Inclusion of Citrullus colocynthis Seed Extract into Diets Induced a Hypolipidemic Effect and Improved Layer Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. CC Seed Extraction and Analysis
2.3. Birds and Experimental Protocol
2.4. Productive Performance
2.5. Blood Samples
2.5.1. Physiological Parameters
2.5.2. Stress Indicators
2.6. Lipid Profile
2.7. Statistical Analysis
3. Results
3.1. Lipid Profile
3.2. Stress Indicators
3.3. Physiological Parameters
3.4. Productive Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Jeloka, T.K.; Pandit, M.; Dharmatti, G.; Jamdade, T. Are oral protein supplements helpful in the management of malnutrition in dialysis patients? Indian J. Nephrol. 2013, 23, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Lewington, S.; Whitlock, G.; Clarke, R.; Sherliker, P.; Emberson, J.; Halsey, J.; Qizilbash, N.; Peto, R.; Collins, R. Blood cholesterol and vascular mortality by age, sex, and blood pressure: A meta-analysis of individual data from 61 prospective studies with 55000 vascular deaths. Lancet 2007, 370, 1829–1839. [Google Scholar] [CrossRef] [PubMed]
- Weggemans, R.M.; Zock, P.; Katan, M.B. Dietary cholesterol from eggs increases the ratio of total cholesterol to high-density lipoprotein cholesterol in humans: A meta-analysis. Am. J. Clin. Nutr. 2001, 73, 885–891. [Google Scholar] [CrossRef] [PubMed]
- Law, M.R.; Wald, N.J.; Rudnicka, A. Quantifying effect of statins on low density lipoprotein cholesterol, ischaemic heart disease, and stroke: Systematic review and meta-analysis. BMJ 2003, 326, 1423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keast, D.R.; Fulgoni, V.L.; Nicklas, T.A.; O’Neil, C.E. Food sources of energy and nutrients among children in the United States: National Health and Nutrition Examination Survey 2003–2006. Nutrients 2013, 5, 283–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Neil, C.E.; Keast, D.R.; Fulgoni, V.L.; Nicklas, T.A. Food sources of energy and nutrients among adults in the US: NHANES 2003–2006. Nutrients 2012, 4, 2097–2120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandez, M.L.; Webb, D. The LDL to HDL cholesterol ratio as a valuable tool to evaluate coronary heart disease risk. J. Am. Coll. Nutr. 2008, 27, 1–5. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Ludwig, D. The 2015 US dietary guidelines. JAMA 2015, 313, 2421–2422. [Google Scholar] [CrossRef]
- Downing, J.A.; Bryden, W.L. A non-invasive test of stress in laying hens. RIRDC Publ. 2002, 1–118. [Google Scholar]
- Lara, L.; Rostagno, M.H. Impact of heat stress on poultry production. Animals 2013, 3, 356–369. [Google Scholar] [CrossRef]
- Charmandari, E.; Tsigos, C.; Chrousos, G. Endocrinology of the stress response. Annu. Rev. Physiol. 2005, 67, 259–284. [Google Scholar] [CrossRef]
- Singh, R.; Cook, N.; Cheng, K.M.; Silversides, F.G. Invasive and noninvasive measurement of stress in laying hens kept in conventional cages and in floor pens. Poult. Sci. 2009, 88, 1346–1351. [Google Scholar] [CrossRef]
