EC Sensitivity of Hydroponically-Grown Lettuce (Lactuca sativa L.) Types in Terms of Nitrate Accumulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Management Pratices
- –
- EC Yara Ferticare Starter N:P:K (N2 15%, P2O5 30%, K2O 15%, MgO 2.5%, SO3 5%, B 0.02%, Cu 0.01%, Fe 0.1%, Mn 0.1%, Mo 0.002%, and Zn 0.01%) at a concentration of 0.1% = 1.71 dS/m (T = 26.2 °C).
- –
- EC Yara Ferticare I. N:P:K (content: N2 14%, P2O5 11.6%, K2O 25.3%, MgO 2.4%, S 13.75%, B 0.02%, Cu 0.01%, Fe 0.1%, Mn 0.1%, Mo 0.002% and Zn 0.01%) at a concentration of 1% = 10.12 dS/m (T = 23.3 °C)
- –
- EC Calcinit (content: N 15.5%, CaO 26.2%) at a concentration of 0.02% = 0.73 dS/m (T = 20.6 °C)
- –
- EC Yara Ferticare Starter N:P:K ((N2 15%, P2O5 30%, K2O 15%, MgO 2.5%, SO3 5%, B 0.02%, Cu 0.01%, Fe 0.1%, Mn 0.1%, Mo 0.002%, Zn 0.01%) at a concentration of 0.1% = 1.06 dS/m (T = 25.2 °C)
- –
- EC Yare Ferticare I. N:P:K (content: N2 14%, P2O5 11.6%, K2O 25.3%, MgO 2.4%, S 13.75%, B 0.02%, Cu 0.01%, Fe 0.1%, Mn 0.1%, Mo 0.002% and Zn 0.01%) at a concentration of 0.1% = 1.09 dS/m (T = 25.7 °C)
- –
- EC Calcinit (content: N 15.5%, CaO 26.2%) at a concentration of 0.02% = 0.75 dS/m (T = 27.6 °C)
2.2. Total Fresh Weight Measurement and Leaf Relative Chlorophyll Content Measurement
2.3. Nitrate Determination
2.4. Statistical Procedures
3. Results
3.1. Fresh Weight (FW)
3.2. Leaf Relative Chlorophyll Content
3.3. Nitrate Content
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Morris, M.C.; Wang, Y.; Barnes, L.L.; Bennett, D.A.; Dawson-Hughes, B.; Booth, S.L. Nutrients and bioactives in green leafy vegetables and cognitive decline: Prospective study. Neurology 2018, 90, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Moon, Y.; Tou, J.C.; Mou, B.; Waterland, N.L. Nutritional value, bioactive compounds and health benefits of lettuce (Lactuca sativa L.). J. Food Compos. Anal. 2016, 49, 19–34. [Google Scholar] [CrossRef]
- Nicolle, C.; Cardinault, N.; Gueux, E.; Jaffrelo, L.; Rock, E.; Mazur, A.; Amouroux, P.; Rémésy, C. Health effect of vegetable-based diet: Lettuce consumption improves cholesterol metabolism and antioxidant status in the rat. Clin. Nutr. 2004, 23, 605–614. [Google Scholar] [CrossRef]
- Abdullahi, A.S.; Usman, J.; Muazu, S.; Abba, Y.; Ibrahim, M.K. Nitrate Contents in Some Vegetable Leaves in Sokoto Metropolis, Nigeria. Afr. J. Biochem. Res. 2015, 9, 124–129. [Google Scholar] [CrossRef] [Green Version]
- Faour-Klingbeil, D.; Todd, E.C.D.; Kuri, V. Microbiological quality of ready-to-eat fresh vegetables and their link to food safety environment and handling practices in restaurants. LWT Food Sci. Technol. 2016, 74, 224–233. [Google Scholar] [CrossRef] [Green Version]
- Pančevski, Z.; Stafilov, T.; Bačeva, K. Distribution of heavy metals in lettuce and carrot grown in the vicinity of lead and zinc smelter plant. Int. J. Pure Appl. Chem. 2014, 9, 17–26. [Google Scholar]
- Dinu, L.D.; Bach, S. Induction of viable but nonculturable Escherichia coli O157:H7 in the phyllosphere of lettuce: A food safety risk factor. Appl. Environ. Microbiol. 2011, 77, 8295–8302. [Google Scholar] [CrossRef] [Green Version]
- Dolan, L.C.; Matulka, R.A.; Burdock, G.A. Naturally occurring food toxins. Toxins 2010, 2, 2289–2332. [Google Scholar] [CrossRef] [Green Version]
- FDA. Commodity Specific Food Safety Guidelines for the Lettuce and Leafy Greens Supply Chain 1st Edition. Available online: https://www.fda.gov/downloads/Food/GuidanceRegulation/UCM169008.pdf (accessed on 8 November 2019).
