Leaf Rust Resistance Genes in Wheat Cultivars Registered in Russia and Their Influence on Adaptation Processes in Pathogen Populations
Abstract
:1. Introduction
2. Genetic Diversity of Winter and Spring Bread Wheat Cultivars in Russian Agroecological Regions and the Virulence of Puccinia triticina
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sanin, S.S.; Nazarova, L.N.; Ibragimov, T.Z. The Modern Epidemiological Situation of Cereal Rusts in European Russia. In Proceedings of the 11th International Cereal Rusts and Powdery Mildews Conference, Norwich, UK, 22–27 August 2004; pp. 2–25. [Google Scholar]
- Skolotneva, E.S.; Kelbin, V.N.; Morgunov, A.I.; Boiko, N.I.; Shamanin, V.P.; Salina, E.A. Races composition of the Novosibirsk population of Puccinia graminis f. sp. tritici. Mikol. Fitopatol. 2020, 54, 49–58. (in Russian). [Google Scholar] [CrossRef]
- Volkova, G.V.; Kudinova, O.A.; Miroshnichenko, O.O. Distribution of stem rust in the North Caucasus and immunological characteristics of a number of winter wheat varieties to the pathogen. Achiev. Sci. Technol. AICis 2018, 32, 43–45. (in Russian) [Google Scholar] [CrossRef]
- Morgunov, A.; Pozherukova, V.; Kolmer, J.; Gultyaeva, E.; Abugalieva, A.; Chudinov, V.; Kuzmin, O.; Rasheed, A.; Rsymbetov, A.; Shepelev, S.; et al. Genetic basis of spring wheat resistance to leaf rust in Kazakhstan and Russia. Euphytica 2020, 216, 11. [Google Scholar] [CrossRef]
- FAO—Food and Agriculture Organization of the United Nations. Wheat Rust Diseases Global Programme 2014–2017: Food and agriculture organization of the United Nations. In Strengthening Capacities and Promoting Collaboration to Prevent Wheat Rust Epidemics; FAO: Rome, Italy, 2014; Available online: http://www.fao.org/3/i3730e/i3730e.pdf (accessed on 2 April 2021).
- FSBI. “State Commission”—State Register of Breeding Achievements. Available online: http://gossort.com/index.html (accessed on 10 March 2021).
- Bolton, M.D.; Kolmer, J.A.; Garvin, D.F. Wheat leaf rust caused by Puccinia triticina. Mol. Plant. Pathol. 2008, 9, 563–575. [Google Scholar] [CrossRef]
- Randhawa, G.; Chhabra, R.; Singh, M. Multiplex PCR-Based Simultaneous Amplification of selectable marker and reporter genes for the screening of genetically modified crops. J. Agric. Food Chem. 2009, 57, 5167–5172. [Google Scholar] [CrossRef]
- Kabalkina, N.A. Problems of Disease Resistance of Varieties of the Main Agricultural Crops According to the Data of the State Test. In Immunity of Agricultural Plants to Diseases and Pests; Kolos: Moscow, Russia, 1975; pp. 65–76. (in Russian) [Google Scholar]
- Morgounov, A.; Ablova, L.; Babayants, O.; Babayants, L.; Bespalova, L.; Khudokormova, Zh.; Litvinenko, N.; Shamanin, V.; Syukov, V. Genetic protection of wheat rusts and development of resistant varieties in Russia and Ukraine. Euphytica 2011, 179, 297–311. [Google Scholar] [CrossRef]
- Tsitsin, N.V. Theory and Practice of Remote Hybridization; Nauka: Moscow, Russia, 1981; p. 160. (in Russian) [Google Scholar]
- Zhirov, E.G.; Ternovskaya, T.K. Genomic engineering in wheat. Bull. Agric. Sci. 1984, 10, 58–66. (in Russian). [Google Scholar]
- Sibikeev, S.N.; Voronina, S.A.; Krupnov, V.A. Genetic control for resistance to leaf rust in wheat-Agropyron lines: Agro 139 and Agro 58. Theor. Appl. Genetics Tag 1995, 90, 618–620. [Google Scholar] [CrossRef]
- Markelova, T.S. Study of the Structure and Variability of Wheat Leaf Rust Population in the Volga Region. AGRO XXI. 2007. Available online: https://www.agroxxi.ru/journal/20070406/20070406018.pdf (accessed on 10 March 2021).