- Pham-Huy, L.A.; He, H.; Pham-Huy, C. Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci. 2008, 4, 89–96. [Google Scholar]
- Bahoran, T.; Soobrattee, M.; Luximon-Ramma, V.; Aruoma, O. Free radicals and antioxidants in cardiovascular health and disease. Internet J. Med. Update 2007, 1, 25–41. [Google Scholar] [CrossRef] [Green Version]
- Mumma, J.O.; Thaxton, J.P.; Vizzier-Thaxton, Y.; Dodson, W.L. Physiological stress in laying hens. Poult. Sci. 2006, 85, 761–769. [Google Scholar] [CrossRef] [PubMed]
- Chiu, H.-W.; Hua, K.-F. Hepatoprotective effect of wheat-based solid-state fermented Antrodia cinnamomea in carbon tetrachloride-induced liver injury in rat. PLoS ONE 2016, 11, e0153087. [Google Scholar] [CrossRef] [Green Version]
- Al-Ardi, M.H. The uses of gold nanoparticles and Citrullus colocynthis L. nanoparticles against Giardia lamblia in vivo. Clin. Epidemiol. Glob. Health 2020, 8, 1282–1286. [Google Scholar] [CrossRef]
- Alaqil, A.; Abbas, A.; El-Beltagi, H.; El-Atty, H.; Mehaisen, G.; Moustafa, E. Dietary supplementation of probiotic Lactobacillus acidophilus modulates cholesterol levels, immune response, and productive performance of laying hens. Animals 2020, 10, 1588. [Google Scholar] [CrossRef]
- Abbas, A.; Alaqil, A.; El-Beltagi, H.; El-Atty, H.A.; Kamel, N. Modulating laying hens productivity and immune performance in response to oxidative stress induced by E. coli challenge using dietary propolis supplementation. Antioxidants 2020, 9, 893. [Google Scholar] [CrossRef] [PubMed]
- Hazrati, S.; Rezaeipour, V.; Asadzadeh, S. Effects of phytogenic feed additives, probiotic and mannan-oligosaccharides on performance, blood metabolites, meat quality, intestinal morphology, and microbial population of Japanese quail. Br. Poult. Sci. 2019, 61, 132–139. [Google Scholar] [CrossRef]
- Gurudeeban, S.; Satyavani, K.; Ramanathan, T. Bitter apple (Citrullus colocynthis): An overview of chemical composition and biomedical potentials. Asian J. Plant Sci. 2010, 9, 394–401. [Google Scholar] [CrossRef]
- Qureshi, R.; Raza Bhatti, G.; Memon, R.A. Ethnomedicinal uses of herbs from northern part of Nara desert, Pakistan. Pak. J. Bot. 2010, 42, 839–851. [Google Scholar]
- Dallak, M. In vivo, hypolipidemic and antioxidant effects of Citrullus colocynthis pulp extract in alloxan-induced diabetic rats. Afr. J. Biotechnol. 2011, 10, 9898–9903. [Google Scholar] [CrossRef] [Green Version]
- Marzouk, Z.; Marzouk, B.; Mahjoub, M.A.; Haloui, E.; Mighri, Z.; Aouni, M.; Fenina, N. Screening of the antioxidant and the free radical scavenging potential of Tunisian Citrullus colocynthis Schrad. from Mednine. J. Food Agric. Environ. 2010, 8, 261–265. [Google Scholar]
