Valorization of a Bio-Stabilized Municipal Solid Waste Amendment for Faba Bean (Vicia faba L.) Fertilization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Cultivation
2.2. Soil and Plant Physical and Chemical Analyses
2.3. Nematodes Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Faba Bean Growth and Biomass Production
3.2. Faba Bean Nutritional Status
3.3. Soil Fertility
3.4. Nematode Community
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kaza, S.; Yao, L.C.; Bhada-Tata, P.; Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050. Urban Development; World Bank: Washington, DC, USA, 2018; Available online: https://openknowledge.worldbank.org/handle/10986/30317 (accessed on 4 June 2019).
- Chen, T.; Zhang, S.; Yuan, Z. Adoption of solid organic waste composting products: A critical review. J. Clean. Prod. 2020, 272, 122712. [Google Scholar] [CrossRef]
- Tenodi, S.; Krčmar, D.; Agbaba, J.; Zrnić, K.; Radenović, M.; Ubavin, D.; Dalmacija, B. Assessment of the environmental impact of sanitary and unsanitary parts of a municipal solid waste landfill. J. Environ. Manag. 2020, 258, 110019. [Google Scholar] [CrossRef] [PubMed]
- Cudjoe, D.; Acquah, P.M. Environmental impact analysis of municipal solid waste incineration in African countries. Chemosphere 2021, 265, 129186. [Google Scholar] [CrossRef] [PubMed]
- Sharma, B.; Vaish, B.; Srivastava, V.; Singh, S.; Singh, P.; Singh, R.P. An Insight to Atmospheric Pollution—Improper Waste Management and Climate Change Nexus; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Sauve, G.; Van Acker, K. The environmental impacts of municipal solid waste landfills in Europe: A life cycle assessment of proper reference cases to support decision making. J. Environ. Manag. 2020, 261, 110216. [Google Scholar] [CrossRef]
- Tognetti, C.; Mazzarino, M.J.; Laos, F. Compost of municipal organic waste: Effects of different management practices on degradability and nutrient release capacity. Soil Biol. Biochem. 2008, 40, 2290–2296. [Google Scholar] [CrossRef]
- Saveyn, H.; Eder, P. End-of-Waste Criteria for Biodegradable Waste Subjected to Biological Treatment (Compost & Digestate): Technical Proposals; Publications Office of the European Union: Luxembourg, 2013. [CrossRef]
- Jara-Samaniego, J.; Pérez-Murcia, M.D.; Bustamante, M.A.; Pérez-Espinosa, A.; Paredes, C.; López, M.; López-Lluch, D.B.; Gavilanes-Terán, I.; Moral, R. Composting as sustainable strategy for municipal solid waste management in the Chimborazo Region, Ecuador: Suitability of the obtained composts for seedling production. J. Clean Prod. 2017, 141, 1349–1358. [Google Scholar] [CrossRef]
- Míguez, F.; Gómez-Sagasti, M.T.; Hernández, A.; Artetxe, U.; Blanco, F.; Castañeda, J.H.; Lozano, J.V.; Garbisu, C.; Becerril, J.M. In Situ phytomanagement with Brassica napus and bio-stabilised municipal solid wastes is a suitable strategy for redevelopment of vacant urban land. Urban For. Urban Green 2020, 47, 126550. [Google Scholar] [CrossRef]
- Alvarenga, P.; Mourinha, C.; Farto, M.; Santos, T.; Palma, P.; Sengo, J.; Morais, M.-C.; Cunha-Queda, C. Sewage sludge, compost and other representative organic wastes as agricultural soil amendments: Benefits versus limiting factors. Waste Manag. 2015, 40, 44–52. [Google Scholar] [CrossRef]
- Tejada, M.; Gonzalez, J.L. Effects of the application of a compost originating from crushed cotton gin residues on wheat yield under dryland conditions. Eur. J. Agron. 2003, 19, 357–368. [Google Scholar] [CrossRef]
- Tilston, E.L.; Pitt, D.; Fuller, M.P.; Groenhof, A.C. Compost increases yield and decreases take-all severity in winter wheat. F Crop. Res. 2005, 94, 176–188. [Google Scholar] [CrossRef]
- Courtney, R.G.; Mullen, G.J. Soil quality and barley growth as influenced by the land application of two compost types. Bioresour. Technol. 2008, 99, 2913–2918. [Google Scholar] [CrossRef] [PubMed]
