Effect of Fertilisation on the Quality of Dried Coriander (Coriandrum sativum L.) and Lovage (Levisticum officinale)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Pot Experiment
2.2. Methods of Drying and Modelling of Drying Kinetics
2.3. Bioactive Compounds Content, Chemical Composition of HS-SPME and Colour
2.4. Statistical Analysis
3. Results and Discussion
3.1. The Kinetics of Drying
3.2. Bioactive Compounds Content and Colour
3.3. Head Space-Solid Phase Microextraction (HS-SPME) of Dried Herbs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Amiri, M.S.; Joharchi, M.R. Ethnobotanical knowledge of Apiaceae family in Iran, A review. Avicenna J. Phytomed. 2016, 6, 621–635. [Google Scholar]
- Pedro, A.G.; Santosa, A.; Figueiredoa, M.C.; Oliveira, M.M.; Barroso, J.G.; Pedro, L.G.; Deans, S.G.; Schefferd, J.J.C. Growth and essential oil composition of hairy root cultures of Levisticum officinale W.D.J. Koch (lovage). Plant Sci. 2005, 168, 1089–1096. [Google Scholar] [CrossRef]
- Nour, V.; Trandafir, I.; Cosmulescu, S. Bioactive Compounds, Antioxidant Activity and Nutritional Quality of Different Culinary Aromatic Herbs. Not. Bot. Horti Agrobot. Cluj-Napoca 2017, 45, 179–184. [Google Scholar] [CrossRef] [Green Version]
- González, S.; Fernández, M.; Cuervo, A.; Lasheras, C. Dietary intake of polyphenols and major food sources in an institutionalised elderly population. J. Hum. Nutr. Diet. 2014, 27, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Sakulnarmrat, K.; Konczak, I. Composition of native Australian herbs polyphenolic-rich fractions and in vitro inhibitory activities against key enzymes relevant to metabolic syndrome. Food Chem. 2012, 134, 1011–1019. [Google Scholar] [CrossRef] [PubMed]
- Kahkonen, M.P.; Hopia, A.I.; Vuorela, H.J.; Rauha, J.P.; Pihlaja, K.; Kujala, T.S. Antioxidant activity of plant extracts containing phenolic compounds. J. Agric. Food Chem. 1999, 47, 3954–3962. [Google Scholar] [CrossRef] [PubMed]
- Diederichsen, A. Coriander. Promoting the conservation and use of underutilized and neglected crops, 3. In Spices; Purseglove, J.W., Brown, E.G., Green, C.L., Robbins, S.R.J., Eds.; Longman: New York, NY, USA, 1996; Volume 2, pp. 736–788. [Google Scholar]
- Gil, A.; De La Fuente, E.B.; Lenardis, A.E.; Lopez Pereira, M.; Suarez, S.A.; Bandoni, A. Coriander essential oil composition from two genotypes grown in different environmental conditions. J. Agric. Food Chem. 2002, 50, 2870–2877. [Google Scholar] [CrossRef]
- Grosso, C.; Gerraro, V.; Figueiredo, A.C.; Barroso, J.G.; Coelho, J.A.; Palavara, A.M. Supercritical carbon dioxide extraction of volatile oil from Italian coriander seeds. Food Chem. 2002, 111, 197–203. [Google Scholar] [CrossRef]
- Elgayyar, M.; Draughon, F.A.; Golden, D.A.; Mount, J.R. Antimicrobial activity of essential oils from plants against selected pathogenic and saprophytic microorganisms. J. Food Prot. 2001, 64, 1019–1024. [Google Scholar] [CrossRef] [PubMed]
- Canter, P.; Thomas, H.; Ernst, E. Bringing medicinal plants into cultivation: Opportunities and challenges for biotechnology. Trends Biotechnol. 2005, 23, 180–185. [Google Scholar] [CrossRef]
