Impact of Tillage and Crop Residue Management on the Weed Community and Wheat Yield in a Wheat–Maize Double Cropping System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Soil Collection and Processing
2.4. Seed Bank Determination
2.5. Weed Sampling
2.6. Statistical Analysis
3. Results
3.1. Species Richness in Aboveground Vegetation and Soil Seed Bank
3.2. Weed Density in Aboveground Vegetation and Seed Density in the Soil Seed Bank
3.3. Functional Groups in Aboveground Vegetation and Soil Seed Bank
3.4. Life Forms in Aboveground Vegetation and Soil Seed Bank
3.5. Aboveground Biomass of Weeds
3.6. Wheat Yield
4. Discussion
4.1. Impact of Tillage and Crop Residue Management on Weed Species Richness and Weed Density
4.2. Effects of Tillage and Crop Residue Management on Functional Group of Weeds
4.3. Effects of Tillage and Crop Residue Management on Life Forms of Weeds
4.4. Effects of Tillage and Crop Residue Management on Crop Yield
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NCP | The North China Plain |
CT | Conventional tillage |
NT | No-till |
NS | No crop residue retention |
CS | Crop residue retention |
CT-NS | Conventional tillage without crop residue retention |
CT-CS | Conventional tillage with crop residue retention |
NT-NS | No-till without crop residue retention |
NT-CS | No-till with crop residue retention |
References
- Soltani, N.; Dille, J.A.; Robinson, D.E.; Sprague, C.L.; Morishita, D.W.; Lawrence, N.C.; Kniss, A.R.; Jha, P.; Felix, J.; Nurse, R.E.; et al. Potential yield loss in sugar beet due to weed interference in the United States and Canada. Weed Technol. 2018, 32, 749–753. [Google Scholar] [CrossRef]
- Vollmann, J.; Wagentristl, H.; Hartl, W. The effects of simulated weed pressure on early maturity soybeans. Eur. J. Agron. 2010, 32, 243–248. [Google Scholar] [CrossRef]
- Annett, R.; Habibi, H.R.; Hontela, A. Impact of glyphosate and glyphosate-based herbicides on the freshwater environment. J. Appl. Toxicol. 2014, 34, 458–479. [Google Scholar] [CrossRef]
- Dalton, R.L.; Boutin, C. Comparison of the effects of glyphosate and atrazine herbicides on nontarget plants grown singly and in microcosms. Env. Toxicol. Chem. 2010, 29, 2304–2315. [Google Scholar] [CrossRef]
- Gu, X.; Cen, Y.; Guo, L.; Li, C.; Yuan, H.; Xu, Z.; Jiang, G. Responses of weed community, soil nutrients, and microbes to different weed management practices in a fallow field in Northern China. Peerj 2019, 7, e7650. [Google Scholar] [CrossRef] [PubMed]
- Halde, C.; Bamford, K.C.; Entz, M.H. Crop agronomic performance under a six-year continuous organic no-till system and other tilled and conventionally-managed systems in the northern Great Plains of Canada. Agricecosyst Environ. 2015, 213, 121–130. [Google Scholar] [CrossRef]
- Fracchiolla, M.; Stellacci, A.M.; Cazzato, E.; Tedone, L.; Alhajj Ali, S.; De Mastro, G. Effects of conservative tillage and nitrogen management on weed seed bank after a seven-year durum wheat-faba bean rotation. Plants 2018, 7, 82. [Google Scholar] [CrossRef] [Green Version]
- Sarani, M.; Oveisi, M.; Mashhadi, H.R.; Alizade, H.; Gonzalez-Andujar, J.L. Interactions between the tillage system and crop rotation on the crop yield and weed populations under arid conditions. Weed Biol Manag. 2014, 14, 198–208. [Google Scholar] [CrossRef] [Green Version]
