Screen Oilseed Rape (Brassica napus) Suitable for Low-Loss Mechanized Harvesting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Cultivars
2.2. Experiments for Pod Shatter Resistance
2.2.1. Materials
2.2.2. Two-Degree-of-Freedom Collision Method (2-DOF Method)
2.3. Rape Agronomic Traits and Plant Geometry Investigation
2.4. Field Mechanical Harvesting
3. Results
3.1. Pod Shatter Resistance of Different Varieties
3.2. Rape Plant Agronomic Traits
3.3. Pod Layer Geometry
3.4. Field Mechanical Harvesting
4. Discussion
4.1. Plant Structure Suitability for Mechanized Harvesting
4.2. Variety Screening
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Delgado, M.; Felix, M.; Bengoechea, C. Development of bioplastic materials: From rapeseed oil industry by products to added-value biodegradable biocomposite materials. Ind. Crops Prod. 2018, 125, 401–407. [Google Scholar] [CrossRef]
- Szubert, K. Synthesis of organofunctional silane from rapeseed oil and its application as a coating material. Cellulose 2018, 25, 6269–6278. [Google Scholar] [CrossRef] [Green Version]
- Shim, Y.Y.; Falk, K.; Ratanapariyanuch, K.; Reaney, M.J.T. Food and fuel from Canadian oilseed grains: Biorefinery production may optimize both resources. Eur. J. Lipid Sci. Technol. 2017, 119, 1438–7697. [Google Scholar] [CrossRef]
- Kuai, J.; Sun, Y.Y.; Zuo, Q.S.; Liao, Q.X.; Leng, S.H.; Cheng, Y.G.; Cao, S. Optimization of plant density and row spacing for mechanical harvest in winter rapeseed (Brassica napus L.). Acta Agron. Sin. 2016, 42, 898–908. [Google Scholar] [CrossRef]
- Pari, L.; Assirelli, A.; Suardi, A.; Civitarese, V.; Del Giudice, A.; Costa, C.; Santangelo, E. The harvest of oilseed rape (Brassica napus L.): The effective yield losses at on-farm scale in the Italian area. Biomass Bioenerg. 2012, 46, 453–458. [Google Scholar] [CrossRef]
- Gulden, R.H.; Cavalieri, A.; Syrovy, L.D.; Shirtliffe, S.J. Pod drop in brassica napus is linked to weight-adjusted pod-retention resistance. Field Crops Res. 2017, 205, 34–44. [Google Scholar] [CrossRef]
- Gulden, R.H.; Shirtliffe, S.J.; Thomas, A.G. Harvest losses of canola (Brassica napus) cause large seedbank inputs. Weed Sci. 2003, 51, 83–86. [Google Scholar] [CrossRef]
- Squires, T.M.; Gruwel, M.L.H.; Zhou, R.; Sokhansanj, S.; Abrams, S.R.; Cutler, A.J. Dehydration and dehiscence in siliques of Brassica napus and Brassica rapa. Can. J. Bot. 2003, 81, 248–254. [Google Scholar] [CrossRef]
- Luo, H.F.; Tang, C.Z.; Guan, C.Y.; Wu, M.L.; Xie, F.P.; Zhou, Y. Plant characteristic research on field rape based on mechanized harvesting adaptability. Trans. CSAE 2010, 26, 61–66. [Google Scholar]
- Bruce, D.M.; Farrent, J.W.; Morgan, C.L.; Child, R.D. Determining the oilseed rape pod strength needed to reduce seed loss due to pod shatter. Biosyst. Eng. 2002, 81, 179–184. [Google Scholar] [CrossRef]
- Cavalieri, A.; Lewis, D.W.; Gulden, R.H. Pod drop and pod shatter are not closely related in canola. Crop Sci. 2014, 54, 1184–1188. [Google Scholar] [CrossRef]