- Stępień, A.E.; Gorzelany, J.; Matłok, N.; Lech, K.; Figiel, A. The effect of drying methods on the energy consumption, bioactive potential and colour of dried leaves of Pink Rock Rose (Cistus creticus). J. Food Sci. Technol. 2019, 56, 2386–2394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matłok, N.; Gorzelany, J.; Stępień, A.E.; Figiel, A.; Balawejder, M. Effect of Fertilization in Selected Phytometric Features and Contents of Bioactive Compounds in Dry Matter of Two Varieties of Basil (Ocimum basilicum L.). Sustainability 2019, 11, 6590. [Google Scholar] [CrossRef] [Green Version]
- Matłok, N.; Lachowicz, S.; Gorzelany, J.; Balawejder, M. Influence of Drying Method on Some Bioactive Compounds and the Composition of Volatile Components in Dried Pink Rock Rose (Cistus creticus L.). Molecules 2020, 25, 2596. [Google Scholar] [CrossRef]
- Orphanides, A.; Goulas, V.; Geka, V. Drying Technologies: Vehicle to High-Quality Herbs. Food Eng. Rev. 2016, 8, 164–180. [Google Scholar] [CrossRef]
- Danilčenko, H.; Dabkevičius, Z.; Jarienė, E.; Tarasevičienė, Ž.; Televičiūtė, D.; Amošiūnas, A.; Jeznach, M. The effect of stinging nettle and field horsetail extracts on the synthesis of biologically active compounds in germinated leguminous and quinoa seed. Zemdirbyste-Agriculture 2017, 104, 337–344. [Google Scholar] [CrossRef] [Green Version]
- Matłok, N.; Stępień, A.E.; Gorzelany, J.; Wojnarowska-Nowak, R.; Balawejder, M. Effects of Organic and Mineral Fertilization on Yield and Selected Quality Parameters for Dried Herbs of Two Varieties of Oregano (Origanum vulgare L.). Appl. Sci. 2020, 10, 5503. [Google Scholar] [CrossRef]
- De Pascale, S.; Maggio, A.; Pernice, R.; Fogliano, V.; Barbieri, G. Sulphur fertilization may improve the nutritional value of Brassica rapa L. subsp sylvestris. Eur. J. Agron. 2007, 26, 418–424. [Google Scholar] [CrossRef]
- Li, J.; Zhu, Z.; Gerendas, J. Effects of nitrogen and sulfur on total phenolics and antioxidant activity in two genotypes of leaf mustard. J. Plant Nutr. 2008, 31, 1642–1655. [Google Scholar] [CrossRef]
- Barroso, M.R.; Martins, N.; Barros, L.; Antonio, A.L.; Rodrigues, M.A.; Sousa, M.J.; Santos-Buelga, S.; Ferreira, I.C.F.R. Assessment of the nitrogen fertilization effect on bioactive compounds of frozen fresh and dried samples of Stevia rebaudiana Bertoni. Food Chem. 2018, 243, 208–213. [Google Scholar] [CrossRef] [Green Version]
- Dias, A.; Neto, D.A.; Menezes, R.V.; Gheyi, H.R.; Conceição, P.C.; Mitsue, A.; Cova, W.; Ribas, R.F.; Ribeiro, M.D.O. Salt-induced changes in solutes, pigments and essential oil of two basil (Ocimum basilicum L.) genotypes under hydroponic cultivation. Aust. J. Crop Sci. 2019, 13, 1856–1864. [Google Scholar]
- Fraser, D.P.; Sharma, A.; Fletcher, T.; Budge, S.; Moncrieff, C.; Dodd, A.N.; Franklin, K.A. UV-B antagonises shade avoidance and increases levels of the flavonoid quercetin in coriander (Coriandrum sativum). Sci. Rep. 2017, 7, 1–17. [Google Scholar] [CrossRef]
- Spréa, R.M.; Fernandes, A.; Calhelha, R.C.; Pereira, C.; Pires, T.C.S.P.; Alves, M.J.; Canan, C.; Barros, L. Chemical and bioactive characterization of the aromatic plant Levisticum officinale W.D.J. Koch: A comprehensive study. Food Funct. 2020, 11, 1292–1303. [Google Scholar] [CrossRef]