- Muminov, M.A.; Guo, L.; Song, Y.; Gu, X.; Cen, Y.; Meng, J.; Jiang, G. Comparisons of weed community, soil health and economic performance between wheat-maize and garlic-soybean rotation systems under different weed managements. PeerJ 2018, 6, e4799. [Google Scholar] [CrossRef]
- Mohler, C.L.; Caldwell, B.A.; Marschner, C.A.; Cordeau, S.; Maqsood, Q.; Ryan, M.R.; DiTommaso, A. Weed seedbank and weed biomass dynamics in a long-term organic vegetable cropping systems experiment. Weed Sci. 2018, 66, 611–626. [Google Scholar] [CrossRef]
- Tang, L.; Wan, K.; Cheng, C.; Li, R.; Wang, D.; Pan, J.; Tao, Y.; Xie, J.; Chen, F. Effect of fertilization patterns on the assemblage of weed communities in an upland winter wheat field. J. Plant Ecol. 2013, 7, 39–50. [Google Scholar] [CrossRef] [Green Version]
- Yin, L.; Cai, Z.; Zhong, W. Changes in weed community diversity of maize crops due to long-term fertilization. Crop Protect. 2006, 25, 910–914. [Google Scholar] [CrossRef]
- Major, J.; Steiner, C.; Ditommaso, A.; Falcao, N.P.S.; Lehmann, J. Weed composition and cover after three years of soil fertility management in the central Brazilian Amazon: Compost, fertilizer, manure and charcoal applications. Weed Biol Manag. 2005, 5, 69–76. [Google Scholar] [CrossRef]
- Yang, M.; Zhao, Y.; Yang, H.; Shen, Y.; Zhang, X. Suppression of weeds and weed seeds in the soil by stubbles and no-tillage in an arid maize-winter wheat-common vetch rotation on the Loess Plateau of China. J. Arid Land. 2018, 10, 809–820. [Google Scholar] [CrossRef] [Green Version]
- Campiglia, E.; Radicetti, E.; Mancinelli, R. Weed control strategies and yield response in a pepper crop (Capsicum annuum L.) mulched with hairy vetch (Vicia villosa Roth.) and oat (Avena sativa L.) residues. Crop Protect. 2012, 33, 65–73. [Google Scholar] [CrossRef]
- Baghel, J.K.; Das, T.K.; Pankaj; Mukherjee, I.; Nath, C.P.; Bhattacharyya, R.; Ghosh, S.; Raj, R. Impacts of conservation agriculture and herbicides on weeds, nematodes, herbicide residue and productivity in direct-seeded rice. Soil Tillage Res. 2020, 201, 104634. [Google Scholar] [CrossRef]
- Koger, C.H.; Reddy, K.N. Effects of hairy vetch (Vicia villosa) cover crop and banded herbicides on weeds, grain yield, and economic returns in corn (Zea mays). J. Sustain. Agric. 2005, 26, 107–124. [Google Scholar] [CrossRef]
- Haramoto, E.R.; Pearce, R. Cover crop termination treatment impacts weed suppression potential. Weed Sci. 2019, 67, 91–102. [Google Scholar] [CrossRef]
- Price, A.J.; Korres, N.E.; Norsworthy, J.K.; Li, S. Influence of a cereal rye cover crop and conservation tillage on the critical period for weed control in cotton. Weed Technol. 2018, 32, 683–690. [Google Scholar] [CrossRef]
- Holland, J.M. The environmental consequences of adopting conservation tillage in Europe: Reviewing the evidence. Agricecosyst. Environ. 2004, 103, 1–25. [Google Scholar] [CrossRef]
- Buhler, D.D.; Stoltenberg, D.E.; Becker, R.L.; Gunsolus, J.L. Perennial weed populations after 14 years of variable tillage and cropping practices. Weed Sci. 1994, 42, 205–209. [Google Scholar] [CrossRef]
