Spatial Differentiation of Agricultural Potential and the Level of Development of Voivodeships in Poland in 2008–2018
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
- —
- arithmetic mean as the value of a synthetic measure of development,
- qi—
- synthetic value of the potential category (according to the determined method, defined potential),
- n—
- number of tested potentials (categories).
- n—
- number of spatial objects (number of points or polygons),
- xi, xj—
- these are the values of the variable for the compared objects,
- —
- is the average value of the variable for all objects,
- wij—
- elements of the spatial weight matrix (weights matrix standardized with rows to one),
- n—
- number of spatial objects (number of points or polygons),
- xi, xj—
- these are the values of the variable for the compared objects,
- —
- is the average value of the variable for all objects,
- wij—
- elements of the spatial weight matrix (weights matrix standardized with rows to one),
- b—
- is the regression coefficient calculated for individual predictors in the model,
- x—
- independent (explanatory) variable,
- y—
- dependent variable (explained) by the model,
- a—
- is an intercept.
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Beba, P.; Poczta, W. Miejsce rolnictwa w gospodarce polskich regionów. J. Agribus. Rural Dev. 2015, 1, 17–26. [Google Scholar]
- Stanny, M. Zróżnicowanie poziomu rozwoju obszarów wiejskich w Polsce a problem realizacji polityki spójności. Zesz. Nauk. SGGW Warszawie Polityki Eur. Finans. Mark. 2009, 1, 47–56. [Google Scholar]
- Sawa, J. Próba oceny zrównoważenia procesów produkcji rolniczej. Inżynieria Rol. 2008, 2, 257–262. [Google Scholar]
- Kiełbasa, M. Przyszłość sektora rolno-spożywczego w Polsce w odniesieniu do stanu obecnego. Prog. Econ. Sci. 2015, 2, 227–238. [Google Scholar]
- Chądzyński, J.; Nowakowska, A.; Przygodzki, Z. Region i Jego Rozwój w Warunkach Globalizacji; Wydawnictwo CeDeWu: Warszawa, Poland, 2007. [Google Scholar]
- Szulc, E. Ekonometryczna Analiza Wielowymiarowych Procesów Gospodarczych; Wydawnictwo Uniwersytetu Mikołaja Kopernika: Toruń, Poland, 2007. [Google Scholar]
- Kopczewska, K. Ekonometria i Statystyka Przestrzenna z Wykorzystaniem Programu R CRAN; Wydawnictwo CeDeWu: Warszawa, Poland, 2006. [Google Scholar]
- Krasowicz, S.; Igras, J. Regionalne zróżnicowanie wykorzystania potencjału rolnictwa w Polsce. Pamiętnik Puławski 2003, 132, 233–251. [Google Scholar]
- Poczta, W.; Mrówczyńska, A. Regionalne zróżnicowanie polskiego rolnictwa. In Zróżnicowanie Regionalne Gospodarki Żywnościowej w Polsce w Procesie Integracji z Unią Europejską; Poczta, W., Wysocki, F., Eds.; Wydawnictwo Akademii Rolniczej im. Augusta Cieszkowskiego w Poznaniu: Poznań, Poland, 2002. [Google Scholar]
- Poczta, W.; Bartkowiak, N. Regionalne zróżnicowanie rolnictwa w Polsce. J. Agribus. Rural Dev. 2012, 1, 95–109. [Google Scholar]
- Kisielinska, J. Ranking województw ze względu na potencjał rolnictwa. Rocz. Nauk. Ekon. Rol. Rozw. Obsz. Wiej. 2017, 104, 56–71. [Google Scholar] [CrossRef][Green Version]
- Majchrzak, A.; Feliks, W. Potencjał produkcyjny rolnictwa w województwie wielkopolskim. Rocz. Nauk. Ser. 2007, 9, 217–221. [Google Scholar]
- Wysocki, F.; Kozera, A. Potencjał produkcyjny rolnictwa i efektywność wykorzystania czynników produkcji. Wiadomości Stat. 2012, 4, 49–64. [Google Scholar]
- Osowska, L.; Janiszewska, D. Potencjał produkcyjny i uwarunkowania rozwoju rolnictwa w województwie zachodniopomorskim. Zesz. Nauk. Sggw W Warszawie. Probl. Rol. Swiat. 2013, 13, 68–78. [Google Scholar]
- Poczta, W.; Średzińska, J.; Standar, A. Sytuacja finansowa gospodarstw rolnych krajów UE według potencjału produkcyjnego. J. Agribus. Rural Dev. 2008, 10, 83–94. [Google Scholar]
- Słodowa-Hełpa, M. Wieś i rolnictwo w regionalnych i lokalnych strategiach rozwoju. In Wieś i Rolnictwo w Procesie Integracji z Unią Europejską: Przyjmowanie Zachodnioniemieckich Dróg Rozwoju, Utrzymywanie Własnej Tożsamości czy Poszukiwanie Innych Rozwiązań; Kośmicki, E., Januszek, H., Janik, W., Eds.; Wydawnictwo AR w Poznaniu: Poznań, Poland, 1998; pp. 359–379. [Google Scholar]
- Nazarczuk, J. Potencjał Rozwojowy a Aktywność Inwestycyjna Województw i Podregionów Polski; Wydawnictwo UWM w Olsztynie: Olsztyn, Poland, 2013. [Google Scholar]
- Klepacki, B.; Grontkowska, A. Ekonomika i Zarzadzanie Przedsiębiorstwem w Agrobiznesie; Format-AB: Warszawa, Poland, 2006; Volume 14–15, pp. 22–24. [Google Scholar]
- Baer-Nawrocka, A.; Poczta, W. Przemiany w rolnictwie. In Polska Wieś 2014 Raport o stanie wsi Agricultural transformation; Nurzyńska, I., Poczta, W., Eds.; (Polish Village in 2014 Report on the State of the Village); Wydawnictwo naukowe SCHOLAR: Warszawa, Poland, 2014; pp. 85–115. [Google Scholar]
- Tomczak, F. Potencjał i możliwości produkcyjne rolnictwa. In Encyklopedia Agrobiznesu; Woś, A., Ed.; Fundacja Innowacja: Warszawa, Poland, 1998; p. 713. [Google Scholar]
- Rzeszutko, A. Regionalne Zróżnicowanie Przemian Struktury Rolnictwa w Polsce w Warunkach Integracji z Unią Europejską; Wydawnictwo Uniwersytetu Przyrodniczego w Poznaniu: Poznań, Poland, 2014; p. 231. [Google Scholar]
- Toth, D.; Smutka, L.; Maitah, K.; Jarolínová, V. Income Differentiation as a Factor of Unsustainability in Forestry. Sustainability 2020, 12, 4749. [Google Scholar] [CrossRef]
