Using Genomics to Measure Phenomics: Repeatability of Bull Prolificacy in Multiple-Bull Pastures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Real Data
2.2. Simulating Errors in Pooling Allele Frequency
3. Results
3.1. Repeatability Estimates
3.2. Explanatory Variables
3.3. Estimated Prolificacy
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lunstra, D.D.; Laster, D.B. Influence of single-sire and multiple-sire natural mating on pregnancy rate of beef heifers. Theriogenology 1982, 18, 373–382. [Google Scholar] [CrossRef]
- Lehrer, A.R.; Brown, M.B.; Schindler, H.; Holzer, Z.; Larsen, B. Paternity tests in multi-sired beef herds by blood grouping. Acta Vet. Scand. 1977, 18, 433–441. [Google Scholar] [CrossRef]
- Holroyd, R.G.; Doogan, V.J.; De Faveri, J.; Fordyce, G.; McGowan, M.R.; Bertram, J.D.; Vankan, D.M.; Fitzpatrick, L.A.; Jayawardhana, G.A.; Miller, R.G. Bull selection and use in northern Australia: 4. Calf output and predictors of fertility of bulls in multiple-sire herds. Anim. Reprod. Sci. 2002, 71, 67–79. [Google Scholar] [CrossRef]
- Van Eenennaam, A.L.; Weaber, R.L.; Drake, D.J.; Penedo, M.C.T.; Quaas, R.L.; Garrick, D.J.; Pollak, E.J. DNA-based paternity analysis and genetic evaluation in a large, commercial cattle ranch setting. J. Anim. Sci. 2007, 85, 3159–3169. [Google Scholar] [CrossRef] [PubMed]
- Van Eenennaam, A.L.; Weber, K.L.; Drake, D.J. Evaluation of bull prolificacy on commercial beef cattle ranches using DNA paternity analysis. J. Anim. Sci. 2014, 92, 2693–2701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ologun, A.G.; Chenoweth, P.J.; Brinks, J.S. Relationships among production traits and estimates of sex drive and dominance value in yearling beef bulls. Theriogenology 1981, 15, 379–388. [Google Scholar] [CrossRef]
- Whitworth, W.A.; Forrest, D.W.; Sprott, L.R.; Holloway, J.W.; Warrington, B.G. Physical, and mating behavior traits of bulls on number of calves sired per bull in a multisire herd. Prof. Anim. Sci. 2008, 24, 184–188. [Google Scholar] [CrossRef]
- Keele, J.W.; Kuehn, L.A.; McDaneld, T.G.; Tait, R.G., Jr.; Jones, S.A.; Smith, T.P.L.; Shackelford, S.D.; King, D.A.; Wheeler, T.L.; Lindholm-Perry, A.K.; et al. Genomewide association study of lung lesions in cattle using sample pooling. J. Anim. Sci. 2015, 93, 956–964. [Google Scholar] [CrossRef] [PubMed]
- Baller, J.L.; Kachman, S.D.; Kuehn, L.A.; Spangler, M.L. Genomic prediction using pooled data in a single-step genomic best linear unbiased prediction framework. J. Anim. Sci. 2020, 98, skaa184:1–skaa184:12. [Google Scholar] [CrossRef] [PubMed]
- Reverter, A.; Porto-Neto, L.R.; Fortes, M.R.S.; McCulloch, R.; Lyons, R.E.; Moore, S.; Nicol, D.; Henshall, J.; Lehnert, S.A. Genomic analyses of tropical beef cattle fertility based on genotyping pools of Brahman cows with unknown pedigree. J. Anim. Sci. 2016, 94, 4096–4108. [Google Scholar] [CrossRef] [PubMed]
- Alexandre, P.A.; Porto-Neto, L.R.; Karaman, E.; Lehnert, S.A.; Reverter, A. Pooled genotyping strategies for rapid construction of genomic reference populations. J. Anim. Sci. 2019, 97, 4761–4769. [Google Scholar] [CrossRef] [PubMed]
- Gregory, K.E.; Cundiff, L.V.; Koch, R.M. Breed effects and heterosis in advanced generations of composite populations for preweaning traits of beef cattle. J. Anim. Sci. 1991, 69, 947–960. [Google Scholar] [CrossRef] [PubMed]
- Heaton, M.P.; Harhay, G.P.; Bennett, G.L.; Stone, R.T.; Grosse, W.M.; Casas, E.; Keele, J.W.; Smith, T.P.; Chitko-McKown, C.G.; Laegreid, W.W. Selection and use of SNP markers for animal identification and paternity analysis in U.S. beef cattle. Mamm. Genome 2002, 13, 272–281. [Google Scholar] [CrossRef] [PubMed]
- amap: Another Multidimensional Analysis Package. Available online: https://cran.r-project.org/web/packages/amap/index.html (accessed on 6 May 2021).