- Hmelak Gorenjak, A.; Cencič, A. Nitrate in vegetables and their impact on human health. A review. Acta Aliment. 2013, 42, 158–172. [Google Scholar] [CrossRef]
- EFSA. Nitrate in vegetables. Scientific opinion of the panel on contaminants in the food chain. EFSA J. 2008, 689, 1–79. Available online: http://www.efsa.europa.eu/sites/default/files/scientific_output/files/main_documents/689.pdf (accessed on 8 November 2018).
- Mensinga, T.T.; Speijers, G.J.A.; Meulenbelt, J. Health implications of exposure to environmental nitrogenous compounds. Toxicol. Rev. 2003, 22, 41–51. [Google Scholar] [CrossRef]
- Ahluwalia, A.; Gladwin, M.; Coleman, G.D.; Hord, N.; Howard, G.; Kim-Shapiro, D.B.; Lajous, M.; Larsen, F.J.; Lefer, D.J.; Mcclure, L.A.; et al. Dietary nitrate and the epidemiology of cardiovascular disease: Report from a National Heart, Lung, and Blood Institute Workshop. J. Am. Heart Assoc. 2016, 5, e003402. [Google Scholar] [CrossRef]
- Food Standards Agency Nitrate Monitoring in Spinach and Lettuce—Surveillance Programme. 2017. Available online: https://www.food.gov.uk/research/research-projects/nitrate-monitoring-in-spinach-and-lettuce-surveillance-programme (accessed on 8 November 2018).
- Kyriacou, M.C.; Soteriou, G.A.; Colla, G.; Rouphael, Y. The occurrence of nitrate and nitrite in Mediterranean fresh salad vegetables and its modulation by preharvest practices and postharvest conditions. Food Chem. 2019, 285, 468–477. [Google Scholar] [CrossRef] [PubMed]
- EC. EUROPEAN COMMISSION COMMISSION REGULATION (EU) No 1258/2011 Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels for Nitrates in Foodstuffs Contains the Allowed Maximum Level of Nitrate. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32011R1258&from=EN (accessed on 8 November 2018).
- Singh, H.; Dunn, B.; Payton, M.; Brandenberger, L. Fertilizer and cultivar selection of lettuce, basil, and swiss chard for hydroponic production. Hort Technol. 2019, 29, 50–56. [Google Scholar] [CrossRef] [Green Version]
- Aires, A. Hydroponic Production Systems: Impact on Nutritional Status and Bioactive Compounds of Fresh Vegetables. In Vegetables-Importance of Quality Vegetables to Human Health; Asaduzzaman, M.D., Toshiki, A., Eds.; IntechOpen: London, UK, 2018; pp. 55–66. [Google Scholar]
- Savvas, D.; Gruda, N. Application of soilless culture technologies in the modern greenhouse industry—A review. Eur. J. Hortic. Sci. 2018, 83, 280–293. [Google Scholar] [CrossRef]
- Buchanan, D.N.; Omaye, S.T. Comparative Study of Ascorbic Acid and Tocopherol Concentrations in Hydroponic- and Soil-Grown Lettuces. Food Nutr. Sci. 2013, 4, 1047–1053. [Google Scholar] [CrossRef] [Green Version]
- Sgherri, C.; Cecconami, S.; Pinzino, C.; Navari-Izzo, F.; Izzo, R. Levels of antioxidants and nutraceuticals in basil grown in hydroponics and soil. Food Chem. 2010, 123, 416–422. [Google Scholar] [CrossRef]
- Frezza, D.; León, A.; Logegaray, V.; Chiesa, A.; Desimone, M.; Diaz, L. Soilless culture technology for high quality lettuce. Acta Hortic. 2005, 697, 43–48. [Google Scholar] [CrossRef]
- Camejo, D.; Frutos, A.; Mestre, T.C.; del Carmen Piñero, M.; Rivero, R.M.; Martínez, V. Artificial light impacts the physical and nutritional quality of lettuce plants. Hortic. Environ. Biotechnol. 2020, 61, 69–82. [Google Scholar] [CrossRef]
- Novaes, H.B.; Vaitsman, D.S.; Dutra, P.B.; Pérez, D.V. Determination of Nitrate in Lettuce by Ion Chromatography after Microwave Water Extraction. Química Nova 2009, 32, 1647–1650. [Google Scholar] [CrossRef]