- San Martin, C.; Long, D.S.; Gourlie, J.A.; Barroso, J. Weed responses to fallow management in Pacific Northwest dryland cropping systems. PLoS ONE 2018, 13, e0204200. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, B.S.; Gill, G.; Preston, C. Seedling recruitment pattern and depth of recruitment of 10 weed species in minimum tillage and no-till seeding systems. Weed Sci. 2006, 54, 658–668. [Google Scholar] [CrossRef]
- Chauhan, B.S.; Gill, G.S.; Preston, C. Effect of seeding systems and dinitroaniline herbicides on emergence and control of rigid ryegrass (Lolium Rigidum) in wheat. Weed Technol. 2007, 21, 53–58. [Google Scholar] [CrossRef]
- Farooq, M.; Flower, K.C.; Jabran, K.; Wahid, A.; Siddique, K.H.M. Crop yield and weed management in rainfed conservation agriculture. Soil Tillage Res. 2011, 117, 172–183. [Google Scholar] [CrossRef]
- Reberg-Horton, S.C.; Grossman, J.M.; Kornecki, T.S.; Meijer, A.D.; Price, A.J.; Place, G.T.; Webster, T.M. Utilizing cover crop mulches to reduce tillage in organic systems in the southeastern USA. Renew. Agric. Food Syst. 2011, 27, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, S.S.; Dosdall, L.M.; Willenborg, C.J. The role of ground beetles (coleoptera: Carabidae) in weed seed consumption: A review. Weed Sci. 2017, 63, 355–376. [Google Scholar] [CrossRef]
- Bohan, D.A.; Boursault, A.; Brooks, D.R.; Petit, S. National-scale regulation of the weed seedbank by carabid predators. J. Appl. Ecol. 2011, 48, 888–898. [Google Scholar] [CrossRef]
- Gallandt, E.R. How can we target the weed seedbank? Weed Sci. 2006, 54, 588–596. [Google Scholar] [CrossRef]
- Putnam, A.R.; Defrank, J. Use of phytotoxic plant residues for selective weed-control. Crop Protect. 1983, 2, 173–181. [Google Scholar] [CrossRef]
- Duke, S.O. Proving allelopathy in crop–weed interactions. Weed Sci. 2015, 63, 121–132. [Google Scholar] [CrossRef] [Green Version]
- Duke, S.O. Allelopathy: Current status of research and future of the discipline: A commentary. Allelopath. J. 2010, 25, 17–30. [Google Scholar]
- He, J.; Li, H.; Rasaily, R.G.; Wang, Q.; Cai, G.; Su, Y.; Qiao, X.; Liu, L. Soil properties and crop yields after 11 years of no tillage farming in wheat–maize cropping system in North China Plain. Soil Tillage Res. 2011, 113, 48–54. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, X.; Chen, S.; Pei, D.; Liu, C. Effects of harvest and sowing time on the performance of the rotation of winter wheat–summer maize in the North China Plain. Ind. Crop. Prod. 2007, 25, 239–247. [Google Scholar] [CrossRef]
- Peigné, J.; Vian, J.-F.; Payet, V.; Saby, N.P.A. Soil fertility after 10 years of conservation tillage in organic farming. Soil Tillage Res. 2018, 175, 194–204. [Google Scholar] [CrossRef]
- Mwango, S.B.; Msanya, B.M.; Mtakwa, P.W.; Kimaro, D.N.; Deckers, J.; Poesen, J. Effectiveness of mulching under Miraba in controlling soil erosion, fertility restoration and crop yield in the Usambara Mountains, Tanzania. Land Degrad. Dev. 2016, 27, 1266–1275. [Google Scholar] [CrossRef]
- Cookson, W.R.; Murphy, D.V.; Roper, M.M. Characterizing the relationships between soil organic matter components and microbial function and composition along a tillage disturbance gradient. Soil Biol Biochem. 2008, 40, 763–777. [Google Scholar] [CrossRef]