- Dumas, Y.; Dadomo, M.; Di Lucca, G.; Grolier, P. Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. J. Sci. Food Agric. 2003, 83, 369–382. [Google Scholar] [CrossRef]
- Ibrahim, M.H.; Jaafar, H.Z.E.; Karimi, E.; Ghasemzadeh, A. Impact of Organic and Inorganic Fertilizers Application on the Phytochemical and Antioxidant Activity of Kacip Fatimah (Labisia pumila Benth). Molecules 2013, 18, 10973–10988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prachayasittikul, V.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Coriander (Coriandrum sativum): A promising functional food toward the well-being. Food Res. Int. 2018, 105, 305–323. [Google Scholar] [CrossRef] [PubMed]
- Chahal, K.K.; Singh, R.; Kumar, A.; Bhardwaj, U. Chemical composition and biological activity of Coriandrum sativum L.: A review. Indian J. Nat. Prod. Resour. 2017, 8, 193–203. [Google Scholar]
- Nurzyńska-Wierdak, R. Essential oil composition ofthe coriander (Coriandrum sativum L.) herb dependingon the development stage. Acta Agrobotanica 2013, 66, 53–60. [Google Scholar] [CrossRef]
- Telci, I.; Toncer, O.G.; Sahbaz, N. Yield, Essential Oil Content and Composition of Coriandrum sativum Varieties (var. vulgare Alef and var. microcarpum DC.) Grown in Two Different Locations. J. Essent. Oil Res. 2005, 18, 189–193. [Google Scholar] [CrossRef]
- Zeng, Z.; Meng, C.; Ye, X.; Zeng, Z. Analysis of Volatile Components of Adenosma indianum (Lour.) Merr. by Steam Distillation and Headspace Solid-Phase Microextraction. J. Chem. 2013, 2013, 545760. [Google Scholar] [CrossRef]
- Raal, A.; Arak, E.; Orav, A.; Kailas, T.; Müürisepp, M. Composition of the Essential Oil of Levisticum officinale W.D.J. Koch from Some European Countries. J. Essent. Oil Res. 2008, 20, 318–322. [Google Scholar] [CrossRef]
Species | Fertilisation Method | L* ± SD | a* ± SD | b* ± SD |
---|---|---|---|---|
Coriander | first | 49.47 ± 0.52 a | −0.28 ± 0.06 c | 13.08 ± 0.40 d |
second | 48.21 ± 0.35 a | −0.23 ± 0.21 b | 12.23 ± 0.68 d | |
Lovage | first | 59.58 ± 0.50 A | −2.42 ± 0.08 C | 12.28 ± 0.20 E |
second | 57.16 ± 0.49 A | −1.98 ± 0.19 B | 10.46 ± 0.31 D |
No. | RT (min) | Peak Share in the Chromatogram [%] | Ordinary Substance Name | Systematic Substance Name | |||
---|---|---|---|---|---|---|---|
L(O) | L(M) | C(O) | C(M) | ||||
1 | 9.53 | 12.58 b ± 2.11 | 8.44 a ± 1.76 | - | - | cymene | methyl(1-methylethyl)benzene |
2 | 9.69 | 3.35 b ± 0.34 | 2.44 a ± 0.12 | - | - | β-phellandrene | 3-Isopropyl-6-methylenecyclohex-1-ene |
3 | 10.16 | 0.87 b ± 0.16 | 0.33 a ± 0.06 | - | - | trans-sabinene hydrate | 2-methyl-5-propan-2-ylbicyclo[3.1.0]hexan-2-ol |
4 | 10.37 | - | - | 4.25 ± 1.38 | trace | - | octa-3,5-dien-2-one |
5 | 10.91 | - | - | trace | 3.78 ± 0.97 | linalool | 3,7-Dimethyl-1,6-octadien-3-ol |
6 | 11.45 | trace | 0.43 | - | - | fenchol | 1,3,3-trimethylbicyclo[2.2.1]heptan-2-ol |
7 | 12.45 | 0.76 b ± 0.14 | 0.54 a ± 0.11 | - | - | (-)-terpinen-4-ol | (1R)-4-methyl-1-propan-2-ylcyclohex-3-en-1-ol |
8 | 12.51 | 1.41 b ± 0.23 | 1.33 a ± 0.17 | - | - | α-terpinenol | 2-[(1S)-4-methyl-1-cyclohex-3-enyl]propan-2-ol |