- Sibikeev, S.N.; Krupnov, V.A. Evolution of Leaf Rust and Protection from It in the Volga Region, Special ed.; Vestnik Saratovskogo Gosuniversiteta: Saratov, Russia, 2007; pp. 92–94. (in Russian) [Google Scholar]
- Meshkova, L.V.; Rosseeva, L.P.; Korenyuk, E.A.; Belan, I.A. Dynamics of distribution of the wheat leaf rust pathotypes virulent to the cultivars with Lr9 gene in Omsk region. Mikol. Fitopatol. 2012, 46, 397–400. (in Russian). [Google Scholar]
- Gultyaeva, E.I. Genetic diversity of Russian common wheat varieties for leaf rust resistance. Russ. Agric. Sci. 2012, 38, 125–128. [Google Scholar] [CrossRef]
- Gultyaeva, E.I.; Kanyuka, I.A.; Alpateva, N.V.; Baranova, O.A.; Dmitriev, A.P.; Pavlyushin, V.A. Molecular approaches in identifying leaf rust resistance genes in Russian wheat varieties. Russ. Agric. Sci. 2009, 35, 316–319. [Google Scholar] [CrossRef]
- Gultyaeva, E.I. Breeding of Bread Wheat for Leaf Rust Resistance in Russia. In Proceedings of the IV All-Russian Plant Protection Congress with International Participation “Phytosanitary Technologies in Ensuring Independence and Competitiveness of the Agricultural Sector of Russia”, St. Petersburg, Russia, 9–11 September 2019. [Google Scholar]
- Naumov, N.A.; Geshele, E.E.; Shitikova-Rusakova, A.A. Rust of Cereals in the USSR; Selkhozgiz: Moscow, Russia, 1939; p. 401. (in Russian) [Google Scholar]
- Tyryshkin, L.G.; Mikhailova, L.A. The population structure of the causative agent of wheat brown rust. 1. Selection of differenciating varieties. Mikol. Fitopatol. 1989, 23, 396–403. [Google Scholar]
- Gultyaeva, E.I.; Aristova, M.K.; Shaidayuk, E.L.; Mironenko, N.V.; Kazartsev, I.A.; Akhmetova, A.; Kosman, E. Genetic differentiation of Puccinia triticina Erikss. in Russia. Russ. J. Genet. 2017, 53, 998–1005. [Google Scholar] [CrossRef]
- Qiu, J.W.; Schürch, A.C.; Yahiaoui, N.; Dong, L.L.; Fan, H.J.; Zhang, Z.J.; Keller, B.; Ling, H.Q. Physical mapping and identification of a candidate for the leaf rust resistance gene Lr1 of wheat. Theor. Appl. Genet. 2007, 115, 159–168. [Google Scholar] [CrossRef]
- Herrera-Foessel, S.; Singh, R.P.; Huerta-Espino, J.; William, M.; Rosewarne, G.; Djurle, A.; Yuen, J. Identification and mapping of Lr3 and a linked leaf rust resistance gene in durum wheat. Crop. Sci. 2007, 47, 1459–1466. [Google Scholar] [CrossRef] [Green Version]
- Schachermayr, G.; Siedler, H.; Gale, M.D.; Winzeler, H.; Winzeler, M.; Keller, B. Identification and localization of molecular markers linked to the Lr9 leaf rust resistance gene of wheat. Theor. Appl. Genet. 1994, 88, 110–115. [Google Scholar] [CrossRef]
- Gupta, S.K.; Charpe, A.; Koul, S.; Prabhu, K.V.; Haq, Q.M.R. Affiliations expand Development and validation of molecular markers linked to an Aegilops umbellulata–derived leaf rust- resistance gene, Lr9, for marker-assisted selection in bread wheat. Genome 2005, 48, 823–830. [Google Scholar] [CrossRef]
- Chelkowski, J.; Golka, L.; Stepien, L. Application of STS markers for leaf rust resistance genes in near– isogenic lines of spring wheat cv. Thatcher. J. Appl. Genet. 2003, 44, 323–338. [Google Scholar]