- Li, T.; Sun, Z.; He, C.; Ge, X.; Ouyang, Z.; Wu, L. Changes in soil bacterial community structure and microbial function caused by straw retention in the North China Plain. Arch. Agron. Soil Sci. 2019. [Google Scholar] [CrossRef]
- TerHeerdt, G.N.J.; Verweij, G.L.; Bekker, R.M.; Bakker, J.P. An improved method for seed-bank analysis: Seedling emergence after removing the soil by sieving. Funct. Ecol. 1996, 10, 144–151. [Google Scholar]
- Gross, K.L. A comparison of methods for estimating seed number in the soil. J. Ecol. 1990, 78, 1079–1093. [Google Scholar] [CrossRef]
- MacLaren, C.; Storkey, J.; Strauss, J.; Swanepoel, P.; Dehnen-Schmutz, K. Livestock in diverse cropping systems improve weed management and sustain yields whilst reducing inputs. J. Appl. Ecol. 2019, 56, 144–156. [Google Scholar] [CrossRef] [Green Version]
- Menalled, F.D.; Gross, K.L.; Hammond, M.; Menalled, F.D. Weed aboveground and seedbank community responses to agricultural management systems. Ecol. Appl. 2001, 11, 1586–1601. [Google Scholar] [CrossRef]
- Ma, Z.; Ma, M.; Baskin, J.M.; Baskin, C.C.; Li, J.; Du, G. Responses of alpine meadow seed bank and vegetation to nine consecutive years of soil fertilization. Ecol. Eng. 2014, 70, 92–101. [Google Scholar] [CrossRef]
- Ma, M.; Zhou, X.; Ma, Z.; Du, G. Composition of the soil seed bank and vegetation changes after wetland drying and soil salinization on the Tibetan Plateau. Ecol. Eng. 2012, 44, 18–24. [Google Scholar] [CrossRef]
- Ma, M.; Zhou, X.; Wang, G.; Ma, Z.; Du, G. Seasonal dynamics in alpine meadow seed banks along an altitudinal gradient on the Tibetan Plateau. Plant Soil. 2010, 336, 291–302. [Google Scholar] [CrossRef]
- Ortega, M.; Levassor, C.; Peco, B. Seasonal dynamics of Mediterranean pasture seed banks along environmental gradients. J. Biogeogr. 1997, 24, 177–195. [Google Scholar] [CrossRef]
- San Martín, C.; Long, D.S.; Gourlie, J.A.; Barroso, J. Spring crops in three year rotations reduce weed pressure in winter wheat. Field Crop. Res. 2019, 233, 12–20. [Google Scholar] [CrossRef]
- Nandan, R.; Singh, V.; Singh, S.S.; Kumar, V.; Hazra, K.K.; Nath, C.P.; Poonia, S.P.; Malik, R.K. Comparative assessment of the relative proportion of weed morphology, diversity, and growth under new generation tillage and crop establishment techniques in rice-based cropping systems. Crop Protect. 2018, 111, 23–32. [Google Scholar] [CrossRef]
- Teasdale, J.R.; Mohler, C.L. Light transmittance, soil-temperature, and soil-moisture under residue of hairy vetch and rye. Agron. J. 1993, 85, 673–680. [Google Scholar] [CrossRef]
- Case, M.J.; Stinson, K.A. Climate change impacts on the distribution of the allergenic plant, common ragweed (Ambrosia artemisiifolia) in the eastern United States. PLoS ONE 2018, 13, e0205677. [Google Scholar]
- Sarrantonio, M.; Gallandt, E. The role of cover crops in North American cropping systems. J. Crop Prod. 2008, 8, 53–74. [Google Scholar] [CrossRef]