9 | 13.28 | 0.80 a ± 0.02 | 0.59 b ± 0.08 | trace | trace | carvacryl methyl ether | 4-isopropyl-2-methoxy-1-methylbenzene |
10 | 13.83 | 1.76 b ± 0.49 | 0.91 a ± 0.31 | trace | trace | phellandral | 4-propan-2-ylcyclohexene-1-carbaldehyde |
11 | 14.06 | trace | 0.81 ± 0.2 | trace | 5.54 | thymol | 2-isopropyl-5-methylphenol |
12 | 14.21 | 1.26 b ± 0.41 | 0.68 a ± 0.27 | 13.47 b ± 1.26 | 11.74 a ± 0.95 | carvacrol | 2-methyl-5-(propan-2-yl)phenol |
13 | 14.93 | 66.87 a ± 5.70 | 75.35 b ± 3.32 | 10.95 b ± 2.81 | 6.28 a ± 1.26 | α-terpinyl acetate | (±)-2-(4-Methyl-3-cyclohexenyl)isopropyl acetate |
14 | 14.98 | - | - | 8.25 ± 1.05 | trace | eugenol | 2-methoxy-4-(2-propenyl)phenol |
15 | 15.11 | - | - | 10.78 ± 2.16 | trace | piperitenone oxide | (1S)-1,2-epoxy-p-menth-4(8)-en-3-on |
16 | 15.26 | trace | 0.31 ± 0.07 | - | - | lavandulyl acetate | (5-methyl-2-prop-1-en-2-ylhex-4-enyl) acetate |
17 | 15.31 | 0.12 a ± 0.04 | 0.28 b ± 0.06 | - | - | α-copaene | 1,3-dimethyl-8-(1-methyl ethyl) tricyclo(4.4.0.0.02,7-)dec-3-ene stereoisomer |
18 | 15.56 | 1.16 b ± 0.31 | 0.49 a ± 0.11 | 13.65 a ± 2.98 | 26.65 b ± 6.87 | methyl eugenol | 4-Allyl-1,2-dimethoxybenzene, Eugenol methyl ether, eugenyl methyl ether |
19 | 15.60 | - | - | trace | 6.78 ± 1.28 | nothosyrnol | 1,3-bis(1-methoxyprop-1-enyl)benzene |
20 | 15.98 | trace | trace | - | - | β-caryophyllene | (−)-trans-caryophyllene, trans-(1R,9S)-8-Methylene-4,11,11-trimethylbicyclo[7.2.0]undec-4-ene |
21 | 16.60 | trace | trace | - | - | ƴ-muurolene | (1R,4aR,8aS)-7-methyl-4-methylidene-1-propan-2-yl-2,3,4a,5,6,8a-hexahydro-1H-naphthalene |
22 | 16.68 | 0.79 a ± 0.21 | 0.77 a ± 0.28 | 9.97 a ± 2.64 | 9.80 a ± 3.71 | (E)-β-ionone | (E)-4-[(5R)-5,6,6-trimethylcyclohexen-1-yl]but-3-en-2-one |
23 | 16.77 | trace | trace | - | - | β-selinene | 28(3S,4aR,8aS)-8a-methyl-5-methylidene-3-prop-1-en-2-yl-1,2,3,4,4a,6,7,8-octahydronaphthalene |
24 | 17.31 | 1.59 b ± 0.16 | 0.93 a ± 0.11 | 28.65 b ± 2.07 | 23.51 a ± 1.31 | (S)-dihydroactinidiolide | (2,6,6-trimethyl-2-hydroxycyclohexylidene)acetic acid lactone |
TOTAL | 93.32 a | 94.63 b | 99.97 b | 93.81 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matłok, N.; Gorzelany, J.; Figiel, A.; Balawejder, M. Effect of Fertilisation on the Quality of Dried Coriander (Coriandrum sativum L.) and Lovage (Levisticum officinale). Agriculture 2021, 11, 386. https://doi.org/10.3390/agriculture11050386
Matłok N, Gorzelany J, Figiel A, Balawejder M. Effect of Fertilisation on the Quality of Dried Coriander (Coriandrum sativum L.) and Lovage (Levisticum officinale). Agriculture. 2021; 11(5):386. https://doi.org/10.3390/agriculture11050386
Chicago/Turabian StyleMatłok, Natalia, Józef Gorzelany, Adam Figiel, and Maciej Balawejder. 2021. "Effect of Fertilisation on the Quality of Dried Coriander (Coriandrum sativum L.) and Lovage (Levisticum officinale)" Agriculture 11, no. 5: 386. https://doi.org/10.3390/agriculture11050386
APA StyleMatłok, N., Gorzelany, J., Figiel, A., & Balawejder, M. (2021). Effect of Fertilisation on the Quality of Dried Coriander (Coriandrum sativum L.) and Lovage (Levisticum officinale). Agriculture, 11(5), 386. https://doi.org/10.3390/agriculture11050386