- Stanny, M.; Czarnecki, A. Zrównoważony rozwój obszarów wiejskich Zielonych Płuc Polski. Próba Analizy Empirycznej; Wyd. IRWiR PAN: Warszawa, Poland, 2011. [Google Scholar]
- Vermeulen, B.; Pyka, A. The role of network topology and the spatial distribution and structure of knowledge in regional innovation policy. A calibrated agent-based model study. Comput. Econ. 2018, 52, 773–808. [Google Scholar] [CrossRef][Green Version]
- Szymla, Z. Determinanty Rozwoju Regionalnego; Ossolineum: Wrocław, Poland, 2000; p. 59. [Google Scholar]
- Ngo Dang, T.; Tran Thuy, C.; Tran Van, Y.; Nguyen Thanh, T. Sets of Sustainable Development Indicators in Vietnam: Status and Solutions. Economies 2018, 6, 1. [Google Scholar] [CrossRef][Green Version]
- Tang, L.; Wang, D. Optimization of County-Level Land Resource Allocation through the Improvement of Allocation Efficiency from the Perspective of Sustainable Development. Int. J. Environ. Res. Public Health 2018, 15, 2638. [Google Scholar] [CrossRef][Green Version]
- Jutengren, G.; Jaldestad, E.; Dellve, L.; Eriksson, A. The Potential Importance of Social Capital and Job Crafting for Work Engagement and Job Satisfaction among Health-Care Employees. Int. J. Environ. Res. Public Health 2020, 17, 4272. [Google Scholar] [CrossRef]
- Hellwig, Z. Zastosowanie metody taksonomicznej do typologicznego podziału krajów ze względu na poziom rozwoju oraz zasoby i strukturę wykwalifikowanych kadr. Przegląd Stat. 1968, 4, 307–326. [Google Scholar]
- Dziekański, P.; Prus, P. Financial Diversity and the Development Process: Case study of Rural Communes of Eastern Poland in 2009–2018. Sustainability 2020, 12, 6446. [Google Scholar] [CrossRef]
- Pawlik, A.; Dziekański, P. Atrakcyjność Miast i Gmin Województwa świętokrzyskiego; Uniwersytet Jana Kochanowskiego: Kielce, Poland, 2020; ISBN 978-83-7133-858. [Google Scholar]
- Dziekanski, P.; Pawlik, A.; Wronska, M.; Karpinska, U. Demographic Potential as the Basis for Spatial Differentiation of the Financial Situation Communes of Eastern Poland in 2009–2018. Eur. Res. Stud. J. 2020, XXIII, 872–892. [Google Scholar] [CrossRef]
- Grabiński, T. Metody określania charakteru zmiennych w wielowymiarowej analizie porównawczej. Zesz. Nauk. Akad. Ekon. W Krakowie 1985, 213, 35–63. [Google Scholar]
- Malina, A. Wielowymiarowa Analiza Przestrzennego Zróżnicowania Struktury Gospodarki Polski Według Województw; Wyd. Akademii Ekonomicznej w Krakowie: Kraków, Poland, 2004; pp. 96–97. [Google Scholar]
- Malina, A.; Zieliaś, A. Taksonomiczna Analiza Przestrzennego Zróżnicowania Jakości Życia Ludności w Polsce w 1994 r. In Ekonometryczne Modelowanie Danych Finansowo-Księgowych; Nowak, E., Urbaniak, M., Eds.; UMCS: Lublin, Poland, 1996; pp. 85–89. [Google Scholar]
- Kolenda, M. Zamiana cechy na stymulantę. Pr. Nauk. Akad. Ekon. We WrocławiuEkonom. 2003, 11, 110–127. [Google Scholar]
- Młodak, A. Analiza Taksonomiczna w Statystyce Regionalnej; Centrum Doradztwa i Informacji Difin: Warszawa, Poland, 2006. [Google Scholar]
- Kukuła, K. Metoda Unitaryzacji Zerowanej; PWN: Warszawa, Poland, 2000. [Google Scholar]
- Lenormand, M.; Deffuant, G. Generating a Synthetic Population of Individuals in Households: Sample-Free vs. Sample-Based Methods. J. Artif. Soc. Soc. Simul. 2013, 16, 1–12. [Google Scholar] [CrossRef]
- Jahanshahloo, G.R.; Lotfi, F.H.; Izadikhah, M. An Algorithmic Method to Extend {TOPSIS} for Decision-Making Problems with Interval Data. Appl. Math. Comput. 2006, 2, 1375–1384. [Google Scholar] [CrossRef]
- Hwang, C.L.; Yoon, K. Multiple Attribut Decision Making: Methods and Applications; Springer: Berlin/Heidelberg, Germany, 1981. [Google Scholar]
- Velasquez, M.; Hester, P.T. An Analysis of Multi-Criteria Decision Making Methods. Int. J. Oper. Res. 2013, 2, 56–66. [Google Scholar]
- Özcan, T.; Çelebi, N.; Esnaf, S. Comparative Analysis of Multi-Criteria Decision Making Methodologies and Implementation of a Warehouse Location Selection Problem. Expert Syst. Appl. 2011, 8, 9773–9779. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Zakarevicius, A.; Antucheviciene, J. Evaluation of ranking accuracy in multi-criteria decisions. Informatica 2006, 17, 601–618. [Google Scholar] [CrossRef]
- Huang, I.B.; Keisler, J.; Linkov, I. Multi-criteria decision analysis in environmental science: Ten years of applications and trends. Sci. Total Environ. 2011, 409, 3578–3594. [Google Scholar] [CrossRef]
- Behzadian, M.; Khanmohammadi Otaghsara, S.; Yazdani, M.; Ignatius, J. A state-of the-art survey of TOPSIS applications. Expert Syst. Appl. 2012, 39, 13051–13069. [Google Scholar] [CrossRef]
- Zalewski, W. Zastosowanie metody TOPSIS do oceny kondycji finansowej spółek dystrybucyjnych energii elektrycznej. Ekon. I Zarządzanie 2012, 4, 137–145. [Google Scholar]
- Bieniasz, A.; Gołaś, Z.; Łuczak, A. Zróżnicowanie kondycji finansowej gospodarstw rolnych wyspecjalizowanych w chowie owiec i kóz w krajach Unii Europejskiej. Rocz. Ekon. Rol. I Rozw. Obsz. Wiej. 2013, 100, 168–181. [Google Scholar]
- Nowak, E. Metody Taksonomiczne w Klasyfikacji Obiektów Społeczno-Gospodarczyc; PWE: Warszawa, Poland, 1990; p. 190. [Google Scholar]
- Zeliaś, A.; Malina, A. O budowie taksonomicznej miary jakości życia. Syntetyczna miara rozwoju jest narzędziem statystycznej analizy porównawczej. Taksonomia 1997, 4, 238–262. [Google Scholar]