- Lam, Y.; Sze, C.W.; Tong, Y.; Ng, T.B.; Tang, S.C.W.; Ho, J.C.M.; Xiang, Q.; Lin, X.; Zhang, Y. Research on the allelopathic potential of wheat. Agric. Sci. 2012, 03, 979–985. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Pratley, J.E.; Lemerle, D.; Haig, T. Allelopathy in wheat (Triticum aestivum). Ann Appl Biol. 2001, 139, 1–9. [Google Scholar] [CrossRef]
- Ma, M.; Dalling, J.W.; Ma, Z.; Zhou, X. Soil environmental factors drive seed density across vegetation types on the Tibetan Plateau. Plant Soil. 2017, 419, 349–361. [Google Scholar] [CrossRef]
- Mohler, C.L.; Asdale, J.R. Response of weed emergence to rate of Vicia villosa Roth and Secale cereale L. residue. Weed Res. 1993, 33, 487–499. [Google Scholar] [CrossRef]
- Nichols, V.; Verhulst, N.; Cox, R.; Govaerts, B. Weed dynamics and conservation agriculture principles: A review. Field Crop. Res. 2015, 183, 56–68. [Google Scholar] [CrossRef] [Green Version]
- Tetetla-Rangel, E.; Dupuy, J.M.; Hernández-Stefanoni, J.L.; Hoekstra, P.H. Patterns and correlates of plant diversity differ between common and rare species in a neotropical dry forest. Biodivers Conserv. 2017, 26, 1705–1721. [Google Scholar] [CrossRef]
- Mulhouse, J.M.; Hallett, L.M.; Collins, S.L.; Vandvik, V. The influence of seasonal precipitation and grass competition on 20 years of forb dynamics in northern Chihuahuan Desert grassland. J. Veg. Sci. 2017, 28, 250–259. [Google Scholar] [CrossRef]
- Jin, Y.; Li, J.; Liu, C.; Liu, Y.; Zhang, Y.; Song, Q.; Sha, L.; Chen, A.; Yang, D.; Li, P. Response of net primary productivity to precipitation exclusion in a savanna ecosystem. Ecol. Manag. 2018, 429, 69–76. [Google Scholar] [CrossRef]
- Collins, D.B.G.; Bras, R.L. Plant rooting strategies in water-limited ecosystems. Water Resour Res. 2007, 43. [Google Scholar] [CrossRef]
- Lindh, M.; Zhang, L.; Falster, D.; Franklin, O.; Brännström, Å. Plant diversity and drought: The role of deep roots. Ecol. Model. 2014, 290, 85–93. [Google Scholar] [CrossRef]
- Mirsky, S.B.; Ryan, M.R.; Curran, W.S.; Teasdale, J.R.; Maul, J.; Spargo, J.T.; Moyer, J.; Grantham, A.M.; Weber, D.; Way, T.R.; et al. Conservation tillage issues: Cover crop-based organic rotational no-till grain production in the mid-Atlantic region, USA. Renew. Agric. Food Syst. 2012, 27, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Ryan, M.R.; Mirsky, S.B.; Mortensen, D.A.; Teasdale, J.R.; Curran, W.S. Potential Synergistic Effects of Cereal Rye Biomass and Soybean Planting Density on Weed Suppression. Weed Sci. 2011, 59, 238–246. [Google Scholar] [CrossRef]
- Mikha, M.M.; Rice, C.W. Tillage and manure effects on soil and aggregate-associated carbon and nitrogen. Soil Sci. Soc. Am. J. 2004, 68, 809–816. [Google Scholar] [CrossRef]
- Sainju, U.M.; Caesar-TonThat, T.; Jabro, J.D. Carbon and nitrogen fractions in dryland soil aggregates affected by long-term tillage and cropping sequence. Soil Sci. Soc. Am. J. 2008, 75, 1488–1495. [Google Scholar] [CrossRef]
- Dikgwatlhe, S.B.; Chen, Z.D.; Lal, R.; Zhang, H.L.; Chen, F. Changes in soil organic carbon and nitrogen as affected by tillage and residue management under wheat–maize cropping system in the North China Plain. Soil Tillage Res. 2014, 144, 110–118. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, X.; Jia, S.; Liang, A.; Zhang, X.; Yang, X.; Wei, S.; Sun, B.; Huang, D.; Zhou, G. The potential mechanism of long-term conservation tillage effects on maize yield in the black soil of Northeast China. Soil Tillage Res. 2015, 154, 84–90. [Google Scholar] [CrossRef]
