution of Cover Crops and Soil Microbial Communities. Agriculture 2022, 12, 1. https://doi.org/10.3390/agriculture12010001
Thioye B, Legras M, Castel L, Hirissou F, Chaftar N, Trinsoutrot-Gattin I. Understanding Arbuscular Mycorrhizal Colonization in Walnut Plantations: The Contribution of Cover Crops and Soil Microbial Communities. Agriculture. 2022; 12(1):1. https://doi.org/10.3390/agriculture12010001
Chicago/Turabian StyleThioye, Babacar, Marc Legras, Lisa Castel, François Hirissou, Naouel Chaftar, and Isabelle Trinsoutrot-Gattin. 2022. "Understanding Arbuscular Mycorrhizal Colonization in Walnut Plantations: The Contribution of Cover Crops and Soil Microbial Communities" Agriculture 12, no. 1: 1. https://doi.org/10.3390/agriculture12010001
APA StyleThioye, B., Legras, M., Castel, L., Hirissou, F., Chaftar, N., & Trinsoutrot-Gattin, I. (2022). Understanding Arbuscular Mycorrhizal Colonization in Walnut Plantations: The Contribution of Cover Crops and Soil Microbial Communities. Agriculture, 12(1), 1. https://doi.org/10.3390/agriculture12010001