- Bivand, R. Autokorelacja przestrzenna a metody analizy statystycznej w geografii. In Analiza Regresji w Geografii; Chojnicki, Z., Ed.; PWN: Poznań, Poland, 1980; pp. 23–38. [Google Scholar]
- Getis, A. A History of the Concept of Spatial Autocorrelation: A Geographer’s Perspective. Geogr. Anal. 2008, 40, 297–309. [Google Scholar] [CrossRef]
- Suchecki, B. (Ed.) Ekonometria Przestrzenna. Metody i Modele Analizy Danych Przestrzennych; Wydawnictwo, C.H. Beck: Warszawa, Poland, 2010. [Google Scholar]
- Sikora, J. Określenie siły i charakteru autokorelacji przestrzennej na podstawie globalnej statystyki I Morana infrastruktury rolniczej Polski południowej i południowo-wschodniej. Infrastruct. Ecol. Rural Areas 2009, 9, 217–227. [Google Scholar]
- Longley, P.; Goodchild, M.F.; Maguire, D.J.; Rhind, D.W. GIS. Teoria i praktyka (GIS. Theory and Practice); Wydawnictwo Naukowe PWN: Warszawa, Poland, 2006. [Google Scholar]
- Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Cliff, A.D.; Ord, J.K. Spatial Autocorrelation; Pion: London, UK, 1973. [Google Scholar]
- Janc, K. Zjawisko autokorelacji przestrzennej na przykładzie statystyki I Morana oraz lokalnych wskaźników zależności przestrzennej (LISA)–wybrane zagadnienia metodyczne. IDEE I Prakt. Uniwersalizm Geogr. 2006, 33, 76–83. [Google Scholar]
- Zeliaś, A. (Ed.) Ekonometria Przestrzenna; PWE: Warszawa, Poland, 1991. [Google Scholar]
- Kopczewska, K. Ekonometria i Statystyka Przestrzenna z Wykorzystaniem Programu R Cran (Econometry and Spatial Statistics Using Software R Cran); CEDEWU.PL: Warszawa, Poland, 2011. [Google Scholar]
- Upton, G.; Fingleton, B. Spatial Data Analysis by Example; Wiley: New York, NY, USA, 1985. [Google Scholar]
- Martinho, V. Spatial Analysis of the Tourism Supply. 2013. Available online: http://hdl.handle.net/10419/71762 (accessed on 10 December 2020).
- Anselin, L.; Bera, A. Statystyka Globalna MORANA. Available online: http://manuals.pqstat.pl/przestrzenpl:autocorpl:gmoranpl (accessed on 10 December 2020).
- Moran, P.A.P. Notes on Continuous Stochastic Phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef]
- Maddala, G.S. Ekonometria; PWN: Warszawa, Poland, 2007. [Google Scholar]
- Górecki, T. Podstawy Statystyki z Przykładami w R; Wydawnictwo BTC: Warszawa, Poland, 2011. [Google Scholar]
- Welfe, A. Ekonometria; Metody i ich zastosowanie, PWE: Warszawa, Poland, 2009. [Google Scholar]
- Gigerenzer, G. Mindless statistics. J. Socio-Econ. 2004, 33, 587–606. [Google Scholar] [CrossRef]
- Conover, W.J.; Iman, R.L. Rank transformations as a bridge between parametric and nonparametric statistics. Am. Stat. 1981, 35, 124–129. [Google Scholar] [CrossRef]
- Rosner, A. Zmiany Rozkładu Przestrzennego Zaludnienia Obszarów Wiejskich. Wiejskie obszary Zmniejszające Zaludnienie i Koncentrujące Ludność Wiejską; IRWiR PAN: Warszawa, Poland, 2012. [Google Scholar]
- Satoła, Ł. Municipal infrastructure and the Level of Fiscalism in Local Taxes. In Proceedings of the International Scientific Conference “Economic Sciences for Agribusiness and Rural Economy” (No. 1), Warsaw, Poland, 7–8 June 2018; pp. 370–375. [Google Scholar] [CrossRef][Green Version]
- Kudłacz, T. Rozwój społeczno-gospodarczy Polski południowo-wschodniej w układzie jednostek nowego podziału terytorialnego kraju. Zesz. Nauk. /Akad. Ekon. W Krakowie 2000, 545, 15–30. [Google Scholar]
- Okólski, M. Demografia. In Podstawowe Pojęcia, Procesy i Teorie w Encyklopedycznym Zarysie; Wydawnictwo Naukowe SCHOLAR: Warszawa, Poland, 2005. [Google Scholar]
- Malina, A. Analiza przestrzennego zróżnicowania poziomu rozwoju społeczno-gospodarczego województw Polski w latach 2005–20172. Soc. Inequalities Econ. Growth 2020, 61, 138–155. [Google Scholar]
- Lukiewska, K.; Chrobocińska, K. Przestrzenne zróżnicowanie potencjału produkcyjnego rolnictwa w Polsce. Rocz. Nauk. Ekon. Rol. I Rozw. Obsz. Wiej. 2015, 102, 56–65. [Google Scholar]
- Poczta, W. Potencjał i pozycja konkurencyjna polskiego sektora rolno-żywnościowego na rynku europejskim. Postępy Nauk Rol. 2010, 2, 35–56. [Google Scholar]
- Grochowska, R.; Mańko, S. Produktywność gospodarstw rolnych w Polsce na tle innych krajów. Probl. Rol. Światowego 2014, 14, 25–33. [Google Scholar]
- Loose, G. Climate, Soils and Agricultural Potential. In Agricultural Transformation and Land Use in Central and Eastern Europe; Routledge: London, UK, 2018; pp. 23–56. [Google Scholar]
- Clawson, M.; Landsberg, H.H.; Alexander, L.T. The Agricultural Potential of the Middle East. Soil Sci. 1972, 114, 499. [Google Scholar] [CrossRef]
- Deng, X.; Huang, J.; Rozelle, S.; Uchida, E. Cultivated land conversion and potential agricultural productivity in China. Land Use Policy 2006, 23, 372–384. [Google Scholar] [CrossRef]
- Plantinga, A.J.; Lubowski, R.N.; Stavins, R.N. The effects of potential land development on agricultural and prices. J. Urban Econ. 2002, 52, 561–581. [Google Scholar] [CrossRef][Green Version]
- Gazdecki, M.; Goryńska-Goldmann, E. The system of interorganizational linkages in agri-markets. Relationship, Interactions and networks in Competitive Environments. In Proceedings of the 35th Annual IMP Conference, IÉSEG School of Management, Paris, France, 20–27 August 2019; Available online: https://www.impgroup.org/paper_view.php?viewPaper=11050 (accessed on 20 December 2020).