- Powlson, D.S.; Stirling, C.M.; Jat, M.L.; Gerard, B.G.; Palm, C.A.; Sanchez, P.A.; Cassman, K.G. Limited potential of no-till agriculture for climate change mitigation. Nat. Clim. Chang. 2014, 4, 678–683. [Google Scholar] [CrossRef]
- Xu, J.; Han, H.; Ning, T.; Li, Z.; Lal, R. Long-term effects of tillage and straw management on soil organic carbon, crop yield, and yield stability in a wheat-maize system. Field Crop. Res. 2019, 233, 33–40. [Google Scholar] [CrossRef]
- Jordán, A.; Zavala, L.M.; Gil, J. Effects of mulching on soil physical properties and runoff under semi-arid conditions in southern Spain. Catena 2010, 81, 77–85. [Google Scholar] [CrossRef]
- Scopel, E.; Da Silva, F.A.M.; Corbeels, M.; Affholder, F.o.; Maraux, F. Modelling crop residue mulching effects on water use and production of maize under semi-arid and humid tropical conditions. Agronomie 2004, 24, 383–395. [Google Scholar] [CrossRef] [Green Version]
- Gangwar, K.S.; Singh, K.K.; Sharma, S.K.; Tomar, O.K. Alternative tillage and crop residue management in wheat after rice in sandy loam soils of Indo-Gangetic plains. Soil Tillage Res. 2006, 88, 242–252. [Google Scholar] [CrossRef]
- Ranaivoson, L.; Naudin, K.; Ripoche, A.; Affholder, F.; Rabeharisoa, L.; Corbeels, M. Agro-ecological functions of crop residues under conservation agriculture. A review. Agron. Sustain. Dev. 2017, 37, 1–7. [Google Scholar] [CrossRef] [Green Version]
BD (g m−3) | pH | SOC (g kg−1) | TN (g kg−1) | TP (g kg−1) | TK (g kg−1) | Av. N (mg kg−1) | Av. P (mg kg−1) | Av. K (mg kg−1) |
---|---|---|---|---|---|---|---|---|
1.31 | 8.13 | 9.23 | 1.11 | 2.43 | 22.10 | 110.47 | 13.19 | 151.95 |
Treatment | Grain Yield (kg ha−1) | 1000 Grain Weight (g) | Spike Number (m−2) | Grain Weight per Spike (g) |
---|---|---|---|---|
CT-NS | 5570 ± 70 b | 39.68 ± 0.48 b | 390.67 ± 18.81 c | 1.44 ± 0.13 a |
CT-CS | 6370 ± 190 a | 40.38 ± 0.39 b | 478.67 ± 23.13 b | 1.08 ± 0.08 a |
NT-NS | 5280 ± 210 b | 40.51 ± 0.63 ab | 349.33 ± 39.75 c | 1.30 ± 0.05 a |
NT-CS | 6750 ± 120 a | 43.41 ± 0.18 a | 521.33 ± 29.33 a | 1.27 ± 0.01 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Wu, L.-F. Impact of Tillage and Crop Residue Management on the Weed Community and Wheat Yield in a Wheat–Maize Double Cropping System. Agriculture 2021, 11, 265. https://doi.org/10.3390/agriculture11030265
Zhang J, Wu L-F. Impact of Tillage and Crop Residue Management on the Weed Community and Wheat Yield in a Wheat–Maize Double Cropping System. Agriculture. 2021; 11(3):265. https://doi.org/10.3390/agriculture11030265
Chicago/Turabian StyleZhang, Jin, and Lan-Fang Wu. 2021. "Impact of Tillage and Crop Residue Management on the Weed Community and Wheat Yield in a Wheat–Maize Double Cropping System" Agriculture 11, no. 3: 265. https://doi.org/10.3390/agriculture11030265
APA StyleZhang, J., & Wu, L.-F. (2021). Impact of Tillage and Crop Residue Management on the Weed Community and Wheat Yield in a Wheat–Maize Double Cropping System. Agriculture, 11(3), 265. https://doi.org/10.3390/agriculture11030265