- Agegnehu, G.; Bass, A.M.; Nelson, P.N.; Bird, M.I. Benefits of biochar, compost and biochar–compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Sci. Total Environ. 2016, 543, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Naeini, S.A.R.M.; Cook, H.F. Influence of municipal compost on temperature, water, nutrient status and the yield of maize in a temperate soil. Soil Use Manag. 2000, 16, 215–221. [Google Scholar] [CrossRef]
- Pane, C.; Palese, A.M.; Spaccini, R.; Piccolo, A.; Celano, G.; Zaccardelli, M. Enhancing sustainability of a processing tomato cultivation system by using bioactive compost teas. Sci. Hortic. 2016, 202, 117–124. [Google Scholar] [CrossRef]
- Martínez-Blanco, J.; Muñoz, P.; Antón, A.; Rieradevall, J. Life cycle assessment of the use of compost from municipal organic waste for fertilization of tomato crops. Resour. Conserv. Recycl. 2009, 53, 340–351. [Google Scholar] [CrossRef]
- Garg, P.; Gupta, A.; Satya, S. Vermicomposting of different types of waste using Eisenia foetida: A comparative study. Bioresour. Technol. 2006, 97, 391–395. [Google Scholar] [CrossRef]
- Universidad Pública de Navarra. Leguminosae, Vicia Faba: Haba. Available online: https://www.unavarra.es/herbario/pratenses/htm/Vici_faba_p.htm (accessed on 4 June 2019).
- Singh, M.; Upadhyaya, H.D.; Bisht, I.S. Genetic and Genomic Resources of Grain Legume Improvement. 1—Introduction; Elsevier: Oxford, UK, 2013; pp. 1–10. [Google Scholar]
- FAO. FAOSTAT Database. Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 3 November 2020).
- Karkanis, A.; Ntatsi, G.; Lepse, L.; Fernández, J.A.; Vågen, I.M.; Rewald, B.; Alsiņa, I.; Kronberga, A.; Balliu, A.; Olle, M.; et al. Faba Bean Cultivation—Revealing Novel Managing Practices for More Sustainable and Competitive European Cropping Systems. Front. Plant. Sci 2018, 9, 1115. [Google Scholar] [CrossRef] [PubMed]
- Pacyna, S.; Schulz, M.; Scherer, H. Influence of sulphur supply on glucose and ATP concentrations of inoculated broad beans (Vicia faba minor L.): Dedicated to Prof. Dr. Dr. h.c. W. Werner on the occasion of his 75th birthday. Biol. Fertil. Soils 2006, 42, 324–329. [Google Scholar] [CrossRef]
- Mona, A.M.; Sabah, M.A.; Rehab, A.M. Influence of potassium sulfate on faba bean yield and quality. Aust. J. Basic Appl. Sci. 2011, 5, 87–95. [Google Scholar]
- Pötzsch, F.; Lux, G.; Schmidtke, K. Sulphur demand, uptake and fertilization of Vicia faba L. under field conditions. F Crop. Res. 2018, 228, 76–83. [Google Scholar] [CrossRef]
- Barłóg, P.; Grzebisz, W.; Łukowiak, R. Faba bean yield and growth dynamics in response to soil potassium availability and sulfur application. F Crop. Res. 2018, 219, 87–97. [Google Scholar] [CrossRef]
- Hariadi, Y.; Shabala, S. Screening broad beans (Vicia faba) for magnesium deficiency. II. Photosynthetic performance and leaf bioelectrical responses. Funct. Plant. Biol. 2004, 31, 539–549. [Google Scholar] [CrossRef]
- Nebiyu, A.; Diels, J.; Boeckx, P. Phosphorus use efficiency of improved faba bean (Vicia faba) varieties in low-input agro-ecosystems. J. Plant. Nutr. Soil Sci. 2016, 179, 347–354. [Google Scholar] [CrossRef]
- Cucci, G.; Lacolla, G.; Summo, C.; Pasqualone, A. Effect of organic and mineral fertilization on faba bean (Vicia faba L.). Sci. Hortic. 2019, 243, 338–343. [Google Scholar] [CrossRef]
- Abdelhamid, M.T.; Horiuchi, T.; Oba, S. Composting of rice straw with oilseed rape cake and poultry manure and its effects on faba bean (Vicia faba L.) growth and soil properties. Bioresour. Technol. 2004, 93, 183–189. [Google Scholar] [CrossRef]
- Fernández-Luqueño, F.; Reyes-Varela, V.; Martínez-Suárez, C.; Salomón-Hernández, G.; Yáñez-Meneses, J.; Ceballos-Ramírez, J.M.; Dendooven, L. Effect of different nitrogen sources on plant characteristics and yield of common bean (Phaseolus vulgaris L.). Bioresour. Technol. 2010, 101, 396–403. [Google Scholar] [CrossRef] [PubMed]
- Urbaser. URBASER, S.A. Available online: https://www.urbaser.com/en/ (accessed on 10 March 2020).