- Kumar, S.; Kumar, D.; Jusha, M.; Saroha, K.; Singh, N.; Vashishta, B. Antioxidant and free radical scavenging potential of Citrullus colocynthis (L.) Schrad. methanolic fruit extract. Acta Pharm. 2008, 58, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Huseini, H.F.; Darvishzadeh, F.; Heshmat, R.; Jafariazar, Z.; Raza, M.; Larijani, B. The clinical investigation of Citrullus colocynthis (L.) schrad fruit in treatment of Type II diabetic patients: A randomized, double blind, placebo-controlled clinical trial. Phytother. Res. 2009, 23, 1186–1189. [Google Scholar] [CrossRef]
- Rahbar, A.R.; Nabipour, I. The hypolipidemic effect of Citrullus colocynthis on patients with hyperlipidmia. Pak. J. Biol. Sci. 2010, 13, 1202–1207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daradka, H.; Almasad, M.M.; Qazan, W.S.; El-Banna, N.M.; Samara, O.H. Hypolipidaemic effects of Citrullus colocynthis L. in rabbits. Pak. J. Biol. Sci. 2007, 10, 2768–2771. [Google Scholar] [CrossRef] [PubMed]
- Najafi, S.; Sanadgol, N.; Nejad, B.S.; Beiragi, M.A.; Sanadgol, E. Phytochemical screening and antibacterial activity of Citrullus colocynthis (Linn.) schrad against Staphylococcus aureus. J. Med. Plants Res. 2010, 4, 2321–2325. [Google Scholar] [CrossRef]
- Ali, A.A.; Alian, M.A.; Elmahi, H.A. Phytochemical analysis of some chemical metabolites of colocynth plant (Citrullus colocynths L.) and its activities as antimicrobial and antiplasmodial. J. Basic Appl. Sci. Res. 2013, 3, 228–236. [Google Scholar]
- Aly, A.M.; Naddaf, A. Anti-inflammatory activities of Colocynth topical gel. J. Med. Sci. 2006, 6, 216–221. [Google Scholar]
- Marzouk, B.; Marzouk, Z.; Haloui, E.; Fenina, N.; Bouraoui, A.; Aouni, M. Screening of analgesic and anti-inflammatory activities of Citrullus colocynthis from southern Tunisia. J. Ethnopharmacol. 2010, 128, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.I.; Rathore, H.; Sattar, M.Z.; Chatha, S.A.S.; Sarker, S.D.; Gilani, A.H. Citrullus colocynthis (L.) Schrad (bitter apple fruit): A review of its phytochemistry, pharmacology, traditional uses and nutritional potential. J. Ethnopharmacol. 2014, 155, 54–66. [Google Scholar] [CrossRef] [PubMed]
- AOAC Association of Official Analysis Chemists International. Official Methods of Analysis of AOAC International; AOAC International: Washington, DC, USA, 2005. [Google Scholar]
- Karumi, Y.; Onyeyili, P.A.; Ogugbuaja, V.O. Identification of active principles of M. balsamina (balsam apple) leaf extract. J. Med. Sci. 2004, 4, 179–182. [Google Scholar]
- Romero, L.M.; Reed, J.M. Collecting baseline corticosterone samples in the field: Is under 3 min good enough? Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2005, 140, 73–79. [Google Scholar] [CrossRef]
- Begley, M.; Hill, C.; Gahan, C.G.M. Bile salt hydrolase activity in probiotics. Appl. Environ. Microbiol. 2006, 72, 1729–1738. [Google Scholar] [CrossRef] [Green Version]
- Schlager, S.; Vujic, N.; Korbelius, M.; Duta-Mare, M.; Dorow, J.; Leopold, C.; Rainer, S.; Wegscheider, M.; Reicher, H.; Ceglarek, U.; et al. Lysosomal lipid hydrolysis provides substrates for lipid mediator synthesis in murine macrophages. Oncotarget 2017, 8, 40037–40051. [Google Scholar] [CrossRef] [Green Version]