- Gazdecki, M.; Goryńska-Goldmann, E. Relationships on Food Markets. Consumer Perspective, 1st ed.; Poznan University of Life Science: Poznan, Poland, 2018; Available online: https://www.academia.edu/40708090/RELATIONSHIPS_ON_FOOD_MARKETS_CONSUMERS_PERSPECTIVE_MICHA%C5%81_GAZDECKI_EL%C5%BBBIETA_GORY%C5%83SKA_GOLDMANN (accessed on 20 December 2020).
- Grabowski, R.; Self, S. Economic Development and the Role of Agricultural Technology. Discuss. Pap. 2007, 40. Available online: https://opensiuc.lib.siu.edu/econ_dp/40/ (accessed on 20 December 2020).
- Mrdalj, V.; El Bilali, H. Information and Communication Technologies in Bosnian Agriculture: Potential and Challenges. In Proceedings of the International Scientific Conference Agrarian Perspectives XXIX “Trends and Challenges of Agrarian Sector”, Prague, Czech Republic, 16–17 September 2020; pp. 231–246. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwif7cGRzPPtAhXLpIsKHVGuAyUQFjAAegQIBBAC&url=https%3A%2F%2Fap.pef.czu.cz%2Fdl%2F88730%3Flang%3Den&usg=AOvVaw07wELXPJOA01V11rqme6Do (accessed on 20 December 2020).
- Józwiak, W.; Juźwiak, J. Rolnictwo wielostronne czy wyspecjalizowane? Wieś I Rol. 2007, 4, 9–20. [Google Scholar]
- Rosenzweig, C.; Tubiello, F.N. Adaptation and mitigation strategies in agriculture: An analysis of potential synergies. Mitig. Adapt. Strateg. Glob. Chang. 2007, 12, 855–873. [Google Scholar] [CrossRef][Green Version]
- Parry, M.L.; Carter, T.R.; Konijn, N.T. (Eds.) The Impact of Climatic Variations on Agriculture: Volume 1: Assessment in Cool Temperate and Cold Regions; Springer Science & Business Media: New York, NY, USA, 2013. [Google Scholar]
Number Variable | Name of Variables | Unit | S/D |
---|---|---|---|
The potential of agriculture | |||
X1 | share of agricultural land (UAA) in% of the total area of the voivodeship | % | s |
X2 | the share of arable land in% of the total area of the voivodeship | % | s |
X3 | working in (agriculture, forestry, hunting and fishing) in general | % | s |
X4 | unemployed living in rural areas in total unemployed | % | d |
X5 | Number of tractors per 100 ha of UAA | pcs. | s |
X6 | consumption of mineral fertilizers per 1 ha of agricultural land | kg | d |
X7 | consumption of calcium fertilizers per 1 ha of agricultural land | kg | d |
X8 | Cattle stock per 100 ha of arable land | pcs. | s |
X9 | Number of livestock Pigs (pigs) per 100 ha of arable land | pcs. | s |
X10 | Production of livestock for slaughter per 100 ha of agricultural land | kg | s |
X11 | Milk production per 1 ha of agricultural land | litr | s |
X12 | Egg production per 1 ha of agricultural land | kg | s |
X13 | Vegetable yields per 1 ha of agricultural land | kg | s |
X14 | Fruit harvest from trees per 1 ha of agricultural land | kg | s |
X15 | Yields Basic cereals per 1 ha of arable land | dt | s |
X16 | Potato yields per 1 ha of agricultural land | dt | s |
X17 | Yields of sugar beet per 1 ha of agricultural land | dt | s |
X18 | grain maize per 1 ha of agricultural land | dt | s |
X19 | green maize per 1 ha of arable land | dt | s |
X20 | rape and turnip rape per 1 ha of agricultural land | dt | s |
Development potential | |||
Demographic potential and the labor market | |||
X21 | Natural increase per 1000 inhabitants | person | S |
X22 | Balance of migration per 1000 inhabitants | person | S |
X23 | Demographic dependency rate for the elderly | person | D |
X24 | Population per km2 (population density) | person | S |
X25 | The unemployed registered in communes per 1000 inhabitants | person | D |
X26 | People working in communes per 1000 inhabitants | person | S |
Economic potential | |||
X27 | Entities entered in the REGON register per 1000 population | pcs. | S |
X28 | Foundations, associations and social organizations per 1000 inhabitants | pcs. | S |
X29 | total sold production of industry per capita | Zł | s |
X30 | Investment outlays per capita | zł | S |
X31 | Gross value of fixed assets in the national economy per capita | zl | s |
X32 | Natural persons running a business per 1000 population | pcs. | S |
X33 | Own income/total income (financial independence ratio) | % | S |
X34 | Transfer revenues/total revenues (financial state interference rate) | % | D |
X35 | Investment expenditures/total expenditures (investment attractiveness index) | % | S |
Potential of the natural environment | |||
X36 | The area of forest land in the total area | % | S |
X37 | Emission of dust pollutants per 1 km2 | T | D |
X38 | Emission of gaseous pollutants per 1 km2 in tonnes (D), | T | D |
X39 | Total waste recovered per km2 | 1000/t | s |