- BOE-A-2011-13046. Ley 22/2011, de 28 de Julio, de Residuos y Suelos Contaminados. Available online: https://www.boe.es/boe/dias/2011/07/29/pdfs/BOE-A-2011-13046.pdf (accessed on 4 June 2019).
- MAPA. Ministerio de Agricultura, Pesca y Alimentación. Métodos Oficiales de Análisis; MAPA: Madrid, Spain, 1994; Volume 3, p. 162. [Google Scholar]
- Hesse, P.R. Total nitrogen: The Kjeldahl Process. A Texbook of Soil Chemical Analysis; Murray: London, UK, 1971; p. 520. [Google Scholar]
- Bremner, J.M.; Mulvaney, C.S. Nitrogen—Total. In Methods of Soil Analysis; Soil Science Society of America, Inc.: Madison, WI, USA, 1983; pp. 595–624. [Google Scholar]
- APHA. Standard Methods for the Examination of Water and Wastewater, 21st ed.; American Public Health Association: Washington, DC, USA; American Water Works Assotiation and Water Environment Federation: Washington, DC, USA, 2005; p. 874. [Google Scholar]
- USEPA. Method 3051A Microwave Assisted Acid Digestion of Sediments, Sludges, Soils, and Oils; US Government: Washington, DC, USA, 2007.
- Mirshekari, M.; Majnounhosseini, N.; Amiri, R.; Moslehi, A.; Zandvakili, O. Effects of Sowing Date and Irrigation Treatment on Safflower Seed Quality. J. Agric. Sci. Technol. 2013, 15, 505–515. [Google Scholar]
- Dualex. Dualex. Available online: https://www.force-a.com/products/dualex (accessed on 9 May 2020).
- Barker, K.R. Nematode extraction and bioassays. In An Advanced Treatise on Meloidogyne, Vol 2 Methodology; Barker, K.R., Carter, C.C., Sasser, J.N., Eds.; North Carolina State University Graphics: Raleigh, NC, USA, 1985; pp. 19–35. [Google Scholar]
- Bongers, T. De Nematoden van Nederland; KNNV-bibliotheekuitgave: Schoorl, The Netherlands, 1988; p. 408. [Google Scholar]
- Bongers, T. The maturity index: An ecological measure of environmental disturbance based on nematode species composition. Oecologia 1990, 83, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Ferris, H.; Bongers, T.; de Goede, R.G.M. A framework for soil food web diagnostics: Extension of the nematode faunal analysis concept. Appl. Soil Ecol. 2001, 18, 13–29. [Google Scholar] [CrossRef]
- Ferris, H. Form and function: Metabolic footprints of nematodes in the soil food web. Eur. J. Soil Biol. 2010, 46, 97–104. [Google Scholar] [CrossRef]
- IBM Corp. IBM SPSS Statistics for Windows. Available online: https://www.ibm.com/analytics/spss-statistics-software (accessed on 14 June 2019).
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 17 June 2019).
- Mady, M.A. Effect of foliar application with yeast extract and zink on fruit setting Faba bean (Vicia faba L). J. Biol. Chem. Environ. Sci. 2009, 4, 109–127. [Google Scholar]
- Ece, A.; Duzdemir, O.; Akdag, C.; Uysal, F. Isitmasiz cam serada kis doneminde taze bakla (Vicia faba L.) yetistirme olanaklarinin arastirilmasi (Studies on fresh broad-bean (Vicia faba L.) growing in unheated greenhouse under winter conditions). J. Ataturk Cent. Hortic. Res. Inst. 2004, 33. Available online: https://dergipark.org.tr/en/pub/bahce/issue/3348/46305 (accessed on 4 June 2019).