- Dallak, M.; Bashir, N.; Abbas, M.; Elessa, R.; Haidara, R.E.M.; Khalil, M.; Al-Khateeb, M.A. Concomitant down regulation of glycolytic enzymes, upregulation of gluconeogenic enzymes and potential hepato-nephro-protective effects following the chronic administration of the hypoglycemic, insulinotropic citrullus colocynthis pulp extract. Am. J. Biochem. Biotechnol. 2009, 5, 153–161. [Google Scholar] [CrossRef] [Green Version]
- Raederstorff, D.G.; Schlachter, M.F.; Elste, V.; Weber, P. Effect of EGCG on lipid absorption and plasma lipid levels in rats. J. Nutr. Biochem. 2003, 14, 326–332. [Google Scholar] [CrossRef]
- Zamani, M.; Rahimi, A.O.; Mahdavi, R.; Nikbakhsh, M.; Jabbari, M.V.; Rezazadeh, H.; Delazar, A.; Nahar, L.; Sarker, S.D. Assessment of anti-hyperlipidemic effect of Citrullus colocynthis. Rev. Bras. Farm. 2007, 17, 492–496. [Google Scholar] [CrossRef]
- Tannin-Spitz, T.; Bergman, M.; Grossman, S. Cucurbitacin glucosides: Antioxidant and free-radical scavenging activities. Biochem. Biophys. Res. Commun. 2007, 364, 181–186. [Google Scholar] [CrossRef]
- Caulfield, M.P.; Padula, M.P. HPLC MS-MS analysis shows measurement of corticosterone in egg albumen is not a valid indicator of chicken welfare. Animals 2020, 10, 821. [Google Scholar] [CrossRef] [PubMed]
- Pavlík, A.; Sláma, P.; Mazalová, L.; Kabourková, E. Total cholesterol and corticosterone concentration relationship in blood plasma of laying hens. J. Microbiol. Biotechnol. Food Sci. 2016, 05, 17–19. [Google Scholar] [CrossRef] [Green Version]
- Mocellin, S.; Rossi, C.; Pilati, P.; Nitti, D. Tumor necrosis factor, cancer and anticancer therapy. Cytokine Growth Factor Rev. 2005, 16, 35–53. [Google Scholar] [CrossRef]
- Al-Aqil, A.; Zulkifli, I. Changes in heat shock protein 70 expression and blood characteristics in transported broiler chickens as affected by housing and early age feed restriction. Poult. Sci. 2009, 88, 1358–1364. [Google Scholar] [CrossRef] [PubMed]
- Hayley, S.; Kelly, O.; Anisman, H. Corticosterone changes in response to stressors, acute and protracted actions of tumor necrosis factor-α, and lipopolysaccharide treatments in mice lacking the tumor necrosis factor-α p55 receptor gene. Neuroimmunomodulation 2004, 11, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Villar, S.R.; Ronco, M.T.; Bussy, R.F.; Roggero, E.; Lepletier, A.; Manarin, R.; Savino, W.; Pérez, A.R.; Bottasso, O. Tumor necrosis factor-α regulates glucocorticoid synthesis in the adrenal glands of trypanosoma cruzi acutely-infected mice. The role of TNF-R1. PLoS ONE 2013, 8, e63814. [Google Scholar] [CrossRef] [Green Version]
- Kregel, K.C. Invited review: Heat shock proteins: Modifying factors in physiological stress responses and acquired thermotolerance. J. Appl. Physiol. 2002, 92, 2177–2186. [Google Scholar] [CrossRef] [Green Version]