- Kuehn, L.A.; McDaneld, T.G.; Keele, J.W. Quantification of genomic relationship from DNA pooled samples. In Proceedings of the World Congress on Genetics Applied to Livestock Production, Auckland, New Zealand, 11–16 February 2018; Volume 11, p. 631. [Google Scholar]
- Abrams, A.N.; McDaneld, T.G.; Keele, J.W.; Chitko-McKown, C.G.; Kuehn, L.A.; Gonda, M.G. Evaluating accuracy of DNA pool construction based on white blood cell counts. Front. Genet. 2021, 12, 635846:1–635846:6. [Google Scholar] [CrossRef] [PubMed]
- quadprog: Functions to Solve Quadratic Programming Problems. Available online: https://CRAN.R-project.org/package=quadprog (accessed on 11 May 2021).
- McCosker, T.H.; Turner, A.F.; McCool, C.J.; Post, T.B.; Bell, K. Brahman bull fertility in a north Australian rangeland herd. Theriogenology 1989, 27, 285–300. [Google Scholar] [CrossRef]
- Abell, K.M.; Theurer, M.E.; Larson, R.L.; White, B.J.; Hardin, D.K.; Randle, R.F.; Cushman, R.A. Calving distributions of individual bulls in multiple-sire pastures. Theriogenology 2017, 93, 7–11. [Google Scholar] [CrossRef] [Green Version]
- Tait, R.G., Jr.; Shackelford, S.D.; Wheeler, T.L.; King, D.A.; Keele, J.W.; Casas, E.; Smith, T.P.; Bennett, G.L. CAPN1, CAST, and DGAT1 genetic effects on preweaning performance, carcass quality traits, and residual variance of tenderness in a beef cattle population selected for haplotype and allele equalization. J. Anim. Sci. 2014, 92, 5382–5393. [Google Scholar] [CrossRef] [PubMed]
- Bennett, G.L.; Tait, R.G., Jr.; Shackelford, S.D.; Wheeler, T.L.; King, D.A.; Casas, E.; Smith, T.P.L. Enhanced estimates of carcass and meat quality effects for polymorphisms in myostatin and mu-calpain genes. J. Anim. Sci. 2019, 97, 569–577. [Google Scholar] [CrossRef]
- Snelling, W.M.; Cushman, R.A.; Fortes, M.R.S.; Reverter, A.; Bennett, G.L.; Keele, J.W.; Kuehn, L.A.; McDaneld, T.G.; Thallman, R.M.; Thomas, M.G. How single nucleotide polymorphism chips will advance our knowledge of factors controlling puberty and aid in selecting replacement beef females. J. Anim. Sci. 2012, 90, 1152–1165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cushman, R.A.; Tait, R.G., Jr.; McNeel, A.K.; Forbes, E.D.; Amundson, O.L.; Lents, C.A.; Lindholm-Perry, A.K.; Perry, G.A.; Wood, J.A.; Cupp, A.S.; et al. A polymorphism in myostatin influences puberty but not fertility in beef heifers, whereas µ-calpain affects first calf birth weight. J. Anim. Sci. 2015, 93, 117–126. [Google Scholar] [CrossRef] [PubMed]
- OMIA-Online Mendelian Inheritance in Animals. Available online: http://omia.org/home/ (accessed on 4 May 2021).
