Determination and Evaluation of Bioavailability of Vitamins from Different Multivitamin Supplements Using a Pig Model
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Animal, Surgery and Treatment
2.3. Laboratory Analysis
2.4. Pharmacokinetics and Data Analysis
3. Results
3.1. The Pharmacokinetics of Fat-Soluble Vitamins
3.2. The Pharmacokinetics of Water-Soluble Vitamins
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Combs, G.F., Jr. The Vitamins—Fundamental Aspects in Nutrition and Health, 4th ed.; Academic Press: Cambridge, MA, USA, 2016; p. 1570. [Google Scholar]
- Jeong, J.H.; Hong, J.S.; Han, T.H.; Fang, L.H.; Chung, W.L.; Kim, Y.Y. Effects of dietary vitamin levels on physiological responses, blood profiles, and reproductive performance in gestating sows. J. Anim. Sci. Technol. 2019, 61, 294–303. [Google Scholar] [CrossRef]
- Gattu, S.; Bang, Y.-J.; Pendse, M.; Dende, C.; Chara, A.L.; Harris, T.A.; Wang, Y.; Ruhn, K.A.; Kuang, Z.; Sockanathan, S.; et al. Epithelial retinoic acid receptor β regulates serum amyloid A expression and vitamin A-dependent intestinal immunity. Proc. Natl. Acad. Sci. USA 2019, 116, 10911–10916. [Google Scholar] [CrossRef]
- Upadhaya, S.D.; Kim, I.H. Importance of micronutrients in bone health of monogastric animals and techniques to improve the bioavailability of micronutrient supplements: A review. Asian Australas J. Anim. Sci. 2020, 33, 1885–1895. [Google Scholar] [CrossRef]
- Teleki, A.; Hitzfeld, A.; Eggersdorfer, M. 100 years of vitamins: The science of formulation is the key to functionality. Kona Powder Part J. 2012, 30, 144–163. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Swine, 11th ed.; National Research Council of the National Academies: Washington, DC, USA, 2012. [Google Scholar]
- Liu, H.; Cui, S.W.; Chen, M.; Li, Y.; Liang, R.; Xu, F.; Zhong, F. Protective approaches and mechanisms of microencapsulation to the survival of probiotic bacteria during processing, storage and gastrointestinal digestion: A review. Crit. Rev. Food Sci. Nutr. 2019, 59, 2863–2878. [Google Scholar] [CrossRef]
- Wilson, N.; Shah, N.P. Microencapsulation of vitamins. ASEAN Food J. 2007, 14, 1–14. [Google Scholar]
- Choi, J.; Wang, L.; Ammeter, E.; Lahaye, L.; Liu, S.; Nyachoti, M.; Yang, C. Evaluation of lipid matrix microencapsulation for intestinal delivery of thymol in weaned pigs. Transl. Anim. Sci. 2020, 4, 411–422. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, S.; Kim, S.W.; Ren, C.; Tian, M.; Cheng, L.; Song, J.; Chen, J.; Chen, F.; Guan, W. Fat encapsulation enhances dietary nutrients utilization and growth performance of nursery pigs. J. Anim. Sci. 2018, 96, 3337–3347. [Google Scholar] [CrossRef]
- Gamboa, O.D.; Gonçalves, L.G.; Grosso, C.F. Microencapsulation of tocopherols in lipid matrix by spray chilling method. Procedia Food Sci. 2011, 1, 1732–1739. [Google Scholar] [CrossRef]
- Dhakal, S.P.; He, J. Microencapsulation of vitamins in food applications to prevent losses in processing and storage: A Review. Food Res. Int. 2020, 137, 109326. [Google Scholar] [CrossRef] [PubMed]
- van Kempen, T.A.T.G.; de Bruijn, C.; Reijersen, M.H.; Traber, M.G. Water-soluble all-rac α-tocopheryl-phosphate and fat-soluble all-rac α-tocopheryl-acetate are comparable vitamin E sources for swine. J. Anim. Sci. 2018, 96, 3330–3336. [Google Scholar] [CrossRef]