- Al-Ghaithi, F.; El-Ridi, M.R.; Adeghate, E.; Amiri, M.H. Biochemical effects of Citrullus colocynthis in normal and diabetic rats. Mol. Cell. Biochem. 2004, 261, 143–149. [Google Scholar] [CrossRef]
- Alzarah, M.; Althobiati, F.; Abbas, A.; Mehaisen, G.; Kamel, N. Citrullus colocynthis seeds: A potential natural immune modulator source for broiler reared under chronic heat stress. Animals 2021, 11, 1951. [Google Scholar] [CrossRef]
- Charlton, M.R. Protein metabolism and liver disease. Baillieres. Clin. Endocrinol. Metab. 1996, 10, 617–635. [Google Scholar] [CrossRef]
- Elnagar, S.; Scheideler, S.; Beck, M. Reproductive hormones, hepatic deiodinase messenger ribonucleic acid, and vasoactive intestinal polypeptide-immunoreactive cells in hypothalamus in the heat stress-induced or chemically induced hypothyroid laying hen. Poult. Sci. 2010, 89, 2001–2009. [Google Scholar] [CrossRef]
- Al-Snafi, A.E. Chemical constituents and pharmacological effects of Citrullus colocynthis—A review. Asian J. Pharm. Res. 2016, 6, 57–67. [Google Scholar]
- Deng, W.; Dong, X.F.; Tong, J.M.; Zhang, Q. The probiotic Bacillus licheniformis ameliorates heat stress-induced impairment of egg production, gut morphology, and intestinal mucosal immunity in laying hens. Poult. Sci. 2012, 91, 575–582. [Google Scholar] [CrossRef]
- Idoko, A.S.; Oladiji, A.T.; Ilouno, L.E. Growth performance of rats maintained on citrullus colocynthis seed coatbased diet. IOSR J. Biotechnol. Biochem. 2015, 1, 9–14. [Google Scholar]
- Marzouk, B.; Marzouk, Z.; Décor, R.; Edziri, H.; Haloui, E.; Fenina, N.; Aouni, M. Antibacterial and anticandidal screening of Tunisian Citrullus colocynthis Schrad. from Medenine. J. Ethnopharmacol. 2009, 125, 344–349. [Google Scholar] [CrossRef]
- Wang, X.; Liu, L.; Zhao, J.; Jiao, H.; Lin, H. Stress impairs the reproduction of laying hens: An involvement of energy. World’s Poult. Sci. J. 2017, 73, 845–856. [Google Scholar] [CrossRef]
- Shini, S.; Shini, A.; Blackall, P. The potential for probiotics to prevent reproductive tract lesions in free-range laying hens. Anim. Prod. Sci. 2013, 53, 1298–1308. [Google Scholar] [CrossRef] [Green Version]
Chemical Analysis | Result 1 | Phytochemical Screening | Result 2 |
---|---|---|---|
Dry matter (DM) | 94.09% | Saponins | + |
Caloric content | 41.33 MJ | Tannins | + |
Crude fiber | 453.7 g | Flavonoids | + |
Total fat | 172.9 g | Reducing compounds | − |
Crude protein | 129.5 g | Alkaloids | − |
Total ash | 25.8 g | Terpenoids | − |
Calcium | 7.6 g | Quinones | − |
Potassium | 6.9 g | Coumarins | + |
Magnesium | 2.6 g | ||
Phosphorus | 0.3 g | ||
Iron | 0.2 g | ||
Sodium | 0.1 g |
Ingredients 1 | Content (g/kg) |
---|---|
Yellow corn | 565.5 |
Soybean meal (44%) | 276.0 |
Wheat bran | 10.0 |
Soybean oil | 30.0 |
Bone meal | 30.0 |
Limestone | 80.0 |
Salt (NaCl) | 4.0 |
Premix * | 3.0 |
DL-methionine | 1.5 |
Calculated chemical analysis 2 | |
Metabolizable energy (MJ/kg) | 1.26 |
Crude protein (g/kg) | 174.7 |
Calcium (g/kg) | 40.2 |