- Schachermayr, G.; Feuillet, C.; Keller, B. Molecular markers for the detection of the wheat leaf rust resistance gene Lr10 in diverse genetic backgrounds. Mol. Breed. 1997, 3, 65–74. [Google Scholar] [CrossRef]
- Prins, R.; Groenewald, J.Z.; Marais, G.F.; Snape, J.W.; Koebner, R.M.D. AFLP and STS tagging of Lr19, a gene conferring resistance to leaf rust in wheat. Theor. Appl. Genet. 2001, 103, 618–624. [Google Scholar] [CrossRef]
- Gupta, S.K.; Charpe, A.; Prabhu, K.W.; Haque, O.M.R. Identification and validation of molecular markers linked to the leaf rust resistance gene Lr19 in wheat. Theor. Appl. Genet. 2006, 113, 1027–1036. [Google Scholar] [CrossRef]
- Neu, C.; Stein, N.; Keller, B. Genetic mapping of the Lr20-Pm1 resistance locus reveals suppressed recombination on chromosome arm 7AL in hexaploid wheat. Genome 2002, 45, 737–744. [Google Scholar] [CrossRef] [Green Version]
- Fritz, A.; MasWheat. Marker Assisted Selection in Wheat. Leaf Rust Resistance Gene Lr21. Available online: http:// maswheat.ucdavis.edu/protocols/Lr21 (accessed on 10 March 2021).
- Mago, R.; Bariana, H.S.; Dundas, I.S. Development or PCR markers for the selection of wheat stem rust resistance genes Sr24 and Sr26 in diverse wheat germplasm. Theor. Appl. Genet. 2005, 111, 496–504. [Google Scholar] [CrossRef]
- Cherukuri, D.P.; Gupta, S.K.; Charpe, A.; Koul, S.; Prabhu, K.V.; Singh, R.B.; Haq, Q.M.R.; Chauhan, S.V.S.; Weber, W.E. Identification of a molecular marker linked to an Agropyron elongatum-derived gene Lr19 for leaf rust resistance in wheat. Plant. Breed. 2003, 122, 204–208. [Google Scholar] [CrossRef]
- Prabhu, K.V.; Gupta, S.K.; Charpe, A.; Koul, S.; Cherukuri, D.P.; Dhaliwal, H.S.; Vikal, P.; Chhuneja, Y.; Haq, Q.M.R. Molecular markers detect redundancy and miss-identity in genetic stocks with alien leaf rust resistance genes Lr32 and Lr28 in bread wheat. J. Plant. Biochem. Biotechnol. 2003, 12, 123–129. [Google Scholar] [CrossRef]
- Schachermayr, G.; Messemer, M.; Feuillet, C.; Winzeler, H.; Winzeler, M.; Keller, B. Identification of molecular markers linked to the Agropyron elongatum-derived leaf rust resistance gene Lr24 in wheat. Theor. Appl. Genet. 1995, 90, 982–990. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.K.; Charpe, A.; Koul, S.; Haque, Q.M.R.; Prabhu, K.V. Development and validation of SCAR markers co-segregating with an Agropyron elongatum derived leaf rust resistance gene Lr24 in wheat. Euphytica 2006, 150, 233–240. [Google Scholar] [CrossRef]
- Procunier, J.D.; Townley-Smith, T.F.; Fox, S.; Prashar, S.; Gray, M.; Kim, W.K.; Czarnecki, E.; Dyck, P.L. PCR-based RAPD/DGGE markers linked to leaf rust resistance genes Lr29 and Lr25 in wheat (Triticum aestivum L.). J. Genet. Breed. 1995, 49, 87–92. [Google Scholar]
- Weng, Y.; Azhaguvel, P.; Devkota, R.N.; Rudd, J.C. PCR based markers for detection of different sources of 1AL.1RS and 1BL.1RS wheat-rye translocations in wheat background. Plant. Breed. 2007, 126, 482–486. [Google Scholar] [CrossRef]