- Xu, C.; Mou, B. Evaluation of Lettuce Genotypes for Salinity Tolerance. HortScience 2015, 50, 1441–1446. [Google Scholar] [CrossRef] [Green Version]
- Pasternak, D.; De Malach, Y.; Borovic, I.; Shram, M.; Aviram, C. Irrigation with brackish water under desert conditions IV. Salt tolerance studies with lettuce (Lactuca sativa L.). Agric. Water Manag. 1986, 11, 303–311. [Google Scholar] [CrossRef]
- Basilio Guimarães, R.F.; Do Nascimento, R.; De Melo, D.F.; Garcia Ramos, J.; De Oliveira Pereira, M.; Ferreira Cardoso, J.A.; De Lima, S.C. Production of Hydroponic Lettuce under Different Salt Levels of Nutritive Solution. J. Agric. Sci. 2017, 9, 242–252. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, F.de.A.; Carrilho, M.J.D.O.; de Medeiros, J.F.; Maracajá, P.B.; de Oliveira, M.K.T. Desempenho de cultivares de alface submetidas a diferentes níveis de salinidade da água de irrigação. Rev. Bras. Eng. Agrícola Ambient. 2011, 15, 771–778. [Google Scholar] [CrossRef]
- Borghesi, E.; Carmassi, G.; Uguccioini, M.C.; Vernieri, P.; Malorgio, F. Effects of calcium and salinity stress on quality of lettuce in soilless culture. J. Plant Nutr. 2013, 36, 677–690. [Google Scholar] [CrossRef]
- Mota-Cadenas, C.; Alcaraz-López, C.; Martínez-Ballesta, M.C.; Carvajal, M. How salinity affects CO2 fixation by horticultural crops. HortScience 2010, 45, 1798–1803. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, K.; Kogi, M.; Yanagisawa, T. Effects of salinity and nutrients in seawater on hydroponic culture of red leaf lettuce. Environ. Control. Biol. 2014, 52, 189–195. [Google Scholar] [CrossRef] [Green Version]
- Singh, H.; Bruce, D. Electrical conductivity and pH guide for hydroponics. In Division of Agricultural Sciences and Natural Resources; Oklahoma Cooperative Extension Fact Sheets, HLA-6722; Oklahoma State University: Stillwater, OK, USA, 2016; Volume 5. [Google Scholar]
- Cataldo, D.A.; Haroon, M.; Schrader, L.E.; Youngs, V.L. 1975: Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun. Soil Sci. Plant Anal. 1975, 6, 71–86. [Google Scholar] [CrossRef]
- Zapata, P.J.; Serrano, M.; Pretel, T.; Amorós, A.; Botella, Á.M. Changes in Ethylene Evolution and Polyamine Profiles of Seedlings of Nine Cultivars of Lactuca sativa L. in Response to Salt Stress during Germination. Plant Sci. 2003, 164, 557–563. [Google Scholar] [CrossRef]
- Mola, I.D.; Rouphael, Y.; Colla, G.; Fagnano, M.; Paradiso, R.; Mori, M. Morphophysiological Traits and Nitrate Content of Greenhouse Lettuce as Affected by Irrigation with Saline Water. HortScience 2017, 52, 1716–1721. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, M.P.J.C.; Harris, P.J.C. Potential Biochemical Indicators of Salinity Tolerance in Plants. Plant Sci. 2004, 166, 3–16. [Google Scholar] [CrossRef]
- Samarakoon, U.C.; Weerasinghe, P.A.; Weerakkody, W.A.P. Effect of electrical conductivity (EC) of the nutrient solution on nutrient uptake, growth and yield of leaf lettuce (Lactuca sativa L.) in stationary culture. Trop. Agric. Res. 2006, 18, 13–21. [Google Scholar]
- Samarakoon, U.C.; Palmer, J.; Ling, P.; Altland, J. Effects of Electrical Conductivity, pH, and Foliar Application of CalciumChloride on Yield and Tipburn of Lactuca sativa Grown Using the Nutrient–Film Technique. HortScience 2020, 55, 1265–1271. [Google Scholar] [CrossRef]