- Weldua, Y.; Haileb, M.; Habtegebrielb, K. Effect of zinc and phosphorus fertilizers application on yield and yield components of faba bean (Vicia faba L.) grown in calcaric cambisol of semi-arid northern Ethiopia. J. Soil Sci. Environ. Manag. 2013, 3, 320–326. [Google Scholar]
- Reyhan, K.; Topal, N.; Bozoğlu, H. Bakla (Vicia faba L.)’da Farklı Ekim Sıklıklarının Yaprak Alanı ve Verim Unsurlarına Etkisi. Tarla Bitk Merk Araştırma Enstitüsü Derg. 2016, 25, 213. [Google Scholar]
- Al-Rifaee, M.; Turk, M.; Al Tawaha, A.R. Effect of Seed Size and Plant Population Density on Yield and Yield Components of Local Faba Bean (Vicia faba L. Major). Int. J. Agric. Biol. 2004, 6, 294–299. [Google Scholar]
- De Cillis, F.; Leoni, B.; Massaro, M.; Renna, M.; Santamaria, P. Yield and Quality of Faba Bean (Vicia faba L. var. major) Genotypes as a Vegetable for Fresh Consumption, A Comparison between Italian Landraces and Commercial Varieties. Agriculture 2019, 9, 253. [Google Scholar] [CrossRef][Green Version]
- Salem, A.; EL-Harty, E.; Ammar, M.; Alghamdi, S. Evaluation of Faba Bean (Vicia faba L.) Performance under Various Micronutrients Foliar Applications and Plant Spacing. Life Sci. J. 2014, 11, 1298. [Google Scholar]
- Crépon, K.; Marget, P.; Peyronnet, C.; Carrouée, B.; Arese, P.; Duc, G. Nutritional value of faba bean (Vicia faba L.) seeds for feed and food. F Crop. Res. 2010, 115, 329–339. [Google Scholar] [CrossRef]
- Al-Jobori, K.; Salim, S. Response of Potato (Solanum Tuberosum) to Foliar Application of Iron, Manganese, Copper and Zinc. IJACS 2018, 7, 358–363. [Google Scholar]
- Teixeira, I.; Borém, A.; Andrade, A.; Fontes, R. Manganese and zinc leaf application on common bean grown on a “Cerrado” soil. Sci. Agric. 2004, 61. [Google Scholar] [CrossRef]
- Larcher, W. Physiological Plant Ecology: Ecophysiology and Stress Physiology of Functional Groups, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Arena, M.E.; Pastur, G.M.; Lencinas, M.V.; Soler, R.; Bustamante, G. Changes in the leaf nutrient and pigment contents of Berberis microphylla G. Forst. in relation to irradiance and fertilization. Heliyon 2020, 6, e03264. [Google Scholar] [CrossRef] [PubMed]
- Kobraee, S. Effect of zinc, iron and manganese fertilization on concentrations of these metals in the stem and leaves of soybean and on the chlorophyll content in leaves during the reproductive development stages. J. Elem. 2012, 21, 395–412. [Google Scholar] [CrossRef]
- Santos, E.; Zanchim, B.; Campos, A.; Garrone, R.; Lavres Junior, J. Photosynthesis rate, chlorophyll content and initial development of physic nut without micronutrient fertilization. Rev. Bras. Ciência Solo 2013, 37, 1334–1342. [Google Scholar] [CrossRef][Green Version]
- Zhang, Q.; Zhai, J.; Shao, L.; Lin, W.; Peng, C. Accumulation of Anthocyanins: An Adaptation Strategy of Mikania micrantha to Low Temperature in Winter. Front. Plant. Sci. 2019, 10, 1049. [Google Scholar] [CrossRef][Green Version]
- Nardi, S.; Morari, F.; Berti, A.; Tosoni, M.; Giardini, L. Soil organic matter properties after 40 years of different use of organic and mineral fertilisers. Eur. J. Agron. 2004, 21, 357–367. [Google Scholar] [CrossRef]
- Carmo, D.L.; do Lima, L.B.; de Silva, C.A. Soil Fertility and Electrical Conductivity Affected by Organic Waste Rates and Nutrient Inputs. Rev. Bras CiÃ\Textordfemeninencia Do Solo 2016, 40. Available online: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832016000100532&nrm=iso (accessed on 4 June 2019). [CrossRef][Green Version]
- Cavallaro, N.; Padilla, N.; Villarrubia, J. Sewage Sludge Effects on Chemical Properties of Acid Soils. Soil Sci. 1993, 156. Available online: https://journals.lww.com/soilsci/Fulltext/1993/08000/SEWAGE_SLUDGE_EFFECTS_ON_CHEMICAL_PROPERTIES_OF.1.aspx (accessed on 6 June 2019). [CrossRef]
- Ozlu, E.; Kumar, S. Response of Soil Organic Carbon, pH, Electrical Conductivity, and Water Stable Aggregates to Long-Term Annual Manure and Inorganic Fertilizer. Soil Sci Soc. Am. J. 2018, 82. [Google Scholar] [CrossRef]
- Melero, S.; Madejón, E.; Ruiz, J.C.; Herencia, J.F. Chemical and biochemical properties of a clay soil under dryland agriculture system as affected by organic fertilization. Eur. J. Agron. 2007, 26, 327–334. [Google Scholar] [CrossRef][Green Version]
- USDA. Soil pH-Soil Health Guides for Educators. Available online: https://cropwatch.unl.edu/documents/USDA_NRCS_pH_guide_edit_6_3_14.pdf (accessed on 16 June 2019).