- Yang, P.; Zhao, J.; Wang, H.; Li, L.; Ma, Y. Effects of vitamin forms and levels on vitamin bioavailability and growth performance in piglets. Appl. Sci. 2020, 10, 4903. [Google Scholar] [CrossRef]
- Yang, P.; Wang, H.K.; Li, L.X.; Ma, Y.X. The strategies for the supplementation of vitamins and trace minerals in pig production: Surveying major producers in China. Asian Australas J. Anim. Sci. 2020. [Google Scholar] [CrossRef]
- van Kempen, T.A.T.G.; Reijersen, M.H.; De Bruijn, C.; De Smet, S.; Michiels, J.; Traber, M.G.; Lauridsen, C. Vitamin E plasma kinetics in swine show low bioavailability and short half-life of all-rac-α-tocopheryl acetate. J. Anim. Sci. 2016, 94, 4188–4195. [Google Scholar] [CrossRef] [PubMed]
- Alpers, D.H. Vitamins as drugs: The importance of pharmacokinetics in oral dosing. Curr. Opin. Gastroenterol. 2011, 27, 146–151. [Google Scholar] [CrossRef]
- Rejinold, N.S.; Kim, H.K.; Isakovic, A.F.; Gater, D.L.; Kim, Y.C. Therapeutic vitamin delivery: Chemical and physical methods with future directions. J. Control. Release 2019, 298, 83–98. [Google Scholar] [CrossRef] [PubMed]
- Gannon, B.M.; Davis, C.R.; Nair, N.; Grahn, M.; Tanumihardjo, S.A. Single high-dose vitamin a supplementation to neonatal piglets results in a transient dose response in extrahepatic organs and sustained increases in liver stores. J. Nutr. 2017, 147, 798–806. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.D.; Ma, J.Y.; Monegue, J.S.; Monegue, H.J.; Stuart, R.L.; Lindemann, M.D. Temporal plasma vitamin concentrations are altered by fat-soluble vitamin administration in suckling pigs. J. Anim. Sci. 2015, 93, 5273–5282. [Google Scholar] [CrossRef] [PubMed]
- Raila, J.; Radon, R.; Trüpschuch, A.; Schweigert, F.J. Retinol and retinyl ester responses in the blood plasma and urine of dogs after a single oral dose of vitamin A. J. Nutr. 2018, 132, 1673S–1675S. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.D.; Rotering, M.J.; Isensee, P.K.; Rinholen, K.A.; Boston-Denton, C.J.; Kelley, P.G.; Stuart, R.L. Distribution of injected fat-soluble vitamins in plasma and tissues of nursery pigs. Asian Australas J. Anim. Sci. 2020, 33, 1985–1990. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, A.; Estevinho, B.N.; Rocha, F. Microencapsulation of vitamin A: A review. Trends Food Sci. Tech. 2016, 51, 76–87. [Google Scholar] [CrossRef]
- Jang, Y.D.; Ma, J.; Lu, N.; Lim, J.; Monegue, H.J.; Stuart, R.L.; Lindemann, M.D. Administration of vitamin D3 by injection or drinking water alters serum 25-hydroxycholecalciferol concentrations of nursery pigs. Asian Australas J. Anim. Sci. 2018, 31, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.Z.; Li, M.; Duan, X.H.; Jia, J.Y.; Li, J.Q.; Chu, R.A.; Yu, C.; Han, J.H.; Wang, H. Pharmacokinetics and effects of demographic factors on blood 25(OH)D3 levels after a single orally administered high dose of vitamin D3. Acta Pharmacol. Sin. 2016, 37, 1509–1515. [Google Scholar] [CrossRef]
- Christakos, S.; Dhawan, P.; Verstuyf, A.; Verlinden, L.; Carmeliet, G. Vitamin D: Metabolism, molecular mechanism of action, and pleiotropic effects. Physiol. Rev. 2016, 96, 365–408. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Cheng, Z.; Li, S.; Liu, X.; Guo, X.; Yu, P.; Gu, Z. Pharmacokinetic study of benfotiamine and the bioavailability assessment compared to thiamine hydrochloride. J. Clin. Pharmacol. 2014, 54, 688–695. [Google Scholar] [CrossRef] [PubMed]