X40 | Legally protected areas in total | % | S |
X41 | Untreated industrial and municipal sewage per 1 km2 | dam3 | D |
X42 | Wastewater treated during the year is treated together per 1 km2 | dam3 | s |
X43 | Waste collected during the year, in total 1 km2 of the area | t | d |
X44 | % Of the population using sewage treatment plants | % | S |
Infrastructure potential | |||
X45 | housing per 1000 inhabitants | pcs. | S |
X46 | Users of installations in% of total population/water supply | % | S |
X47 | Users of installations in% of total population/sewage system | % | S |
X48 | Users of installations in% of total population/gas | % | S |
X49 | population per 1 library facility (including library points included in accordance with the seat of the parent unit) | pcs. | s |
X50 | Outpatient entities (as of December 31) outpatient clinics in total outpatient clinics per 10,000 Population | pcs. | s |
X51 | the population at a generally accessible pharmacy | pcs. | s |
X52 | beds in general hospitals per 1000 inhabitants | km | s |
X53 | public roads in total per 10 thousand Population | km | s |
X54 | accommodation places per 1000 people | pcs. | s |
NumberVariable | R | SD | Vx | As | R | SD | Vx | As |
---|---|---|---|---|---|---|---|---|
2008 | 2018 | |||||||
The potential of agriculture | ||||||||
X1 | 30.70 | 8.60 | 0.14 | −0.58 | 30.00 | 8.54 | 0.14 | −0.58 |
X2 | 0.27 | 0.08 | 0.19 | −0.08 | 0.26 | 0.08 | 0.19 | −0.04 |
X3 | 0.38 | 0.11 | 0.52 | 0.68 | 0.36 | 0.11 | 0.52 | 0.78 |
X4 | 3.09 | 0.73 | 0.31 | 2.42 | 2.68 | 0.63 | 0.28 | 2.19 |
X5 | 7.59 | 2.45 | 0.34 | −0.14 | 10.45 | 3.27 | 0.35 | −0.05 |
X6 | 0.12 | 0.03 | 0.84 | 1.62 | 0.04 | 0.01 | 0.45 | 0.95 |
X7 | 0.01 | 0.00 | 0.34 | 1.32 | 0.01 | 0.00 | 0.27 | 0.64 |
X8 | 57.88 | 14.98 | 0.57 | 1.29 | 74.75 | 20.12 | 0.69 | 1.40 |
X9 | 192.29 | 50.41 | 0.75 | 2.13 | 191.18 | 48.11 | 0.94 | 2.44 |
X10 | 47.67 | 11.40 | 0.47 | 1.90 | 66.74 | 18.31 | 0.54 | 0.96 |
X11 | 1.39 | 0.35 | 0.62 | 1.65 | 2.20 | 0.56 | 0.89 | 2.01 |
X12 | 1.70 | 0.41 | 0.81 | 2.47 | 2.09 | 0.50 | 0.93 | 3.06 |
X13 | 143.75 | 37.13 | 0.17 | 1.02 | 127.01 | 41.90 | 0.19 | 0.13 |
X14 | 118.60 | 33.36 | 0.36 | 0.19 | 164.60 | 60.27 | 0.46 | 0.40 |
X15 | 26.56 | 6.43 | 0.20 | 1.81 | 26.52 | 6.59 | 0.19 | 0.79 |
X16 | 26.52 | 6.59 | 0.19 | 0.79 | 143.10 | 34.01 | 0.14 | 0.33 |
X17 | 246.36 | 73.68 | 0.15 | 0.83 | 223.72 | 56.82 | 0.09 | 0.81 |
X18 | 4.18 | 1.18 | 1.08 | 1.93 | 4.70 | 1.24 | 0.61 | 1.02 |
X19 | 23.31 | 6.38 | 0.80 | 1.47 | 48.98 | 11.88 | 1.05 | 2.54 |
X20 | 3.49 | 1.08 | 0.91 | 0.84 | 2.94 | 0.92 | 0.70 | 0.80 |
Demographic potential and the labor market | ||||||||
X21 | 5.89 | 1.58 | 1.774 | −0.235 | 5.23 | 1.617 | −1.692 | 0.391 |
X22 | 5.42 | 1.316 | −1.63 | 0.487 | 5.63 | 1.682 | −3.708 | 0.858 |
X23 | 0.014 | 0.005 | 0.096 | 0.232 | 0.009 | 0.003 | 0.066 | −0.144 |
X24 | 318 | 77.103 | 0.599 | 2.469 | 309 | 75.928 | 0.589 | 2.331 |
X25 | 0.022 | 0.007 | 0.277 | 0.417 | 0.041 | 0.012 | 0.293 | 0.707 |
X26 | 109 | 30.489 | 0.143 | 0.57 | 122 | 35.178 | 0.149 | 0.485 |
Economic potential | ||||||||
X27 | 57 | 16.929 | 0.178 | 0.318 | 69 | 20.107 | 0.187 | 0.597 |
X29 | 25,417.00 | 7576.55 | 0.386 | 0.887 | 35,574.00 | 11,252.87 | 0.347 | 0.669 |
X30 | 5582.00 | 1420.55 | 0.275 | 1.414 | 8015.00 | 1896.16 | 0.263 | 1.663 |
X31 | 46,538.10 | 11,284.31 | 0.206 | 2.576 | 80,106.40 | 19,270.04 | 0.195 | 2.122 |
X32 | 45 | 12.07 | 0.166 | 0.351 | 38 | 12.27 | 0.158 | 0.391 |
X33 | 0.48 | 0.144 | 0.282 | 0.787 | 0.64 | 0.193 | 0.427 | 0.758 |
X34 | 0.48 | 0.149 | 0.309 | −0.79 | 0.36 | 0.107 | 0.464 | 0.15 |
X35 | 0.38 | 0.093 | 0.299 | 0.094 | 0.37 | 0.111 | 0.276 | −0.114 |
Potential of the natural environment | ||||||||
X36 | 29.4 | 7.406 | 0.244 | 1.279 | 29.3 | 7.423 | 0.24 | 1.261 |
X38 | 0.017 | 0.005 | 1.212 | 1.945 | 0.014 | 0.004 | 1.071 | 1.728 |
X39 | 2.566 | 0.667 | 1.992 | 3.064 | 1.006 | 0.248 | 2.349 | 3.687 |
X40 | 0.46 | 0.129 | 0.386 | 0.958 | 0.46 | 0.13 | 0.384 | 1.064 |
X41 | 0.469 | 0.145 | 0.694 | 1.029 | 0.455 | 0.135 | 0.646 | 0.957 |
X44 | 31.51 | 8.941 | 0.14 | 0.062 | 25.8 | 7.147 | 0.097 | −0.664 |
Infrastructure potential | ||||||||
X45 | 84.8 | 22.475 | 0.066 | 0.031 | 111.4 | 27.404 | 0.073 | −0.016 |
X46 | 19.7 | 6.33 | 0.072 | −0.972 | 15.9 | 5.103 | 0.055 | −1.408 |
X48 | 43.4 | 11.827 | 0.241 | 0.02 | 43.9 | 11.639 | 0.235 | 0.221 |
X50 | 2 | 0.632 | 0.158 | 0.0 | 3 | 0.655 | 0.113 | −1.429 |
X51 | 1637.00 | 434.649 | 0.121 | −0.358 | 701 | 219.726 | 0.073 | −0.513 |
X52 | 1.873 | 0.471 | 0.099 | 0.664 | 1.546 | 0.399 | 0.085 | 0.118 |