- Jensen, E.S.; Peoples, M.B.; Hauggaard-Nielsen, H. Faba bean in cropping systems. F Crop. Res. 2010, 115, 203–216. [Google Scholar] [CrossRef][Green Version]
- Zhao, Z.; Zhang, C.; Li, F.; Gao, S.; Zhang, J. Effect of compost and inorganic fertilizer on organic carbon and activities of carbon cycle enzymes in aggregates of an intensively cultivated Vertisol. PLoS ONE 2020, 15, e0229644. [Google Scholar] [CrossRef]
- Soumaré, M.; Demeyer, A.; Tack, F.M.G.; Verloo, M.G. Chemical characteristics of Malian and Belgian solid waste composts. Bioresour. Technol. 2002, 81, 97–101. [Google Scholar] [CrossRef]
- Ouédraogo, E.; Mando, A.; Zombré, N.P. Use of compost to improve soil properties and crop productivity under low input agricultural system in West Africa. Agric. Ecosyst. Environ. 2001, 84, 259–266. [Google Scholar] [CrossRef]
- BOE. Real Decreto 1310/1990, de 29 de Octubre, por el que se Regula la Utilización de los Lodos de Depuración en el Sector Agrario. Available online: https://www.boe.es/buscar/doc.php?id=BOE-A-1990-26490 (accessed on 16 June 2019).
- Mutammimah, U.; Minardi, S.; Suryono, S. Organic amendments effect on the soil chemical properties of marginal land and soybean yield. J. Degrad Min. Lands Manag 2020, 7, 2263–2268. [Google Scholar] [CrossRef]
- van den Hoogen, J.; Geisen, S.; Routh, D.; Ferris, H.; Traunspurger, W.; Wardle, D.A.; de Goede, R.G.M.; Adams, B.J.; Ahmad, W.; Andriuzzi, W.S.; et al. Soil nematode abundance and functional group composition at a global scale. Nature 2019, 572, 194–198. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Hlava, J.; Száková, J.; Vadlejch, J.; Čadková, Z.; Balík, J.; Tlustoš, P. Long-term application of organic matter based fertilisers: Advantages or risks for soil biota? A review. Environ. Rev. 2017, 25, 408–414. [Google Scholar] [CrossRef]
- Coors, A.; Edwards, M.; Lorenz, P.; Römbke, J.; Schmelz, R.M.; Topp, E.; Waszak, K.; Wilkes, G.; Lapen, D.R. Biosolids applied to agricultural land: Influence on structural and functional endpoints of soil fauna on a short- and long-term scale. Sci. Total Environ. 2016, 562, 312–326. [Google Scholar] [CrossRef]
- Li, S.; Zhu, L.; Li, J.; Ke, X.; Wu, L.; Luo, Y.; Christie, P. Influence of long-term biosolid applications on communities of soil fauna and their metal accumulation: A field study. Environ. Pollut. 2020, 260, 114017. [Google Scholar] [CrossRef]
Parameter | Organic Amendment | Sandy Soil | Clay Soil |
---|---|---|---|
Humidity (%) | 78.8 | 15.90 | 24.23 |