- Cavalieri, A.; Harker, K.N.; Hall, L.M.; Willenborg, C.J.; Haile, T.A.; Shirtliffe, S.J.; Gulden, R.H. Evaluation of the causes of on-farm harvest losses in canola in the northern Great Plains. Crop Sci. 2016, 56, 1–11. [Google Scholar] [CrossRef]
- Gao, Z.P.; Xu, L.Z.; Li, Y.M.; Wang, Y.D.; Sun, P.P. Vibration measure and analysis of crawler-type rice and wheat combine harvester in field harvesting condition. Trans. CSAE 2017, 33, 48–55. [Google Scholar] [CrossRef]
- Morgan, C.L.; Bruce, D.M.; Child, R.; Ladbrooke, Z.L.; Arthur, A.E. Genetic variation for pod shatter resistance among lines of oilseed rape developed from synthetic B. napus. Field Crops Res. 1998, 58, 153–165. [Google Scholar] [CrossRef]
- Xu, L.Z.; Li, Y.M.; Ma, C.X. Design of Main Working Parts of 4LYB1-2.0 Rape Combine Harvester. Trans. CSAE 2008, 08, 54–57. [Google Scholar]
- Price, J.S.; Hobson, R.N.; Neale, M.A.; Bruce, D.M. Seed losses in commercial harvesting of oilseed rape. J. Agric. Eng. Res. 1996, 65, 183–191. [Google Scholar] [CrossRef]
- Liu, J.; Wang, W.X.; Mei, D.S.; Wang, H.; Fu, L.; Liu, D.M.; Li, Y.C.; Hu, Q. Characterizing variation of branch angle and genome-wide association mapping in rapeseed (Brassica napus L.). Front. Plant. Sci. 2016, 7, 21. [Google Scholar] [CrossRef] [Green Version]
- Kadkol, G.P.; Macmillan, R.H.; Burrow, R.P.; Halloran, G.M. Evaluation of Brassica genotypes for resistance to shatter: I. Development of a laboratory test. Euphytica 1984, 33, 63–73. [Google Scholar] [CrossRef]
- Tan, X.L.; Zhang, J.F.; Yang, L. Quantitive determination of the strength of rapeseed pod dehiscence. Trans. CSAE 2006, 22, 40–43. [Google Scholar]
- Pu, H.M.; Long, W.H.; Gao, J.Q.; Hu, M.L. Silique shatter resistance and correlation analysis in Brassica napus. Chin. J. Oil Crop Sci. 2013, 35, 469–475. [Google Scholar]
- Li, Y.M.; Zhu, J.Q.; Xu, L.Z. Experiment on strength of rapeseed pod dehiscence based on impending fracturing method. Trans. CSAE 2012, 28, 111–115. [Google Scholar] [CrossRef]
- Summers, J.E.; Bruce, D.M.; Vancanneyt, G.; Redig, P.; Werner, C.P.; Morgan, C. Pod shatter resistance in the resynthesized brassica napus line dk142. J. Agric. Sci. 2003, 140, 43–52. [Google Scholar] [CrossRef]
- Peng, P.F.; Li, Y.C.; Hu, Q. Screen of varieties suitable for machine harvesting from new breeding hybrids or lines in Brassica napus. Acta Agric. Boreali Sin. 2009, 24, 223–226. [Google Scholar] [CrossRef]
- Peng, P.F.; Li, Y.C.; Mei, D.S.; Liu, D.M.; Fu, L.; Wang, H.; Sang, S.F.; Chen, Y.F.; Hu, Q. Optimization and experiment of assessment method for pod shatter resistance in Brassica napus L. Trans. CSAE 2013, 29, 19–25. [Google Scholar] [CrossRef]
- Stirnberg, P.; Chatfield, S.P.; Leyser, H.M. AXR1 acts after lateral bud formation to inhibit lateral bud growth in Arabidopsis. Plant. Physiol. 1999, 121, 839–847. [Google Scholar] [CrossRef] [Green Version]