X53 | 110.6 | 29.224 | 0.267 | 0.106 | 171.2 | 41.423 | 0.337 | 0.966 |
X54 | 57.31 | 15.315 | 0.877 | 2.167 | 71.63 | 18.802 | 0.841 | 2.446 |
Gr. | qi Agriculture Potential | qi Development | ||
---|---|---|---|---|
2008 | 2018 | 2008 | 2018 | |
voivodships | voivodships | voivodships | voivodships | |
I | opolskie 0.4 wielkopolskie 0.4 kujawsko-pomorskie 0.38 łódzkie 0.38 | opolskie 0.45 wielkopolskie 0.43 kujawsko-pomorskie 0.41 | śląskie 0.48 pomorskie 0.45 lubuskie 0.43 mazowieckie 0.43 | mazowieckie 0.53 pomorskie 0.52 śląskie 0.49 wielkopolskie 0.49 |
II | lubelskie 0.36 podlaskie 0.36 | Łódzkie 0.38 podlaskie 0.38 lubelskie 0.37 dolnośląskie 0.36 mazowieckie 0.36 | dolnośląskie 0.42 warmińsko-mazurskie 0.42 wielkopolskie 0.41 zachodniopomorskie 0.41 | dolnośląskie 0.48 lubuskie 0.47 małopolskie 0.46 zachodniopomorskie 0.46 |
III | dolnośląskie 0.34 małopolskie 0.34 świętokrzyskie 0.34 mazowieckie 0.33 podkarpackie 0.3 śląskie 0.28 | małopolskie 0.32 świętokrzyskie 0.32 podkarpackie 0.29 śląskie 0.27 | małopolskie 0.39 podlaskie 0.37 kujawsko-pomorskie 0.36 podkarpackie 0.35 | warmińsko-mazurskie 0.42 podkarpackie 0.41 podlaskie 0.4 |
IV | pomorskie 0.23 warmińsko-mazurskie 0.2 zachodniopomorskie 0.19 lubuskie 0.14 | pomorskie 0.26 zachodniopomorskie 0.24 warmińsko-mazurskie 0.21 lubuskie 0.16 | Łódzkie 0.33 Opolskie 0.31 świętokrzyskie 0.31 lubelskie 0.28 | Łódzkie 0.38 Opolskie 0.38 kujawsko-pomorskie 0.35 świętokrzyskie 0.34 lubelskie 0.3 |
Detailed | 2008 | 2018 | ||||||
---|---|---|---|---|---|---|---|---|
I | II | III | IV | I | II | III | IV | |
q agricultural potential | 0.38 | 0.34 | 0.3 | 0.19 | 0.41 | 0.36 | 0.29 | 0.2 |
number of units | 6 | 3 | 3 | 4 | 5 | 3 | 5 | 3 |
q development potential | 0.34 | 0.37 | 0.42 | 0.43 | 0.4 | 0.44 | 0.44 | 0.45 |
q the potential of demographics and the labor market | 0.37 | 0.42 | 0.5 | 0.46 | 0.34 | 0.39 | 0.42 | 0.29 |
q economic potential | 0.33 | 0.37 | 0.42 | 0.36 | 0.46 | 0.56 | 0.48 | 0.44 |
q the potential of the natural environment | 0.28 | 0.34 | 0.31 | 0.43 | 0.32 | 0.3 | 0.39 | 0.5 |
q infrastructure potential | 0.4 | 0.37 | 0.44 | 0.47 | 0.49 | 0.51 | 0.48 | 0.57 |
the share of agricultural land (UAA) in% of the total area of the voivodeship | 0.67 | 0.62 | 0.59 | 0.49 | 0.65 | 0.66 | 0.56 | 0.48 |
the share of arable land in% of the total area of the voivodeship | 0.51 | 0.45 | 0.41 | 0.36 | 0.5 | 0.47 | 0.39 | 0.34 |
working in (agriculture, forestry, hunting and fishing) in general | 0.28 | 0.23 | 0.17 | 0.13 | 0.22 | 0.23 | 0.23 | 0.15 |
unemployed living in rural areas in total unemployed | 0.44 | 0.49 | 0.43 | 0.47 | 0.42 | 0.47 | 0.48 | 0.47 |
Number of tractors in units per 100 ha of UAA. | 8 | 8.67 | 8.67 | 4.25 | 9.6 | 9.67 | 11.6 | 4.67 |
Cattle stock per 100 ha of UAA. | 36.8 | 18.3 | 24.3 | 18 | 47.6 | 26 | 18 | 19.3 |
Number of livestock Pigs (pigs) per 100 ha of UAA. | 105 | 37.3 | 44.7 | 49.5 | 94.4 | 30.7 | 32.8 | 30.7 |
Production of livestock for slaughter per 100 ha of UAA. | 32 | 16 | 22.7 | 20.3 | 44.2 | 31 | 29.4 | 27.7 |
Milk production per 1 ha of UAA. | 0.78 | 0.37 | 0.6 | 0.35 | 1.09 | 0.62 | 0.33 | 0.4 |
Egg production per 1 ha of UAA. | 0.58 | 0.5 | 0.65 | 0.28 | 1 | 0.3 | 0.45 | 1.59 |
Ground vegetables yield from 1 ha of UAA | 2.76 | 14.7 | 1.59 | 4.01 | 2.85 | 13.2 | 1.86 | 4.7 |
Fruit harvest from trees from 1 ha of UAA. | 4.16 | 10.9 | 0.34 | 2.82 | 6.79 | 13 | 1.37 | 6 |
Yields Basic cereals of cereals per 1 ha of UAA. | 18.2 | 13.4 | 11.3 | 12.4 | 18 | 16.1 | 11.3 | 10.7 |
Potato yields per 1 ha of UAA. | 5.13 | 6.84 | 6.73 | 4.21 | 4.15 | 3.7 | 5.37 | 2.02 |
Sugar beet yields per 1 ha of UAA. | 7.13 | 3.8 | 1.91 | 2.32 | 11.8 | 9.77 | 3.37 | 3.19 |
grain maize per 1 ha of UAA. | 1.39 | 1.5 | 0.95 | 0.48 | 3.2 | 2.29 | 1.41 | 0.94 |
green maize per 1 ha of UAA. | 13.4 | 2.51 | 6.35 | 5.22 | 22.3 | 10.9 | 4.57 | 5.66 |
rape and turnip rape per 1 ha of UAA. | 1.44 | 0.94 | 0.44 | 1.57 | 1.46 | 1.78 | 0.79 | 1.17 |
balance of migration per 1000 inhabitants | −1.3 | −0.5 | −0.13 | −0.78 | −0.92 | 0.63 | −0.12 | −1.33 |
population per 1 km2 | 104 | 157 | 214 | 81.5 | 106 | 127 | 189 | 68.7 |
Unemployed persons (total) per 1000 inhabitants | 39.8 | 43.7 | 38.3 | 46.8 | 26.2 | 27.3 | 26.8 | 28.7 |
Working per 1000 inhabitants | 204 | 212 | 244 | 208 | 236 | 256 | 236 | 216 |
entities entered in the register per 1000 population | 89.2 | 95.7 | 95.3 | 104 | 101 | 122 | 104 | 111 |
natural persons running a business per 1000 population | 69.7 | 72.7 | 71.3 | 78.3 | 75 | 82.7 | 76.6 | 79.7 |