Ashes (g/kg) | 39.00 | − | − |
pH,1:2.5 H2O | 6.80 | 6.35 | 6.50 |
E.C.,1:5 H2O (dS/m) | 5.59 | 0.07 | 0.08 |
Humic acids (%) | 8.30 | − | − |
Fulvic acids (%) | 8.00 | − | − |
Humic extract (%) | 16.00 | − | − |
Organic carbon (%) | 17.46 | 0.41 | 0.63 |
Organic matter (%) | 30.01 | 0.71 | 1.09 |
N Kjeldahl (%) | 1.29 | 0.06 | 0.07 |
Ratio C/N | 13.48 | 11.80 | 9.90 |
N-NH4+ (mg/kg) | 3174.5 | 3.64 | 2.73 |
N-NO3− (mg/kg) | 208.32 | 11.13 | 0.55 |
P2O5 total (g/kg) | 2.1 | 0.7 | 0.6 |
K2O total (g/kg) | 10.9 | 3.3 | 4.6 |
CaO total (g/kg) | 68.6 | 33.1 | 23.3 |
MgO total (g/kg) | 69.7 | 3 | 3.1 |
Na total (g/kg) | 7.8 | 0.2 | 0.2 |
Al (mg/kg) | 2600.00 | − | − |
Fe (mg/kg) | 5010.00 | 2544.00 | 1222.00 |
Co (mg/kg) | <1.00 | − | − |
Mn (mg/kg) | 92.40 | 81.00 | 155.8 |
Zn (mg/kg) | 140.00 | 15.00 | 19.32 |
As (mg/kg) | 1.70 | − | − |
S (mg/kg) | 6822.80 | − | − |
Cu (mg/kg) | 92.40 | 11.00 | 13.9 |
Cr (mg/kg) | 31.90 | 5.60 | 5.95 |
Ni (mg/kg) | 5.40 | 4.05 | 4.63 |
Mo (mg/kg) | <1.00 | − | − |
Pb, Cd (mg/kg) | 26.00 | <0.20 | <0.20 |
Soil Type | Fertilization | Biomass Production (g/Plant) |
---|---|---|
Sandy | Control | 6.52 ± 0.24 a |
Mineral | 10.30 ± 0.32 ab | |
Organic | 14.23 ± 0.39 b | |
Clay | Control | 10.31 ± 0.29 a |
Mineral | 13.04 ± 0.18 ab | |
Organic | 15.84 ± 0.10 b |
Soil Type | Fertilization | Nº Pods/Plant | Nº Seeds/Plant | Nº Seeds/Pod | Seed Yield (g/Plant) |
---|---|---|---|---|---|
Sandy | Control | 2.67 ± 2.89 a | 6.33 ± 4.93 a | 2.52 ± 1.19 a | 2.385 ± 1.92 a |
Mineral | 3.67 ± 0.58 a | 10 ± 2.00 ab | 3.00 ± 1.00 a | 3.90 ± 0.92 ab | |
Organic | 6.33 ± 2.08 a | 14.33 ± 3.06 b | 2.72 ± 0.25 a | 4.37 ± 1.76 b | |
Clay | Control | 4.67 ± 1.53 a | 12.67 ± 4.93 a | 2.67 ± 0.34 a | 3.60 ±2.30 a |
Mineral | 6.67 ± 2.08 a | 13.00 ± 4.58 ab | 2.20 ± 0.67 a | 4.04 ± 1.47 ab | |
Organic | 6.00 ± 2.65 a | 18.67 ± 4.62 b | 3.29 ± 0.89 a | 6.59 ± 0.57 b |
Treatments | Sandy | Clay | ||||
---|---|---|---|---|---|---|
Control | Mineral | Organic | Control | Mineral | Organic | |
Nitrogen (%) | 3.25 ± 0.24 a | 3.64 ± 0.21 b | 3.66 ± 0.19 b | 3.36 ± 0.06 a | 3.54 ± 0.12 b | 3.71 ± 0.21 b |
Protein (%) | 20.34 ± 1.50 a | 22.73 ± 1.30 b | 22.88± 1.17 b | 21.02 ± 0.35 a | 22.12 ± 0.74 b | 23.17 ± 1.29 b |
Ca (mg/kg) | 1052.2 ± 49.6 a | 945.2 ± 139.9 a | 958.1 ± 70.1 a | 957.0 ± 37.8 a | 983.6 ± 91.7 a | 1025.2 ± 113.7 a |
P (mg/kg) | 3463 ± 314 a | 4710 ± 856 a | 2895 ± 758 a | 3539 ± 548 a | 3206 ± 171 a | 3334 ± 348 a |