- Stirnberg, P.; Sande, K.V.C.; Leyser, H.M. MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development 2002, 129, 1131–1141. [Google Scholar] [CrossRef]
- Shimizu-Sato, S.; Tanaka, M.; Mori, H. Auxin-cytokinin interactions in the control of shoot branching. Plant Mol. Biol. 2009, 69, 429–435. [Google Scholar] [CrossRef] [Green Version]
- Dun, E.A.; Brewer, P.B.; Beveridge, C.A. Strigolactones: Discovery of the elusive shoot branching hormone. Trends Plant. Sci. 2009, 14, 364–372. [Google Scholar] [CrossRef]
- Gomez-Roldan, V.; Fermas, S.; Brewer, P.B.; Puech-Pagès, V.; Dun, E.A.; Pillot, J.P.; Letisse, F.; Matusova, R.; Danoun, S.; Portais, J.C. Strigolactone inhibition of shoot branching. Nature 2008, 455, 189–194. [Google Scholar] [CrossRef]
- Miersch, S.; Gertz, A.; Breuer, F.; Schierholt, A.; Becker, H.C. Influence of the semi-dwarf growth type on nitrogen use efficiency in winter oilseed rape. Crop Sci. 2016, 56, 2952–2961. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.X.; Cao, H.X.; Zhu, Y.; Liu, Y.; Zhang, W.Y.; Chen, Y.L.; Fu, K.Y. Morphological Structure Model of Leaf Space Based on Biomass at Pre-Over-wintering Stage in Rapeseed (Brassica napus L.). Plant Acta Agron. Sin. 2015, 41, 318–328. [Google Scholar] [CrossRef]
- Pinet, A.; Mathieu, A.; Jullien, A. Floral bud damage compensation by branching and biomass allocation in genotypes of brassica napus with different architecture and branching potential. Front. Plant. Sci. 2015, 6, 70. [Google Scholar] [CrossRef] [Green Version]
- Wolko, J.; Dobrzycka, A.; Bocianowski, J.; Bartkowiak-Broda, I. Estimation of heterosis for yield-related traits for single cross and three-way cross hybrids of oilseed rape (Brassica napus L.). Euphytica 2019, 215, 10. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Chang, H.B.; Li, J.; Xu, H.Y. Comprehensive evaluation of 31 rapeseed cultivars in Hubei Province. Jiangsu Agric. Sci. 2019, 47, 84–88. [Google Scholar] [CrossRef]
- Qing, Y.R.; Li, Y.M.; Xu, L.Z.; Ma, Z.; Yang, Y. Technology of 2-DOF collision testing for rape pod shatter resistance. Trans. CSAE 2019, 35, 33–40. [Google Scholar] [CrossRef]
- Qing, Y.; Li, Y.; Yang, Y.; Xu, L.; Ma, Z. Development and experiments on reel with improved tine trajectory for harvesting oilseed rape. BIOS Eng. 2021, 206, 19–31. [Google Scholar] [CrossRef]
- Yang, J.C.; Liu, J.J.; An, Z.Y.; Yang, Q.L.; Qu, G.; Li, H.Y.; Hu, X.Z. The breeding and efficient cultivation techniques of a new rape variety Yuyou No.4 with excellent traits of high and stable yield. Breed 2018, 37, 113–115. [Google Scholar] [CrossRef]
- Cheng, Q.; Xiao, G.; Chang, T.; Zhang, Z.Q.; Guan, C.Y.; Wang, G.H.; Xiong, X.H. The physiological and biochemical characteristics of different 1000-grain weight rapeseed. Mol. Plant. Breed. 2019, 10, 12–13. [Google Scholar] [CrossRef]