Own income/total income (financial independence ratio) | 0.48 | 0.57 | 0.62 | 0.44 | 0.44 | 0.6 | 0.44 | 0.33 |
Transfer revenues/total revenues (financial state interference rate) | 0.52 | 0.42 | 0.36 | 0.56 | 0.23 | 0.19 | 0.2 | 0.33 |
Investment expenditures/total expenditures (investment attractiveness index) | 0.35 | 0.35 | 0.36 | 0.33 | 0.35 | 0.29 | 0.41 | 0.34 |
Detailed | qi Potential of Agriculture | qi Development | ||
---|---|---|---|---|
2008 | 2018 | 2008 | 2018 | |
min | 0.14 | 0.16 | 0.28 | 0.30 |
max | 0.40 | 0.45 | 0.48 | 0.53 |
gap | 0.26 | 0.29 | 0.20 | 0.23 |
average | 0.31 | 0.33 | 0.38 | 0.43 |
median | 0.34 | 0.34 | 0.40 | 0.44 |
standard deviation | 0.08 | 0.08 | 0.06 | 0.07 |
quarterly deviation | 0.05 | 0.06 | 0.04 | 0.05 |
coefficient variability | 0.26 | 0.25 | 0.15 | 0.16 |
positional coefficient of variation | 0.14 | 0.17 | 0.10 | 0.12 |
quartile stretch | 0.10 | 0.12 | 0.08 | 0.10 |
skew (asymmetry) | −0.91 | −0.40 | −0.26 | −0.31 |
kurtosis (measure of concentration) | −0.31 | −0.49 | −0.84 | −0.9 |
Detailed | Agriculture | Development |
---|---|---|
q agricultural potential | 1 | −0.4743 |
q development potential | −0.4743 | 1 |
q the potential of demographics and the labor market | −0.1294 | 0.7067 |
q economic potential | 0.0097 | 0.7299 |
q the potential of the natural environment | −0.6918 | 0.3479 |
q infrastructure potential | −0.3965 | 0.6581 |
the share of agricultural land (UAA) in% of the total area of 8the voivodeship | 0.8241 | −0.5928 |
the share of arable land in% of the total area of the voivodeship | 0.8209 | −0.5491 |
working in (agriculture, forestry, hunting and fishing) in general | 0.3189 | −0.7573 |
unemployed living in rural areas in total unemployed | 0.0075 | −0.3969 |
Number of tractors in units per 100 ha of UAA. | 0.4633 | −0.4264 |
Cattle stock per 100 ha of UAA. | 0.4593 | −0.0845 |
Number of livestock Pigs (pigs) per 100 ha | 0.5113 | −0.0303 |
Production of livestock for slaughter per 100 ha of UAA. | 0.3117 | 0.2776 |
Milk production per 1 ha of UAA. | 0.4081 | −0.0789 |
Egg production per 1 ha of UAA. | 0.1788 | 0.1901 |
Ground vegetables yield from 1 ha of UAA | 0.07 | 0.1471 |
Fruit harvest from trees from 1 ha of UAA. | 0.1752 | 0.0273 |
Yields Basic cereals of cereals per 1 ha of UAA. | 0.4979 | −0.1308 |
Potato yields per 1 ha of UAA. | 0.3363 | −0.2399 |
Sugar beet yields per 1 ha of UAA. | 0.5758 | −0.2653 |
grain maize per 1 ha of UAA. | 0.5335 | −0.0331 |
green maize per 1 ha of UAA. | 0.4912 | −0.0371 |
rape and turnip rape per 1 ha of UAA | 0.0841 | 0.1029 |
balance of migration per 1000 inhabitants | 0.0111 | 0.5582 |
Unemployed persons (total) per 1000 inhabitants | −0.2081 | −0.3967 |
Working per 1000 inhabitants | 0.1396 | 0.6573 |
entities entered in the register per 1000 population | −0.1294 | 0.6891 |
natural persons running a business per 1000 population | −0.1215 | 0.629 |
Own income/total income (financial independence ratio) | 0.198 | 0.4941 |
Transfer revenues/total revenues (financial state interference rate) | −0.2461 | −0.4794 |
The area of forest land in the total area | −0.7563 | 0.4531 |
% Of the population using sewage treatment plants | −0.3455 | 0.6705 |
% Of the population using the water supply network | −0.0003 | 0.3678 |
Detailed | Factor | Standard Error | t-Student | p Value |
---|---|---|---|---|
const | 0.838128 | 0.0631715 | 13.27 | <0.0001 |
Population per km2 | −0.000276930 | 5.51887 × 10−5 | −5.018 | <0.0001 |
Unemployed persons (total) per 1000 inhabitants | −0.00184698 | 0.000279864 | −6.600 | <0.0001 |
Working per 1000 inhabitants | 0.00138197 | 0.000246205 | 5.613 | <0.0001 |
entities entered in the register per 1000 population | −0.000906043 | 0.000293730 | −3.085 | 0.0024 |
Own income/total income (financial independence ratio) | −0.159192 | 0.0433446 | −3.673 | 0.0003 |
The area of forest land in the total area | −0.00923137 | 0.000519380 | −17.77 | <0.0001 |
Housing resources per 1000 inhabitants | −0.000733598 | 0.000152982 | −4.795 | <0.0001 |
Arithmetic Mean of the Dependent Variable | 0.321648 | Standard Deviation Of Dependent Change | 0.078530 | |
Sum of squared residuals | 0.287007 | Standard error of residuals | 0.041332 | |
Factor. R-squared determination | 0.734062 | Corrected R-square | 0.722981 | |
F(7, 168) | 66.24644 | The p-value for the F-test | 4.59 × 10−45 | |
Likelihood logarithm | 315.1154 | Akaike’s information criterion | −614.2308 | |
Schwartz’s Bayesian information criterion | −588.8669 | criterion Hannana-Quinna | −603.9433 |
Year | Moran’s I | Expected I | Variance I | Z-Statistic | p-Value | Significance Level (p) |