Available phosphorus (g/kg) | 5.2 |
Lysine (g/kg) | 9.5 |
Methionine (g/kg) | 4.2 |
Linoleic acid (g/kg) | 28.8 |
Determined chemical analysis 2 | |
Dry matter (g/kg) | 890.0 |
Crude protein (g/kg) | 167.5 |
Crude fat (g/kg) | 66.0 |
Crude fiber (g/kg) | 47.0 |
Total ash (g/kg) | 129.0 |
Calcium (g/kg) | 42.2 |
Available phosphorus (g/kg) | 4.2 |
Dietary ECCs Groups | Plasma TG | Plasma CH | Plasma HDL-CH | Plasma LDL-CH | Liver CH | Egg Yolk CH |
---|---|---|---|---|---|---|
(mg/dL) | (mg/dL) | (mg/dL) | (mg/dL) | (mg/g) | (mg/g) | |
Control | 207.4 ± 1.59 a | 152.3 ± 1.54 a | 40.8 ± 2.27 c | 113.2 ± 2.11 a | 5.4 ± 0.18 a | 12.3 ± 0.43 a |
Group 1 | 200.0 ± 1.83 b | 146.8 ± 1.62 b | 42.3 ± 2.18 c | 106.0 ± 2.82 b | 4.2 ± 0.11 b | 11.1 ± 0.29 b |
Group 2 | 188.6 ± 2.53 c | 135.5 ± 2.69 c | 47.3 ± 1.06 b | 89.8 ± 3.05 c | 3.3 ± 0.03 c | 10.4 ± 0.07 c |
Group 3 | 173.1 ± 2.32 d | 120.3 ± 1.68 d | 54.1 ± 4.17 a | 67.6 ± 4.08 d | 3.2 ± 0.09 c | 10.2 ± 0.27 c |
Polynomial contrast test; sum of squares (p-value) | ||||||
Combined | 4008.929 (<0.001) | 3581.897 (<0.001) | 647.676 (<0.001) | 7356.190 (<0.001) | 18.601 (<0.001) | 17.142 (<0.001) |
Linear term | 3985.304 (<0.001) | 3549.191 (<0.001) | 635.222 (<0.001) | 7273.272 (<0.001) | 14.206 (<0.001) | 13.065 (<0.001) |
Quadratic term | 2.613 (0.451) | 0.454 (0.732) | 3.101 (0.516) | 5.839 (0.444) | 4.263 (<0.001) | 4.065 (<0.001) |
Regression analysis; R2 (p-value) | ||||||
Linear effect | 0.973 (<0.001) | 0.970 (<0.001) | 0.804 (<0.001) | 0.964 (<0.001) | 0.753 (<0.001) | 0.692 (<0.001) |
Quadratic effect | 0.000 (0.486) | 0.001 (0.769) | 0.004 (0.519) | 0.000 (0.507) | 0.226 (<0.001) | 0.216 (<0.001) |
Dietary ECCs Groups | MDA | CORT | TNFα | HSP70 |
---|---|---|---|---|
(µM/mL) | (ng/mL) | (pg/mL) | (ng/mL) | |
Control | 2.84 ± 0.174 a | 4.88 ± 0.129 a | 94.62 ± 0.515 a | 24.13 ± 0.897 a |
Group 1 | 2.64 ± 0.386 a | 4.35 ± 0.288 b | 93.37 ± 0.683 b | 23.39 ± 1.188 b |
Group 2 | 2.14 ± 0.190 b | 3.72 ± 0.338 c | 93.25 ± 0.649 b | 22.07 ± 1.069 b |
Group 3 | 1.79 ± 0.167 c | 3.01 ± 0.243 d | 92.34 ± 1.038 c | 21.34 ± 1.006 c |
Polynomial contrast test; sum of squares (p-value) | ||||
Combined | 4.112 (<0.001) | 11.726 (<0.001) | 15.812 (<0.001) | 28.484 (<0.001) |
Linear term | 3.931 (<0.001) | 11.529 (<0.001) | 14.095 (<0.001) | 26.611 (<0.001) |
Quadratic term | 0.052 (0.367) | 0.158 (0.143) | 0.813 (0.242) | 1.156 (0.316) |
Regression analysis; R2 (p-value) | ||||
Linear effect | 0.738 (<0.001) | 0.881 (<0.001) | 0.523 (<0.001) | 0.529 (<0.001) |
Quadratic effect | 0.010 (0.379) | 0.012 (0.139) | 0.030 (0.248) | 0.023 (0.311) |
Dietary ECCs Groups | TP | T3 | ALT | AST |
---|---|---|---|---|
(g/dL) | (µM/mL) | (U/mL) | (U/mL) | |
Control | 4.63 ± 0.579 c | 5.69 ± 0.859 c | 13.71 ± 1.344 a | 30.88 ± 2.635 a |
Group 1 | 4.99 ± 0.122 bc | 6.15 ± 0.544 c | 12.41 ± 1.421 a | 25.46 ± 1.551 b |
Group 2 | 5.44 ± 0.298 b | 8.32 ± 0.619 b | 10.10 ± 0.894 b | 21.99 ± 1.337 c |