- Kuai, J.; Wang, J.J.; Zuo, Q.S.; Chen, H.L.; Gao, J.Q.; Fu, Y.D. Effects and mechanism of higher plant density on directly-sown rapeseed in the Yangtze river basin of China. Sci. Agric. Sin. 2018, 51, 4625–4632. [Google Scholar] [CrossRef]
- Zhao, X.G.; Zhang, Y.W.; Chen, W.J.; Zhang, Y.L.; Wang, Z.Y.; Zhao, X.Z.; Hou, J.L.; Wang, L.P.; Zhang, X. Differences in photosynthetic physiological characteristics of Brassica napus under different planting densities. Southwest China J. Agric. Sci. 2019, 32, 1531–1536. [Google Scholar] [CrossRef]
- Zhao, J.X.; Dai, X.L.; Ren, T.B. Study on direct seeding density of Brassica napus. Agric. Sci. Technol. 2017, 18, 1860–1866. [Google Scholar] [CrossRef]
Varieties | PH (cm) | SDMS (mm) | Primary Branch | LMI (cm) | PNMI | Pods Layer | NSPP | TSW (g) | SLA (°) | YPP (g) | SRI (Field Pod) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PBN | LBH (cm) | BL (cm) | LBP (cm) | LMB (cm) | BA (°) | LBH /PH | LMB /PH | MDPL (cm) | PLT (cm) | |||||||||||
n749 | 172.87 | 16.91 | 8.00 | 62.12 | 53.74 | 32.10 | 52.27 | 33.78 | 0.36 | 0.30 | 50.47 | 87.75 | 68.23 | 73.98 | 24.20 | 3.47 | 8.35 | 22.77 ± 3.83 ab | 0.008 | |
c69 | 182.71 | 17.54 | 10.01 | 63.96 | 66.39 | 35.60 | 55.19 | 35.07 | 0.35 | 0.30 | 57.88 | 61.10 | 74.32 | 75.61 | 22.96 | 3.82 | 11.45 | 25.20 ± 4.48 a | 0.178 | |
c96 | 183.93 | 17.34 | 10.60 | 62.92 | 67.92 | 37.29 | 60.92 | 35.78 | 0.34 | 0.33 | 55.88 | 59.50 | 71.53 | 75.31 | 23.90 | 4.23 | 13.20 | 26.77 ± 4.49 a | 0.029 | |
15w2133-3 | 156.91 | 13.17 | 9.20 | 50.21 | 58.13 | 29.71 | 53.74 | 32.93 | 0.32 | 0.32 | 55.79 | 69.61 | 57.43 | 39.24 | 22.33 | 3.38 | 11.30 | 16.24 ± 4.05 c | 0.010 | |
15w2133-4 | 122.64 | 15.37 | 8.50 | 25.39 | 54.23 | 26.47 | 46.13 | 44.37 | 0.21 | 0.38 | 44.87 | 52.54 | 80.38 | 55.06 | 16.94 | 2.83 | 33.20 | 9.29 ± 2.03 d | 0.021 | |
15w2133-5 | 156.73 | 14.41 | 10.41 | 2.62 | 66.37 | 34.47 | 95.80 | 34.25 | 0.02 | 0.61 | 50.53 | 64.53 | 62.48 | 56.14 | 25.17 | 3.41 | 8.50 | 19.76 ± 5.48 bc | 0.049 | |
C6009 | 145.72 | 15.26 | 4.58 | 57.38 | 65.14 | 33.23 | 28.72 | 33.93 | 0.39 | 0.19 | 45.18 | 55.05 | 62.96 | 54.63 | 27.14 | 5.81 | 2.85 | 22.69 ± 3.87 ab | 0.542 | |
C104 | 167.90 | 15.06 | 7.52 | 55.75 | 55.75 | 27.05 | 44.81 | 35.24 | 0.33 | 0.27 | 47.99 | 53.27 | 66.45 | 57.57 | 25.57 | 3.54 | 9.25 | 21.49 ± 2.40 b | 0.181 | |
C105 | 168.03 | 15.39 | 6.66 | 55.07 | 54.22 | 28.14 | 49.55 | 32.93 | 0.33 | 0.30 | 47.64 | 57.38 | 72.27 | 67.35 | 25.58 | 3.62 | 8.15 | 22.05 ± 4.28 ab | 0.168 | |
C122 | 185.78 | 14.48 | 6.39 | 85.78 | 55.09 | 27.21 | 46.44 | 35.11 | 0.46 | 0.25 | 52.76 | 50.76 | 77.06 | 66.82 | 22.30 | 5.61 | 23.80 | 22.79 ± 3.81 ab | 0.389 | |
15w2130-6 | 177.96 | 13.50 | 8.09 | 62.10 | 54.25 | 26.24 | 63.00 | 38.58 | 0.35 | 0.28 | 50.14 | 40.47 | 73.53 | 62.24 | 22.21 | 3.66 | 29.90 | 11.40 ± 3.08 d | 0.271 | |
15w2130-8 | 180.04 | 15.10 | 7.70 | 72.27 | 66.83 | 42.37 | 46.51 | 38.72 | 0.40 | 0.26 | 67.83 | 61.73 | 73.63 | 64.60 | 23.33 | 3.52 | 26.05 | 18.32 ± 3.80 bc | 0.350 | |