- Shannon, M.C.; Grieve, C.M. Tolerance of Vegetable Crops to Salinity. Sci. Hortic. 1998, 78, 5–38. [Google Scholar] [CrossRef]
- Miceli, A.; Moncada, A.; D’Anna, F. Effect of Salt Stress in Lettuce Cultivation. Acta Hortic. 2003, 371–376. [Google Scholar] [CrossRef]
- Andriolo, J.L.; Luz, G.L.D.; Witter, M.H.; Godoi, R.D.S.; Barros, G.T.; Bortolotto, O.C. Growth and Yield of Lettuce Plants under Salinity. Hortic. Bras. 2005, 23, 931–934. [Google Scholar] [CrossRef] [Green Version]
- Ouhibi, C.; Attia, H.; Rebah, F.; Msilini, N.; Chebbi, M.; Aarrouf, J.; Urban, L.; Lachaal, M. Salt Stress Mitigation by Seed Priming with UV-C in Lettuce Plants: Growth, Antioxidant Activity and Phenolic Compounds. Plant Physiol. Biochem. 2014, 83, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Schrader, S.E.J. Salinity Tolerance of Lettuce Cultivars in Controlled Environment. Master’s Thesis, The University of Arizona, Tucson, AZ, USA, 2017. [Google Scholar]
- Soares, H.R.; Silva, Ê.F.F.; Silva, G.F.; Pedrosa, E.M.R.; Rolim, M.M.; Santos, A.N. Lettuce growth and water consumption in NFT hydroponic system using brackish water. Rev. Bras. Eng. Agrícola Ambient. 2015, 19, 636–642. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Nii, N. Changes in Chlorophyll, Ribulose Bisphosphate Carboxylase-Oxygenase, Glycine Betaine Content, Photosynthesis and Transpiration in Amaranthus Tricolor Leaves during Salt Stress. J. Hortic. Sci. Biotechnol. 2000, 75, 623–627. [Google Scholar] [CrossRef]
- Pérez-López, U.; Miranda-Apodaca, J.; Lacuesta, M.; Mena-Petite, A.; Munoz-Rueda, A. Growth and nutritional quality improvement in two differently pigmented lettuce cultivars grown under elevated CO2 and/or salinity. Sci. Hortic. 2015, 195, 56–66. [Google Scholar] [CrossRef]
- Misra, A.N.; Sahu, S.M.; Misra, M.; Singh, P.; Meera, I.; Das, N.; Kar, M.; Sahu, P. Sodium Chloride Induced Changes in Leaf Growth, and Pigment and Protein Contents in Two Rice Cultivars. Biol. Plant. 1998, 39, 257–262. [Google Scholar] [CrossRef]
- Murillo-Amador, B.; Yamada, S.; Yamaguchi, T.; Rueda-Puente, E.; Ávila-Serrano, N.; García-Hernández, J.L.; López-Aguilar, R.; Troyo-Diéguez, E.; Nieto-Garibay, A. Influence of Calcium Silicate on Growth, Physiological Parameters and Mineral Nutrition in Two Legume Species under Salt Stress. J. Agron. Crop Sci. 2007, 193, 413–421. [Google Scholar] [CrossRef]
- Taffouo, D.V.; Wamba, O.F.; Youmbi, E.; Nono, G.V.; Akoa, A. Growth, Yield, Water Status and Ionic Distribution Response of Three Bambara Groundnut (Vigna subterranea (L.) Verdc.) Landraces Grown under Saline Conditions. Int. J. Bot. 2010, 6, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Chung, J.B.; Jin, S.J.; Cho, H.J. Low water potential in saline soils enhances nitrate accumulation of lettuce. Commun. Soil Sci. Plant Anal. 2005, 36, 1773–1785. [Google Scholar] [CrossRef]
- Eraslan, F.; Inal, A.; Savasturk, O.; Gunes, A. Changes in antioxidative system and membrane damage of lettuce in response to salinity and boron toxicity. Sci. Hortic. 2007, 114, 5–10. [Google Scholar] [CrossRef]
- Quy, N.V.; Sinsiri, W.; Chitchamnong, S.; Boontiang, K.; Kaewduangta, W. Effects of electrical conductivity (EC) of the nutrient solution on growth, yield and quality of lettuce under vertical hydroponic systems. Khon Kaen Agric. J. 2018, 46, 613–622. [Google Scholar]
- Jin, S.J.; Cho, H.J.; Chung, J.B. Effect of soil salinity on nitrate accumulation of lettuce. Korean J. Soil Sci. Fertil. 2004, 37, 91–96. [Google Scholar]