- Smithline, H.A.; Donnino, M.; Greenblatt, D.J. Pharmacokinetics of high-dose oral thiamine hydrochloride in healthy subjects. BMC Clin. Pharmacol. 2012, 12, 4. [Google Scholar] [CrossRef]
- Park, W.S.; Lee, J.; Hong, T.; Park, G.; Youn, S.; Seo, Y.; Lee, S.; Han, S. Comparative pharmacokinetic analysis of thiamine and its phosphorylated metabolites administered as multivitamin preparations. Clin. Ther. 2016, 38, 2277–2285. [Google Scholar] [CrossRef]
- Kagan, L.; Lapidot, N.; Afargan, M.; Kirmayer, D.; Moor, E.; Mardor, Y.; Friedman, M.; Hoffman, A. Gastroretentive Accordion Pill: Enhancement of riboflavin bioavailability in humans. J. Control. Release 2006, 113, 208–215. [Google Scholar] [CrossRef]
- Zempleni, J. Pharmacokinetics of vitamin B6 supplements in humans. J. Am. Coll. Nutr. 1995, 14, 579–586. [Google Scholar] [CrossRef] [PubMed]
- Thakker, K.M.; Sitren, H.S.; Gregory, J.F.; Schmidt, G.L.; Baumgartner, T.G. Dosage form and formulation effects on the bioavailability of vitamin E, riboflavin, and vitamin B-6 from multivitamin preparations. Am. J. Clin. Nutr. 1987, 45, 1472–1479. [Google Scholar] [CrossRef]
- Paul, L.P.S.; Debruyne, D.; Bernard, D.; Mock, D.M.; Defer, G.L. Pharmacokinetics and pharmacodynamics of MD1003 (high-dose biotin) in the treatment of progressive multiple sclerosis. Expert Opin. Drug Metab. Toxicol. 2016, 12, 327–344. [Google Scholar] [CrossRef] [PubMed]
- Matte, J.J.; Guay, F.; Le Floc’h, N.; Girard, C.L. Bioavailability of dietary cyanocobalamin (vitamin B12) in growing pigs. J. Anim. Sci. 2010, 88, 3936–3944. [Google Scholar] [CrossRef] [PubMed]
- von Castel-Roberts, K.M.; Morkbak, A.L.; Nexo, E.; Edgemon, C.A.; Maneval, D.R.; Shuster, J.J.; Valentine, J.F.; Kauwell, G.P.; Bailey, L.B. Holo-transcobalamin is an indicator of vitamin B-12 absorption in healthy adults with adequate vitamin B-12 status. Am. J. Clin. Nutr. 2007, 85, 1057–1061. [Google Scholar] [CrossRef] [PubMed]
- Dalto, D.B.; Audet, I.; Girard, C.L.; Matte, J.J. Bioavailability of vitamin B12 from dairy products using a pig model. Nutrients 2018, 10, 1134. [Google Scholar] [CrossRef]
Item | Percent |
---|---|
Corn | 69.00 |
Soybean meal | 23.62 |
Soybean oil | 3.18 |
Dicalcium phosphate | 1.20 |
Limestone | 0.91 |
Salt | 0.30 |
L-lysine HCL | 0.68 |
DL-methionine | 0.13 |
L-threonine | 0.24 |
Tryptophan | 0.04 |
L-valine | 0.20 |
Trace-mineral premix 1 | 0.50 |
Total | 100.00 |
Calculated nutritional values | |
Net energy (Kcal/kg) | 2412.00 |
Crude protein | 17.31 |
SID Lysine | 1.23 |
SID Methionine | 0.36 |
SID Threonine | 0.73 |
SID Tryptophan | 0.20 |
SID Valine | 0.78 |
Total Calcium | 0.69 |
STTD Phosphorus | 0.34 |
Parameter | Oral Administration | SEM | p-Value | |
---|---|---|---|---|
NMVS | MVS | |||
Retinol | ||||
Tmax, h | 7.13 | 7.71 | 0.97 | 0.666 |
Cmax, μg/mL | 0.13 | 0.17 | 0.02 | 0.176 |
AUC, h × μg/mL | 2.15 | 3.66 | 0.56 | 0.071 |
t1⁄2β, h | 25.17 | 40.98 | 18.56 | 0.544 |
MRT, h | 14.45 | 17.06 | 1.62 | 0.260 |
F, % | 170.40 | |||
25-hydroxyvitamin D3 | ||||
Tmax, h | 12.33 | 12.00 | 4.48 | 0.961 |
Cmax, ng/mL | 27.61 | 28.42 | 0.70 | 0.461 |