Group 3 | 6.05 ± 0.379 a | 10.05 ± 0.627 a | 9.92 ± 0.459 b | 20.73 ± 2.133 c |
Polynomial contrast test; sum of squares (p-value) | ||||
Combined | 6.713 (<0.001) | 73.422 (<0.001) | 61.039 (<0.001) | 371.368 (<0.001) |
Linear term | 6.671 (<0.001) | 70.065 (<0.001) | 48.976 (<0.001) | 302.328 (<0.001) |
Quadratic term | 0.026 (0.680) | 0.046 (0.754) | 8.970 (0.013) | 69.039 (<0.001) |
Regression analysis; R2 (p-value) | ||||
Linear effect | 0.693 (<0.001) | 0.850 (<0.001) | 0.575 (<0.001) | 0.672 (<0.001) |
Quadratic effect | 0.003 (0.673) | 0.000 (0.784) | 0.105 (0.016) | 0.154 (<0.001) |
Dietary ECCs Groups | Egg Production | Egg Weight | Feed Intake | Feed Conversion |
---|---|---|---|---|
(%) | (g) | (g/d) | (kg FI/kg EM) | |
Control | 91.0 ± 1.51 b | 62.1 ± 0.48 d | 114.3 ± 0.88 a | 2.03 ± 0.044 a |
Group 1 | 91.5 ± 2.36 b | 62.7 ± 0.67 c | 114.7 ± 0.90 a | 2.00 ± 0.061 a |
Group 2 | 93.3 ± 1.08 a | 63.4 ± 0.57 b | 110.8 ± 1.07 b | 1.87 ± 0.032 b |
Group 3 | 94.3 ± 1.09 a | 64.3 ± 0.47 a | 109.5 ± 0.53 c | 1.81 ± 0.028 c |
Polynomial contrast test; sum of squares (p-value) | ||||
Combined | 126.775 (<0.001) | 51.092 (<0.001) | 359.014 (<0.001) | 0.596 (<0.001) |
Linear term | 118.734 (<0.001) | 50.518 (<0.001) | 298.909 (<0.001) | 0.549 (<0.001) |
Quadratic term | 1.819 (0.402) | 0.386 (0.266) | 0.721 (0.331) | 0.006 (0.077) |
Regression analysis; R2 (p-value) | ||||
Linear effect | 0.395 (<0.001) | 0.702 (<0.001) | 0.729 (<0.001) | 0.759 (<0.001) |
Quadratic effect | 0.006 (0.407) | 0.006 (0.264) | 0.001 (0.505) | 0.008 (<0.120) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alzarah, M.I.; Alaqil, A.A.; Abbas, A.O.; Nassar, F.S.; Mehaisen, G.M.K.; Gouda, G.F.; Abd El-Atty, H.K.; Moustafa, E.S. Inclusion of Citrullus colocynthis Seed Extract into Diets Induced a Hypolipidemic Effect and Improved Layer Performance. Agriculture 2021, 11, 808. https://doi.org/10.3390/agriculture11090808
Alzarah MI, Alaqil AA, Abbas AO, Nassar FS, Mehaisen GMK, Gouda GF, Abd El-Atty HK, Moustafa ES. Inclusion of Citrullus colocynthis Seed Extract into Diets Induced a Hypolipidemic Effect and Improved Layer Performance. Agriculture. 2021; 11(9):808. https://doi.org/10.3390/agriculture11090808
Chicago/Turabian StyleAlzarah, Mohamed I., Abdulaziz A. Alaqil, Ahmed O. Abbas, Farid S. Nassar, Gamal M. K. Mehaisen, Gouda F. Gouda, Hanaa K. Abd El-Atty, and Eman S. Moustafa. 2021. "Inclusion of Citrullus colocynthis Seed Extract into Diets Induced a Hypolipidemic Effect and Improved Layer Performance" Agriculture 11, no. 9: 808. https://doi.org/10.3390/agriculture11090808
APA StyleAlzarah, M. I., Alaqil, A. A., Abbas, A. O., Nassar, F. S., Mehaisen, G. M. K., Gouda, G. F., Abd El-Atty, H. K., & Moustafa, E. S. (2021). Inclusion of Citrullus colocynthis Seed Extract into Diets Induced a Hypolipidemic Effect and Improved Layer Performance. Agriculture, 11(9), 808. https://doi.org/10.3390/agriculture11090808