- Behr, U.; Wiebe, H.J. Relation between photosynthesis and nitrate content of lettuce cultivars. Sci. Hortic. 1992, 49, 175–179. [Google Scholar] [CrossRef]
- M’hamdi, M.; Boughattas, I.; Rouhou, H.C.; Souhli, E.; Bettaieb, T. Effect of different levels of nitrogen fertilizer on morphological and physiological parameters and nitrates accumulation of lettuce cultivars (Lactuca sativa L.). Res. Plant Biol. 2014, 4, 27–38. [Google Scholar]
- Fontana, E.; Silvana, N. Traditional and soilless culture Systems to produce corn salad (Valerianella olitoria L.) and rocket (Eruca sativa Mill.) with low nitrate content. J. Food Agric. Environ. 2009, 7, 405–410. [Google Scholar]
- Fallovo, C.; Rouphael, Y.; Cardarelli, M.; Rea, E.; Battistelli, A.; Colla, G. Yield and Quality of Leafy Lettuce in Response to Nutrient Solution Composition and Growing Season. J. Food Agric. Environm. 2009, 7, 456–462. [Google Scholar]
- Manzocco, L.; Foschia, M.; Tomasi, N.; Maifreni, M.; Dalla Costa, L.; Marino, M.; Cortella, G.; Cesco, S. Influence of hydroponic and soil cultivation on quality and shelf life of ready-to-eat lamb’s lettuce (Valerianella locusta L. Laterr). J. Sci. Food Agric. 2011, 91, 1373–1380. [Google Scholar] [CrossRef] [PubMed]
- Krohn, N.G.; Missio, R.F.; Ortolan, M.L.; Burin, A.; Steinmacher DALopes, M.C.T. Nitrate level on lettuce leaves in function of the harvest time and leaf type sampling. Hortic. Bras. 2003, 21, 216–219. [Google Scholar] [CrossRef] [Green Version]
- Tesi, R.; Lenzi, A.; Lombardi, P. Effect of salinity and oxygen level on lettuce grown in a floating system. Acta Hortic. 2003, 609, 383–387. [Google Scholar] [CrossRef]
- Burns, I.G.; Dunford, J.; Lynn, J.; McClement, S.; Hand, P.; Pink, D. The Influence of genetic variation and nitrogen source on nitrate accumulation and iso-osmotic regulation by lettuce. Plant Soil 2012, 352, 321–339. [Google Scholar] [CrossRef]
- Gruda, N.; Savvas, D.; Colla, G.; Rouphael, Y. Impacts of genetic material and current technologies on product quality of selected greenhouse vegetables—A review. Eur. J. Hortic. Sci. 2018, 83, 319–328. [Google Scholar] [CrossRef]
- Bian, Z.; Wang, Y.; Zhang, X.; Li, T.; Grundy, S.; Yang, Q.; Cheng, R. A Review of Environment Effects on Nitrate Accumulation in Leafy Vegetables Grown in Controlled Environments. Foods 2020, 9, 732. [Google Scholar] [CrossRef]
Variables | Nitrate Content | Fresh Weight | Chlorophyll Content |
---|---|---|---|
Nitrate content | – | −0.156 | −0.542 |
Fresh weight | −0.156 | – | −0.015 |
Chlorophyll content | −0.542 | −0.015 | – |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kappel, N.; Boros, I.F.; Ravelombola, F.S.; Sipos, L. EC Sensitivity of Hydroponically-Grown Lettuce (Lactuca sativa L.) Types in Terms of Nitrate Accumulation. Agriculture 2021, 11, 315. https://doi.org/10.3390/agriculture11040315
Kappel N, Boros IF, Ravelombola FS, Sipos L. EC Sensitivity of Hydroponically-Grown Lettuce (Lactuca sativa L.) Types in Terms of Nitrate Accumulation. Agriculture. 2021; 11(4):315. https://doi.org/10.3390/agriculture11040315
Chicago/Turabian StyleKappel, Noémi, Ildikó Fruzsina Boros, Francia Seconde Ravelombola, and László Sipos. 2021. "EC Sensitivity of Hydroponically-Grown Lettuce (Lactuca sativa L.) Types in Terms of Nitrate Accumulation" Agriculture 11, no. 4: 315. https://doi.org/10.3390/agriculture11040315