AUC, h × μg/mL | 1717.82 | 1685.27 | 32.81 | 0.522 |
t1⁄2β, h | 189.78 | 165.76 | 25.71 | 0.545 |
MRT, h | 35.48 | 34.81 | 0.43 | 0.337 |
F, % | 98.11 | |||
α-tocopherol | ||||
Tmax, h | 8.50 | 11.50 | 1.80 | 0.267 |
Cmax, μg/mL | 0.74 | 1.10 | 0.05 | <0.01 |
AUC, h × μg/mL | 24.46 | 44.60 | 3.30 | <0.01 |
t1⁄2β, h | 64.10 | 42.25 | 30.54 | 0.624 |
MRT, h | 23.45 | 30.19 | 1.39 | <0.01 |
F, % | 182.39 | |||
Menadione | ||||
Tmax, h | 9.00 | 8.00 | 0.71 | 0.374 |
Cmax, ng/mL | 18.99 | 10.59 | 1.31 | 0.011 |
AUC, h × ng/mL | 413.10 | 236.00 | 21.86 | <0.01 |
t1⁄2β, h | 74.27 | 31.49 | 18.50 | 0.177 |
MRT, h | 28.41 | 24.60 | 2.89 | 0.404 |
F, % | 57.13 |
Parameter | Oral Administration | SEM | p-Value | |
---|---|---|---|---|
NMVS | MVS | |||
Thiamine | ||||
Tmax, h | 6.00 | 6.00 | 1.55 | NS |
Cmax, ng/mL | 112.74 | 73.07 | 9.52 | 0.025 |
AUC, h × ng/mL | 1713.26 | 807.85 | 146.54 | <0.01 |
t1⁄2β, h | 25.50 | 13.48 | 4.50 | 0.099 |
MRT, h | 17.19 | 14.54 | 1.44 | 0.224 |
F, % | 47.15 | |||
Riboflavin | ||||
Tmax, h | 6.00 | 6.00 | - | NS |
Cmax, ng/mL | 12.68 | 5.46 | 1.41 | 0.023 |
AUC, h × ng/mL | 200.70 | 58.08 | 20.93 | <0.01 |
t1⁄2β, h | 27.77 | 31.88 | 6.90 | 0.695 |
MRT, h | 22.98 | 22.75 | 1.93 | 0.938 |
F, % | 28.94 | |||
Pantothenic acid | ||||
Tmax, h | 1.00 | 6.00 | - | <0.01 |
Cmax, ng/mL | 147.80 | 171.65 | 25.16 | 0.539 |
AUC, h × ng/mL | 2022.69 | 2049.20 | 538.23 | 0.974 |
t1⁄2β, h | 18.19 | 22.48 | 4.09 | 0.499 |
MRT, h | 16.09 | 15.59 | 3.08 | 0.914 |
F, % | 101.31 | |||
Pyridoxal | ||||
Tmax, h | 3.00 | 6.00 | - | <0.01 |
Cmax, ng/mL | 8.16 | 4.84 | 1.41 | 0.171 |
AUC, h × ng/mL | 184.19 | 167.51 | 56.24 | 0.844 |
t1⁄2β, h | 47.75 | 55.21 | 4.34 | 0.291 |
MRT, h | 29.86 | 33.94 | 0.66 | 0.012 |
F, % | 90.94 | |||
Biotin | ||||
Tmax, h | 1.00 | 1.00 | - | NS |
Cmax, ng/mL | 27.37 | 15.82 | 2.45 | 0.029 |
AUC, h × ng/mL | 544.38 | 369.93 | 150.25 | 0.458 |
t1⁄2β, h | 36.76 | 27.86 | 4.52 | 0.236 |
MRT, h | 26.92 | 24.12 | 3.93 | 0.641 |
F, % | 67.96 | |||
Vitamin B12 | ||||
Tmax, h | 3.00 | 8.00 | 0.97 | <0.01 |
Cmax, ng/mL | 128.39 | 67.54 | 11.74 | <0.01 |
AUC, h × ng/mL | 1373.14 | 1181.65 | 272.29 | 0.601 |
t1⁄2β, h | 19.21 | 30.72 | 15.90 | 0.590 |
MRT, h | 15.11 | 19.82 | 4.18 | 0.408 |
F, % | 86.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, P.; Wang, H.; Li, L.; Zhang, N.; Ma, Y. Determination and Evaluation of Bioavailability of Vitamins from Different Multivitamin Supplements Using a Pig Model. Agriculture 2021, 11, 418. https://doi.org/10.3390/agriculture11050418
Yang P, Wang H, Li L, Zhang N, Ma Y. Determination and Evaluation of Bioavailability of Vitamins from Different Multivitamin Supplements Using a Pig Model. Agriculture. 2021; 11(5):418. https://doi.org/10.3390/agriculture11050418
Chicago/Turabian StyleYang, Pan, Huakai Wang, Longxian Li, Nan Zhang, and Yongxi Ma. 2021. "Determination and Evaluation of Bioavailability of Vitamins from Different Multivitamin Supplements Using a Pig Model" Agriculture 11, no. 5: 418. https://doi.org/10.3390/agriculture11050418
APA StyleYang, P., Wang, H., Li, L., Zhang, N., & Ma, Y. (2021). Determination and Evaluation of Bioavailability of Vitamins from Different Multivitamin Supplements Using a Pig Model. Agriculture, 11(5), 418. https://doi.org/10.3390/agriculture11050418