- Mago, R.; Spielmeyer, W.; Lawrence, G.J.; Lagudah, S.; Ellis, G.; Pryor, A. Identification and mapping of molecular markers linked to rust resistance genes located on chromosome1RS of rye using wheat-rye translocation lines. Theor. Appl. Genet. 2002, 104, 1317–1324. [Google Scholar] [CrossRef]
- Mago, R.; Miah, H.; Lawrence, G.J.; Wellings, C.R.; Spielmeyer, W.; Bariana, H.S.; McIntosh, R.A.; Pryor, A.J.; Ellis, J.G. High-resolution mapping and mutation analysis separate the rust resistance genes Sr31, Lr26 and Yr9 on the short arm of rye chromosome 1. Theor. Appl. Genet. 2005, 112, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Cherukuri, D.P.; Gupta, S.K.; Charpe, A.; Koul, S.; Prabhu, K.V.; Singh, R.B.; Haq, Q.M.R. Molecular mapping of Aegilops speltoides derived leaf rust resistance gene Lr28 in wheat. Euphytica 2005, 143, 19–26. [Google Scholar] [CrossRef]
- Lagudah, E.S.; McFadden, H.; Singh, R.P.; Huerta-Espino, J.; Bariana, H.S.; Spielmeyer, W. Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theor. Appl. Genet. 2006, 114, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Lagudah, E.S.; Krattinger, S.G.; Herrera-Foessel, S. Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens. Theor. Appl. Genet. 2009, 119, 889–898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gold, J.; Harder, D.; Townley–Smith, F.; Procunier, J. Development of a molecular marker for rust resistance genes Sr39 and Lr35 in wheat breeding lines. Electr. J. Biotechnol. 1999, 2, 35–40. [Google Scholar]
- Seyfarth, R.; Feuillet, C.; Schachermayr, G.; Winzeler, M.; Keller, B. Development of a molecular marker for the adult plant leaf rust resistance gene Lr35 in wheat. Theor. Appl. Genet. 1999, 99, 554–560. [Google Scholar] [CrossRef]
- Mago, R.; Zhang, P.; Bariana, H.S.; Verlin, D.C.; Bansal, U.K.; Ellis, J.G.; Dundas, I.S. Development of wheat lines carrying stem rust resistance gene Sr39 with reduced Aegilops speltoides chromatin and simple PCR markers for markerassisted selection. Theor. Appl. Genet. 2009, 124, 65–70. [Google Scholar] [CrossRef]
- Helguera, M.; Khan, I.A.; Kolmer, J.; Lijavetzky, D.; Zhong-qi, L.; Dubcovsky, J. PCR assays for the Lr37–Yr17–Sr38 cluster of rust resistance genes and their use to develop isogenic hard red spring wheat lines. Crop. Sci. 2003, 43, 1839–1847. [Google Scholar] [CrossRef]
- Pestsova, E.; Ganal, M.W.; Röder, M.S. Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 2000, 43, 689–697. [Google Scholar] [CrossRef]
- Brown-Guedira, G.; Sing, S. MasWheat. Marker Assisted Selection in Wheat. Leaf Rust Resistance Gene Lr39. Available online: http:// https://maswheat.ucdavis.edu/protocols/Lr39 (accessed on 10 March 2021).
- Helguera, M.; Khan, I.A.; Dubcovsky, J. Development of PCR markers for wheat leaf rust resistance gene Lr47. Theor. Appl. Genet. 2000, 101, 625–631. [Google Scholar] [CrossRef] [Green Version]
- Brown-Guedira, G.; Sing, S. MasWheat. Marker Assisted Selection in Wheat. Leaf Rust Resistance Gene Lr50. Available online: http:// https://maswheat.ucdavis.edu/protocols/Lr50 (accessed on 10 March 2021).