- FASS. Guide for the Care and Use of Agricultural Animals in Agricultural Research and Teaching, 1st ed.; Federation of Animal Science Societies: Savoy, IL, USA, 1999. [Google Scholar]
Calf Birth Year | Population | Pasture | Bulls Assigned, N | Bulls Analyzed 1, N | Cows Assigned, N | Cow Age, Year | Natural Service, d | Calves Born, N | Sire Known, N |
---|---|---|---|---|---|---|---|---|---|
2013 | MARC I | A | 8 | 6 | 157 | 3.92 | 63 | 140 | 138 |
66 2 | 7.45 | 39 | 57 | 57 | |||||
MARC II | B | 7 | 5 | 130 | 3.24 | 63 | 115 | 110 | |
86 2 | 7.20 | 39 | 75 | 69 | |||||
MARC III | C | 6 | 6 | 65 | 3.06 | 63 | 43 | 42 | |
165 2 | 6.39 | 39 | 150 | 148 | |||||
Angus | D | 10 | 10 | 246 | 4.77 | 63 | 227 | 227 | |
2014 | MARC I | E | 6 | 6 | 156 | 4.08 | 63 | 146 | 144 |
F | 3 | 2 | 62 | 8.42 | 63 | 49 | 48 | ||
MARC II | G | 9 | 9 | 214 | 5.05 | 63 | 180 | 178 | |
MARC III | H | 10 | 9 | 245 | 5.37 | 63 | 201 | 201 | |
Angus | I | 11 | 11 | 267 | 4.97 | 63 | 226 | 225 | |
2015 | MARC I | J | 9 | 9 | 222 | 5.52 | 63 | 182 | 182 |
MARC II | K | 9 | 7 | 212 | 5.13 | 61 | 179 | 161 | |
MARC III | L | 11 | 11 | 251 | 4.97 | 62 | 195 | 194 | |
Angus | M | 11 | 10 | 256 | 5.21 | 60 | 235 | 210 | |
2016 | MARC I | N | 9 | 9 | 221 | 5.31 | 49 | 198 | 198 |
MARC II | O | 9 | 9 | 203 | 5.04 | 49 | 168 | 165 | |
MARC III | P | 6 | 6 | 126 | 3.07 | 49 | 110 | 109 | |
Q | 5 | 5 | 102 | 6.32 | 49 | 90 | 90 | ||
Angus | R | 11 | 11 | 251 | 5.14 | 49 | 214 | 213 |
No. Bulls | 2013 | 2014 | 2015 | 2016 |
---|---|---|---|---|
4 | 1 | 1 | 1 | 1 |
7 | 1 | 1 | 1 | 0 |
1 | 1 | 0 | 1 | 1 |
5 | 0 | 1 | 1 | 1 |
7 | 1 | 1 | 0 | 0 |
6 | 0 | 1 | 1 | 0 |
11 | 0 | 0 | 1 | 1 |
8 | 1 | 0 | 0 | 0 |
8 | 0 | 1 | 0 | 0 |
3 | 0 | 0 | 1 | 0 |
19 | 0 | 0 | 0 | 1 |
CalfN | No. Observations |
---|---|
0 | 3 |
1 to 7 | 18 |
8 to 14 | 31 |
15 to 21 | 35 |
22 to 28 | 21 |
29 to 35 | 12 |
36 to 42 | 13 |
43 to 49 | 4 |
50 to 56 | 3 |
57 | 1 |
Estimate | Value 1 | SE |
---|---|---|
Between bull | 1.72 | 0.45 |
Within bull | 1.05 | 0.21 |
Repeatability | 0.62 | 0.09 |
Contrasts and Regression Coefficients | Value, N 1 | SE 1 | P 2 |
---|---|---|---|
Dam was 2-year-old | 2.46 | 3.93 | 0.32 |
Previously used as yearling | 5.25 | 3.12 | 0.11 |
Previously used, any age | 3.64 | 2.51 | 0.18 |
Breeding age older than 2 years | 3.79 | 2.66 | 0.16 |
Breeding exam weight, N/kg | −0.005 | 0.015 | 0.79 |