K (mg/kg) | 11,558 ± 735 a | 12,897 ± 899 a | 11,367 ± 511 a | 13,141 ± 446 a | 12,357 ± 893 a | 12,824 ± 355 a |
Mn (mg/kg) | 1.77 ± 0.54 a | 2.07 ± 1.67 b | 3.93 ± 1.53 b | 1.60 ± 1.04 a | 2.30 ± 0.50 b | 3.43 ± 0.45 b |
Fe (mg/kg) | 54.53 ± 3.58 a | 50.80 ± 2.69 a | 56.77 ± 2.66 a | 75.43 ± 1.62 a | 79.47 ± 7.53 a | 61.63 ± 4.92 a |
Mg (mg/kg) | 976.2 ± 30.2 a | 1042.8 ± 93.2 a | 947.1 ± 49.0 a | 1062.6 ± 87.7 a | 1034.1 ± 37.4 a | 1073.8 ± 8.2 a |
Zn (mg/kg) | 22.07 ± 2.34 a | 28.9 ± 4.42 ab | 35.70 ± 5.31 b | 15.13 ± 1.07 a | 15.23 ± 0.87 ab | 16.47 ± 1.44 b |
Cu (mg/kg) | 8.53 ± 0.45 a | 10.13 ± 2.62 a | 9.56 ± 1.79 a | 14.57 ± 3.5 a | 14.80 ± 3.23 a | 16.93 ± 3.59 a |
Treatments | Sandy | Clay | ||||
---|---|---|---|---|---|---|
Control | Mineral | Organic | Control | Mineral | Organic | |
pH | 7.71 ± 0.01 a | 7.91 ± 0.1 b | 8.03 ± 0.03 c | 7.82 ± 0.02 a | 7.91 ± 0.01 b | 8.06 ± 0.05 c |
E.C. (dS/m) | 0.07 ± 0.01 a | 0.11 ± 0.01 b | 0.11 ± 0.01 b | 0.09 ± 0.02 a | 0.11 ± 0.01 b | 0.11 ± 0.01 b |
Organic carbon (%) | 0.67 ± 0.03 a | 0.69 ± 0.01 a | 0.72 ± 0.02 b | 0.67 ± 0.012 a | 0.69 ± 0.02 a | 0.73 ± 0.02 b |
Kjeldahl N (%) | 0.08 ± 0.01 a | 0.09 ± 0.01 b | 0.10 ± 0.01 b | 0.07 ± 0.01 a | 0.09 ± 0.01 b | 0.10 ± 0.02 b |
K2O (%) | 0.51 ± 0.01 a | 0.43 ± 0.04 b | 0.61 ± 0.01 c | 0.45 ± 0.02 a | 0.47 ± 0.02 b | 0.53 ± 0.03 c |
P2O5 (%) | 0.06 ± 0.02 a | 0.08 ± 0.01 b | 0.09 ± 0.01 b | 0.05 ± 0.01 a | 0.07 ± 0.01 b | 0.07 ± 0.01 b |
CaO (%) | 3.10 ± 0.01 a | 3.60 ± 0.01 b | 3.69 ± 0.01 c | 3.58 ± 0.01 a | 3.61 ± 0.01 b | 3.73 ± 0.02 c |
MgO (%) | 0.35 ± 0.02 a | 0.41 ± 0.02 b | 0.44 ± 0.01 b | 0.35 ± 0.01 a | 0.42 ± 0.03 b | 0.41 ± 0.05 b |
Zn (mg/kg) | 15.77 ± 2.85 a | 28.33 ± 0.57 b | 35.57 ± 1.20 c | 19.36 ± 0.47 a | 27.10 ± 1.71 b | 36.53 ± 1.55 c |
Cu (mg/kg) | 18.63 ± 1.04 a | 23.10 ± 0.72 b | 32.4 ± 1.01 c | 16.90 ± 2.08 a | 22.73 ± 0.58 b | 30.13 ± 2.83 c |
Cr (mg/kg) | 5.41 ± 0.17 a | 16.58 ± 1.76 b | 21.43 ± 1.32 c | 7.26 ± 0.59 a | 12.97 ± 1.55 b | 24.93 ± 0.21 c |
Ni (mg/kg) | 4.85 ± 0.04 a | 5.96 ± 0.8 b | 16.30 ± 0.30 c | 4.68 ± 0.17 a | 5.76 ± 0.28 b | 16.49 ± 0.70 c |
Pb, Cd (mg/kg) | <0.2 ± 0.01 a | <0.2 ± 0.01 a | <0.2 ± 0.01 a | <0.2 ± 0.01 a | <0.2 ± 0.01 a | <0.2 ± 0.01 a |
Taxa | TG | C–P | Clay | Sand | Soil | Treat | Soil x Treat | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | Mineral | Organic | Control | Mineral | Organic | F | p | F | p | F | p | |||
Panagrolaimus | Ba | 1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 8.28 | ||||||