- Helguera, M.; Vanzetti, L.; Soria, M.; Khan, I.A.; Kolmer, J.; Dubcovsky, J. PCR Markers for Triticum speltoides leaf rust resistance gene Lr51 and their use to develop isogenic hard red spring wheat lines. Genom. Mol. Genet. Biotechnol. 2005, 45, 728–734. [Google Scholar] [CrossRef] [Green Version]
- Marais, G.F.; Bekker, T.A.; Eksteen, A.; McCallum, B.; Fetch, T.; Marais, A.S. Attempts to remove gametocidal genes co-transferred to common wheat with rust resistance from Aegilops speltoides. Euphytica 2010, 171, 71–85. [Google Scholar] [CrossRef]
- Dakouri, A.; McCallum, B.D.; Radovanovic, N.; Cloutier, S. Molecular and phenotypic characterization of seedling and adult plant leaf rust resistance in a world wheat collection. Mol. Breed. 2013, 32, 663–677. [Google Scholar] [CrossRef] [Green Version]
- McIntosh, R.A.; Dubcovsky, J.; Rogers, W.J.; Morris, C.; Xia, X.C. Catalogue of Gene Symbols for Wheat: 2017 Supplement. Available online: https://shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2017.pdf (accessed on 10 March 2021).
- Sibikeev, S.N.; Druzhin, A.E.; Badaeva, E.D.; Shishkina, A.A.; Dragovich, A.Y.; Gultyaeva, E.I.; Kroupin, P.Y.; Karlov, G.I.; Khuat, T.M.; Divashuk, M.G. Comparative analysis of Agropyron intermedium (host) Beauv 6Agi and 6Agi2 chromosomes in bread wheat cultivars and lines with wheat–wheatgrass substitutions. Russ. J. Genet. 2017, 53, 314–324. [Google Scholar] [CrossRef]
- Gultyaeva, E.I.; Shaydayuk, E.L.; Kosman, E.G. Regional and temporal differentiation of virulence phenotypes of Puccinia triticina from common wheat in Russia during the period 2001–2018. Plant. Pathol. 2020, 69, 860–871. [Google Scholar] [CrossRef]
- Tyunin, V.A.; Shreider, E.R.; Gultyaeva, E.I.; Shaydayuk, E.L. Characteristics of virulence of Puccinia triticina populations and the potential of the Lr24, Lr25, LrSp genes for spring common wheat breeding in the Southern Ural. Vavilov. J. Genet. Breed. 2017, 21, 523–529. [Google Scholar] [CrossRef]
- Adonina, I.G.; Leonova, I.N.; Badaeva, E.D.; Salina, E.A. Genotyping of hexaploid wheat varieties from different Russian regions Vavilov. J. Genet. Breed. 2016, 20, 44–50. (in Russian) [Google Scholar] [CrossRef] [Green Version]
- Tyryshkin, L.G.; Gultyaeva, E.I.; Alpateva, N.V.; Kramer, I. Identification of effective leaf rust resistance genes in wheat Triticum aestivum by means of STS markers. Russ. J. Genet. 2006, 42, 662–666. [Google Scholar] [CrossRef]
- Meshkova, L.V.; Roseeva, L.P.; Shreider, E.R.; Sidorov, AV. Virulence of Pathotypes of Wheat Leaf Rust Pathogen to ThLr9 in Siberia and the Urals. In Proceedings of the Second All-Russian Conference “Modern Problems of Plant Immunity to Harmful Organisms”, St. Petersburg, Russia, 29 September–2 October 2008; pp. 70–73. (in Russian). [Google Scholar]
- Gultyaeva, E.I.; Shaydayuk, E.L.; Rsaliyev, A.S. Identification of leaf rust resistance genes in spring soft wheat samples developed in Russia and Kazakhstan. Plant. Protection News 2019, 3, 41–49. [Google Scholar] [CrossRef]