Breeding scrotal circumference, N/cm | −1.04 | 0.59 | 0.11 |
Values from adding 2 variates simultaneously | |||
Scrotal circumference, N/cm | −1.56 | 0.63 | 0.03 |
Breeding age older than 2 years | 6.33 | 2.80 | 0.02 |
Dam Genotypes | Pasture | Intercept | SE | Slope | SE | r2 | SD |
---|---|---|---|---|---|---|---|
None | N | −0.006 | 0.009 | 0.553 | 0.077 | 0.879 | 0.011 |
O | −0.003 | 0.015 | 0.529 | 0.133 | 0.692 | 0.012 | |
P | −0.007 | 0.011 | 0.536 | 0.046 | 0.977 | 0.014 | |
Q | −0.007 | 0.013 | 0.537 | 0.063 | 0.956 | 0.009 | |
R | 0.005 | 0.008 | 0.452 | 0.069 | 0.842 | 0.013 | |
Pooled | N | 0.002 | 0.003 | 0.486 | 0.025 | 0.980 | 0.004 |
O | −0.002 | 0.005 | 0.516 | 0.043 | 0.950 | 0.004 | |
P | −0.000 | 0.005 | 0.502 | 0.021 | 0.994 | 0.006 | |
Q | 0.006 | 0.008 | 0.471 | 0.043 | 0.971 | 0.006 | |
R | −0.000 | 0.002 | 0.501 | 0.020 | 0.987 | 0.004 | |
Individual | N | 0.002 | 0.003 | 0.487 | 0.023 | 0.983 | 0.003 |
O | −0.003 | 0.005 | 0.522 | 0.041 | 0.956 | 0.004 | |
P | 0.001 | 0.005 | 0.494 | 0.022 | 0.993 | 0.007 | |
Q | .0005 | 0.009 | 0.476 | 0.043 | 0.973 | 0.006 | |
R | 0.000 | 0.002 | 0.499 | 0.017 | 0.990 | 0.003 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bennett, G.L.; Keele, J.W.; Kuehn, L.A.; Snelling, W.M.; Dickey, A.M.; Light, D.; Cushman, R.A.; McDaneld, T.G. Using Genomics to Measure Phenomics: Repeatability of Bull Prolificacy in Multiple-Bull Pastures. Agriculture 2021, 11, 603. https://doi.org/10.3390/agriculture11070603
Bennett GL, Keele JW, Kuehn LA, Snelling WM, Dickey AM, Light D, Cushman RA, McDaneld TG. Using Genomics to Measure Phenomics: Repeatability of Bull Prolificacy in Multiple-Bull Pastures. Agriculture. 2021; 11(7):603. https://doi.org/10.3390/agriculture11070603
Chicago/Turabian StyleBennett, Gary L., John W. Keele, Larry A. Kuehn, Warren M. Snelling, Aaron M. Dickey, Darrell Light, Robert A. Cushman, and Tara G. McDaneld. 2021. "Using Genomics to Measure Phenomics: Repeatability of Bull Prolificacy in Multiple-Bull Pastures" Agriculture 11, no. 7: 603. https://doi.org/10.3390/agriculture11070603
APA StyleBennett, G. L., Keele, J. W., Kuehn, L. A., Snelling, W. M., Dickey, A. M., Light, D., Cushman, R. A., & McDaneld, T. G. (2021). Using Genomics to Measure Phenomics: Repeatability of Bull Prolificacy in Multiple-Bull Pastures. Agriculture, 11(7), 603. https://doi.org/10.3390/agriculture11070603