ZS11 | 173.93 | 17.58 | 9.85 | 58.73 | 60.36 | 28.93 | 63.15 | 37.41 | 0.34 | 0.36 | 46.76 | 62.53 | 77.81 | 57.15 | 22.23 | 3.65 | 4.05 | 23.69 ± 5.25 ab | 0.390 | |
NY12 | 182.94 | 16.45 | 10.53 | 65.48 | 46.73 | 26.84 | 69.29 | 33.89 | 0.36 | 0.38 | 46.18 | 73.25 | 72.42 | 77.12 | 25.09 | 3.35 | 9.55 | 23.60 ± 4.28 ab | 0.109 | |
n741 | 138.86 | DE | DE | 64.71 | 65.60 | 34.60 | 60.86 | 24.80 | 0.47 | DE | DE | DE | 66.71 | 60.86 | 24.71 | 4.01 | 1.8 | 26.85 ± 2.70 a | 0.139 | |
2017 | LMB | ns | ns | 0.730 ** | −0.548 * | ns | ns | 1 | ns | −0.722 * | 0.928 ** | ns | ns | ns | ns | ns | ns | ns | ns | ns |
BA | ns | ns | ns | ns | ns | ns | ns | 1 | ns | ns | ns | ns | 0.532 * | ns | −0.835 ** | ns | 0.780 ** | ns | ns | |
SLA | ns | ns | ns | ns | ns | ns | ns | 0.780 ** | ns | ns | ns | ns | 0.611 * | ns | −0.665 ** | ns | 1 | ns | ns | |
2018 | LMB | ns | ns | 0.530 * | ns | ns | ns | 1 | ns | ns | 0.827 ** | ns | ns | ns | ns | ns | ns | ns | ns | ns |
BA | ns | ns | ns | ns | ns | ns | ns | 1 | −0.559 * | ns | ns | −0.565 * | 0.627 * | ns | −0.626 * | ns | 0.660 * | −0.591 * | ns | |
SLA | ns | ns | ns | ns | ns | ns | ns | 0.660 ** | ns | ns | ns | ns | 0.611 * | ns | −0.760 ** | ns | 1 | ns | ns | |
YPP | ns | ns | ns | 0.579 * | ns | ns | ns | −0.591 * | 0.631 * | ns | ns | ns | ns | ns | 0.667 * | ns | −0.773 ** | ns | ns |
Variety | Plant | Yield | Combine Harvest Experiment | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PH (cm) | PBN | SDMS (mm) | LBH (cm) | MD (mm) | PLT (cm) | SLA (°) | NSPP | TSW (g) | Yield (kg·ha−1) | HL (%) | IR (%) | HS (m/s) | MCP (%) | MCS (%) | SRI | |
YY12 | 163.20 a | 6.40 a | 16.02 a | 44.25 b | 63.60 a | 73.4 a | 27.2 a | 24.20 b | 4.29 b | 3849.6 a | 4.32 a | 2.32 a | 1.47 b | 35.43 b | 16.52 b | 0.715 b |
C6009 | 144.50 b | 4.40 b | 14.19 a | 53.67 a | 51.40 b | 55.2 b | 4.5 b | 27.82 a | 5.78 a | 3542.4 a | 2.82 b | 2.65 a | 2.12 a | 40.21 a | 18.63 a | 0.956 a |
Dehydrating agent treatment C6009 | 4.17 a | 0.59 b | 1.52 b | 14.35 c | 11.85 c | 0.405 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qing, Y.; Li, Y.; Xu, L.; Ma, Z. Screen Oilseed Rape (Brassica napus) Suitable for Low-Loss Mechanized Harvesting. Agriculture 2021, 11, 504. https://doi.org/10.3390/agriculture11060504
Qing Y, Li Y, Xu L, Ma Z. Screen Oilseed Rape (Brassica napus) Suitable for Low-Loss Mechanized Harvesting. Agriculture. 2021; 11(6):504. https://doi.org/10.3390/agriculture11060504
Chicago/Turabian StyleQing, Yiren, Yaoming Li, Lizhang Xu, and Zheng Ma. 2021. "Screen Oilseed Rape (Brassica napus) Suitable for Low-Loss Mechanized Harvesting" Agriculture 11, no. 6: 504. https://doi.org/10.3390/agriculture11060504
APA StyleQing, Y., Li, Y., Xu, L., & Ma, Z. (2021). Screen Oilseed Rape (Brassica napus) Suitable for Low-Loss Mechanized Harvesting. Agriculture, 11(6), 504. https://doi.org/10.3390/agriculture11060504