- Sochalova, L.P.; Piskarev, V.V. Resistance of spring soft wheat varieties to pathogens of infectious diseases in the changing climate of Western Siberia. Achiev. Sci. Technol. AICis 2017, 31, 21–25. (in Russian). [Google Scholar]
- Loginov, Yu.P.; Kazak, A.A.; Filatova, V.V. The Adaptability of Spring Wheat Varieties of Krasnoufimsky Breeding Center and Their Value for Breeding in the Tyumen Region; Bulletin of NSAU (Novosibirsk State Agrarian University): Novosibirsk, Russia, 2016; Volume 3, pp. 27–35. (in Russian) [Google Scholar]
- Zhemchuzina, A.I.; Nazarova, L.N.; Dymchenko, A.M. Leaf rust resistance in winter wheat varieties. Breed. Seed Prod. 1992, 1, 6–11. (in Russian). [Google Scholar]
Lr Gene | Markers | Marker Type | Size of Amplified Marker Fragments, bp | Reference |
---|---|---|---|---|
Lr1 | WR003 F/R | PCR | 760 | Qiu et al. [23] |
Lr3a | Xmwg798 | STS | 365 | Herrera-Foessel et al. [24] |
Lr9 | J13 | STS | 1100 | Schachermayr et al. [25] |
SCS5 | SCAR | 550 | Gupta et al. [26] | |
Lr10 | F1.2245/Lr10-6/r2 | STS | 310 | Chelkowski et al. [27] |
Lrk10-6 Lrk10-D | STS | 282 | Schachermayr et al. [28] | |
Lr19 | Gb | STS | 130 | Prins et al. [29] |
SCS265 | SCAR | 512 | Gupta et al. [30] | |
Lr20 | STS638 | STS | 540 | Neu et al. [31] |
Lr21 | Lr21F/R | STS | 669 | Fritz [32] |
Lr24 | Sr24 ≠ 12 | STS | 500 | Mago et al. [33] |
Sr24 ≠ 50 | STS | 200 | ||
SCS73 | SCAR | 719 | Cherukuri et al. [34]; Prabhu et al. [35] | |
J09 | STS | 310 | Schachermayr et al. [36] | |
SCS1302 | SCAR | 607 | Gupta et al. [37] | |
S1326 | SCAR | 613 | ||
SCOAB-1 | SCAR | 365 | ||
Lr25 | Lr25F20/R19 | SCAR | 1800 | Procunier et al. [38] |
Lr26 | SCM9 | PCR | 207(1BL.1RS) | Weng et al. [39] |
228 (1Al.1RS) | ||||
iag 95 | STS | 1000 | Mago et al. [40,41] | |
Lr28 | SCS421570 | SCAR | 570 | Cherukuri et al. [42] |
Lr29 | Lr29F24 | SCAR | 900 | Procunier et al. [38] |
Lr34 | csLV34 | STS | 150 | Lagudah et al. [43] |
L34DINT9F/L34PLUS | PCR | 517 | Lagudah et al. [44] | |
Lr35 | Sr39 F2/R3 | SCAR | 900 | Gold et al. [45] |
BCD260F1/35R2 | STS | 450 | Seyfarth et al. [46] | |
Sr39#22r | STS | 800 | Mago et al. [47] | |
Lr37 | Ventriup/LN2 | STS | 285 | Helguera et al. [48] |
Lr41(39) | GDM35 | SSR | 190 | Pestsova et al. [49]; Brown-Guedira, Singh [50] |
Lr47 | PS10 | PCR | 282 | Helguera et al. [51] |
Lr50 | Xgwm382 | SSR | 139 | Brown-Guedira, Singh [52] |
Xgdm87 | SSR | 110 | ||
Lr51 | S30-13L/AGA7-759 | CAPS | 422 + 397 | Helguera et al. [53] |
Lr66 | S13-R16 | SCAR | 695 | Marais et al. [54] |
Recommendation Period * | Lr34 | Lr26 | Lr34 and Lr26 |
---|---|---|---|
Before 2000 | Bezostaya 1, Podarok Donu, Tarasovskaya ostistaya; in combination with Lr3: Don 93, Donskaya bezostaya, Donskaya yubileynaya, Donskoy mayak, Zernogradka 9 | in combination with Lr10: Vita | |