---|---|---|---|---|---|---|
for a measure of development potential | ||||||
2008 | 0.112188 | −0.066667 | 0.022125 | 1.202429 | 0.229198 | 0.233014 |
2018 | 0.032208 | −0.066667 | 0.022125 | 0.664725 | 0.506226 | 0.512636 |
for a measure of development | ||||||
2008 | −0.0017 | −0.066667 | 0.022125 | 0.436765 | 0.662281 | 0.669658 |
2018 | −0.089365 | −0.066667 | 0.022125 | −0.1526 | 0.878714 | 0.881722 |
2008 | Ii | e (Ii) | Z (Ii) | Value p (Ii) | 2018 | Ii | e (Ii) | Z (Ii) | Value p (Ii) |
According to the measure of agricultural potential | |||||||||
zachodniopomorskie | 1.008 | −0.067 | 2.092 | 0.036 | opolskie | 0.638 | −0.067 | 1.639 | 0.101 |
opolskie | 0.545 | −0.067 | 1.429 | 0.153 | zachodniopomorskie | 0.54 | −0.067 | 1.176 | 0.24 |
łódzkie | 0.477 | −0.067 | 1.697 | 0.09 | łódzkie | 0.387 | −0.067 | 1.413 | 0.158 |
pomorskie | 0.226 | −0.067 | 0.684 | 0.494 | dolnośląskie | 0.108 | −0.067 | 0.338 | 0.735 |
lubelskie | 0.167 | −0.067 | 0.546 | 0.585 | mazowieckie | 0.099 | −0.067 | 0.517 | 0.605 |
świętokrzyskie | 0.096 | −0.067 | 0.507 | 0.612 | lubelskie | 0.079 | −0.067 | 0.338 | 0.735 |
mazowieckie | 0.078 | −0.067 | 0.452 | 0.651 | pomorskie | 0.031 | −0.067 | 0.226 | 0.821 |
lubuskie | 0.017 | −0.067 | 0.162 | 0.871 | kujawsko-pomorskie | 0.03 | −0.067 | 0.262 | 0.793 |
dolnośląskie | 0.012 | −0.067 | 0.154 | 0.878 | małopolskie | 0.027 | −0.067 | 0.182 | 0.856 |
małopolskie | −0.018 | −0.067 | 0.095 | 0.925 | świętokrzyskie | −0.005 | −0.067 | 0.192 | 0.848 |
kujawsko-pomorskie | −0.028 | −0.067 | 0.105 | 0.917 | wielkopolskie | −0.043 | −0.067 | 0.084 | 0.933 |
podkarpackie | −0.059 | −0.067 | 0.014 | 0.989 | podkarpackie | −0.059 | −0.067 | 0.016 | 0.988 |
podlaskie | −0.107 | −0.067 | −0.078 | 0.938 | podlaskie | −0.1 | −0.067 | −0.064 | 0.949 |
wielkopolskie | −0.226 | −0.067 | −0.565 | 0.572 | śląskie | −0.347 | −0.067 | −0.653 | 0.514 |
warmińsko-mazurskie | −0.246 | −0.067 | −0.419 | 0.675 | lubuskie | −0.437 | −0.067 | −0.718 | 0.473 |
śląskie | −0.258 | −0.067 | −0.447 | 0.655 | warmińsko-mazurskie | −0.463 | −0.067 | −0.923 | 0.356 |
by development measure | |||||||||
2008 | Ii | e (Ii) | Z (Ii) | value p (Ii) | 2018 | Ii | e (Ii) | Z (Ii) | value p (Ii) |
lubelskie | 0.627 | −0.067 | 1.606 | 0.108 | zachodniopomorskie | 0.413 | −0.067 | 0.923 | 0.356 |
podkarpackie | 0.615 | −0.067 | 1.313 | 0.189 | lubuskie | 0.406 | −0.067 | 0.909 | 0.363 |
lubuskie | 0.41 | −0.067 | 0.918 | 0.359 | lubelskie | 0.283 | −0.067 | 0.808 | 0.419 |
zachodniopomorskie | 0.362 | −0.067 | 0.827 | 0.408 | podkarpackie | 0.275 | −0.067 | 0.658 | 0.51 |
pomorskie | 0.318 | −0.067 | 0.89 | 0.373 | dolnośląskie | 0.181 | −0.067 | 0.477 | 0.633 |
warmińsko-mazurskie | 0.2 | −0.067 | 0.618 | 0.537 | podlaskie | 0.087 | −0.067 | 0.296 | 0.767 |
świętokrzyskie | 0.178 | −0.067 | 0.759 | 0.448 | wielkopolskie | 0.056 | −0.067 | 0.433 | 0.665 |
podlaskie | 0.034 | −0.067 | 0.195 | 0.846 | świętokrzyskie | 0.033 | −0.067 | 0.308 | 0.758 |
wielkopolskie | 0.022 | −0.067 | 0.313 | 0.754 | pomorskie | 0 | −0.067 | 0.154 | 0.877 |
łódzkie | 0.018 | −0.067 | 0.262 | 0.794 | łódzkie | 0 | −0.067 | 0.207 | 0.836 |
małopolskie | −0.008 | −0.067 | 0.114 | 0.909 | warmińsko-mazurskie | −0.043 | −0.067 | 0.054 | 0.957 |
dolnośląskie | −0.012 | −0.067 | 0.106 | 0.915 | małopolskie | −0.109 | −0.067 | −0.081 | 0.936 |
kujawsko-pomorskie | −0.178 | −0.067 | −0.302 | 0.762 | opolskie | −0.326 | −0.067 | −0.6 | 0.548 |
mazowieckie | −0.557 | −0.067 | −1.523 | 0.128 | śląskie | −0.522 | −0.067 | −1.053 | 0.292 |
opolskie | −0.591 | −0.067 | −1.214 | 0.225 | kujawsko-pomorskie | −0.661 | −0.067 | −1.605 | 0.108 |
śląskie | −1.463 | −0.067 | −3.235 | 0.001 | mazowieckie | −1.413 | −0.067 | −4.18 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prus, P.; Dziekański, P.; Bogusz, M.; Szczepanek, M. Spatial Differentiation of Agricultural Potential and the Level of Development of Voivodeships in Poland in 2008–2018. Agriculture 2021, 11, 229. https://doi.org/10.3390/agriculture11030229
Prus P, Dziekański P, Bogusz M, Szczepanek M. Spatial Differentiation of Agricultural Potential and the Level of Development of Voivodeships in Poland in 2008–2018. Agriculture. 2021; 11(3):229. https://doi.org/10.3390/agriculture11030229
Chicago/Turabian StylePrus, Piotr, Paweł Dziekański, Małgorzata Bogusz, and Małgorzata Szczepanek. 2021. "Spatial Differentiation of Agricultural Potential and the Level of Development of Voivodeships in Poland in 2008–2018" Agriculture 11, no. 3: 229. https://doi.org/10.3390/agriculture11030229