2001–2010 | Bulgun, Garant, Dominanta, Dzhangal’, Konkurent, Kuma, Liga 1, Stanichnaya, Odesskaya 100, Pamyati Kalinenko, Rostovchanka 3, Yubileynaya 100, Zustrich, Severodonskaya;in combination with Lr1: Don 107, Gubernator Dona, Pisanka, Rapsodiya, Tristan, Yunona, Pervitza, Pisanka, Zimtra; in combination with Lr3: Arpha, Don 105, Deviz, Donskoy proctor, Prestizh, Skiphyanka, Tarasovskaya ostistaya, Zernogradka 10, Zernogradka 10, Viza;in combination with Lr10: Moskvich, Resurs Rostovchanka 5, Skpabitsa, Zimtra, Yumpa; in combination with Lr1 and Lr10: Zimtra | Berezit, Bulgun, Fantasiya, Fortuna, Irishka, Krasota, Knyazhna, Maphe, Legenda, Selyanka, Umanka, Veda, Vostorg, Yashkulyanka, Polovchanka; a; in combination with Lr1: Pervitsa; in combination with Lr10: Bulgun, Gratziya, Kollega, Kupava | Veda, Doka, Tanya, Yesaul; Dzhangal’, Gordyanka; in combination with Lr10: Ayvina, Sintetik, Vita; in combination with Lr1: Afina, Kseniya |
2011–2020 | Arsenal, Bezmezhna, Blagodarka odes’ka, Borviy, Boyarynya, Dmitriy, Donskaya Lira, Firuza 40, Kalym Kaprizulya, Maykopchanka, Missiya, Nakhodka, Niva Stavropol’ya Goduval’nytsya Odes’ka, Idilliya, Ovidiy, Poshana, Sekletiya, Sluzhnytsya odes’ka, Titona, Donera, Viktoriya 11, Vol’nuy Don, Vol’nitza, Zhavoronok, in combination with Lr3: Aksin’ya, Anastasiya, Asket, Izyuminka, Lidiya, Lilit; in combination with Lr1: Akapella, Driada1, Misiya odes’ka, Otaman, Proton, Vdala, Zagrava odesskaya, Knoppa, Vol’nitsa, Vol’nyy Don; in combination with Lr1 and Lr3:V’yuga;in combination with Lr1, 1AL.1RS: Kokhana, Knyaginya Ol’ga; in combination with Lr1, Lr10: Anka, Bagira, Kuyal’nik, Lastivka odes’ka, Zhayvir, Zmina;in combination with Lr3 and Lr10: Shef | Alekseich, Anastasiya, Armada, Chornyava, Donstar, Karavan, Kuren’, Laureat, Ol’khon, Step’, Timiryazevka 150, Vassa, Velena, Videya; in combination with Lr1: Akhmat, Gurt, Uryup, Vershina, Yuka; in combination with Lr1 and Lr10: Antonina, Bagrat, Kurs; in combination with Lr3: Iridasin in combination with Lr10: Veha, | Bezostaya 100, Podolyanka; Utrish, Zhiva; in combination with Lr10: Adel’; Paritet, in combination with Lr1: Duplet, Korona, Vid; in combination with Lr3: Vanya. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gultyaeva, E.; Shaydayuk, E.; Gannibal, P. Leaf Rust Resistance Genes in Wheat Cultivars Registered in Russia and Their Influence on Adaptation Processes in Pathogen Populations. Agriculture 2021, 11, 319. https://doi.org/10.3390/agriculture11040319
Gultyaeva E, Shaydayuk E, Gannibal P. Leaf Rust Resistance Genes in Wheat Cultivars Registered in Russia and Their Influence on Adaptation Processes in Pathogen Populations. Agriculture. 2021; 11(4):319. https://doi.org/10.3390/agriculture11040319
Chicago/Turabian StyleGultyaeva, Elena, Ekaterina Shaydayuk, and Philipp Gannibal. 2021. "Leaf Rust Resistance Genes in Wheat Cultivars Registered in Russia and Their Influence on Adaptation Processes in Pathogen Populations" Agriculture 11, no. 4: 319. https://doi.org/10.3390/agriculture11040319
APA StyleGultyaeva, E., Shaydayuk, E., & Gannibal, P. (2021). Leaf Rust Resistance Genes in Wheat Cultivars Registered in Russia and Their Influence on Adaptation Processes in Pathogen Populations. Agriculture, 11(4), 319. https://doi.org/10.3390/agriculture11040319