±0.00 | ±0.00 | ±0.00 | ±0.00 | ±0.00 | ±14.33 | |||||||||
Acrobeles | Ba | 2 | 20.07 | 77.13 | 259.88 | 14.58 | 0.00 | 0.00 | 13.63 | *** | ||||
±17.80 | ±79.63 | ±294.11 | ±14.29 | ±0.00 | ±0.00 | |||||||||
Acrobeloides | Ba | 2 | 1307.08 | 876.07 | 4495.04 | 83.49 | 177.17 | 75.36 | 202.6 | *** | 11.32 | *** | ||
±325.16 | ±255.26 | ±3603.62 | ±23.43 | ±75.35 | ±1.46 | |||||||||
Heterocephalus | Ba | 2 | 110.72 | 64.61 | 43.87 | 83.63 | 8.84 | 42.23 | ||||||
±56.35 | ±39.41 | ±41.68 | ±75.16 | ±8.13 | ±39.05 | |||||||||
Cervidellus | Ba | 2 | 20.87 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 3.99 | ** | 3.99 | ** | ||
±18.27 | ±0.00 | ±0.00 | ±0.00 | ±0.00 | ±0.00 | |||||||||
Aphelenchus | Fu | 2 | 1602.55 | 1347.42 | 2314.56 | 133.19 | 1059.61 | 2334.73 | 17.01 | *** | 13.08 | *** | 9.77 | *** |
±413.58 | ±650.96 | ±150.57 | ±37.04 | ±233.59 | ±1750.30 | |||||||||
Aphelenchoides | Fu | 2 | 78.39 | 26.92 | 100.04 | 16.72 | 0.00 | 0.00 | 20.95 | *** | ||||
±32.40 | ±46.63 | ±18.62 | ±28.96 | ±0.00 | ±0.00 | |||||||||
Tylenchidae | Fu | 2 | 76.79 | 93.06 | 467.19 | 2.62 | 14.79 | 2.26 | 12.57 | *** | ||||
±25.10 | ±24.66 | ±738.54 | ±2.28 | ±14.23 | ±3.91 | |||||||||
Tylenchorhynchus | Herb | 3 | 193.29 | 300.56 | 262.27 | 6.17 | 0.00 | 4.52 | 61.64 | *** | ||||
±155.59 | ±302.64 | ±296.58 | ±6.12 | ±0.00 | ±7.83 | |||||||||
Helicotylenchus | Herb | 3 | 9.56 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ||||||
±16.56 | ±0.00 | ±0.00 | ±0.00 | ±0.00 | ±0.00 | |||||||||
Eudorylaimus | Omn | 4 | 0.00 | 49.11 | 46.26 | 170.42 | 80.68 | 71.56 | 7.99 | ** | 5.34 | ** | ||
±0.00 | ±22.92 | ±48.83 | ±89.74 | ±88.79 | ±31.68 | |||||||||
Mesodorylaimus | Omn | 4 | 0.00 | 0.00 | 0.00 | 6.27 | 0.00 | 0.00 | ||||||
±0.00 | ±0.00 | ±0.00 | ±10.86 | ±0.00 | ±0.00 | |||||||||
Total./100g ds | 3419.32 | 2834.88 | 7989.11 | 517.09 | 1341.10 | 2538.94 | 30.54 | *** | 7.04 | *** | ||||
±624.03 | ±961.94 | ±4925.29 | ±158.40 | ±352.74 | ±1749.63 |
Clay | Sand | Soil | Treat | Soil x Treat | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | Mineral | Organic | Control | Mineral | Organic | F | p | F | p | F | p | |
SI | 0.00 | 7.73 | 3.46 | 65.58 | 17.47 | 18.22 | 15.40 | *** | 6.46 | ** | ||
±0.00 | ±3.08 | ±3.48 | ±9.03 | ±15.94 | ±19.86 | |||||||
EI | 34.86 | 36.08 | 27.47 | 31.20 | 45.98 | 48.48 | 9.56 | *** | 6.91 | ** | ||
±2.12 | ±4.50 | ±8.81 | ±5.09 | ±1.29 | ±1.64 | |||||||
SF | 0.00 | 35.03 | 33.00 | 123.88 | 57.56 | 51.05 | 7.17 | ** | 5.29 | ** | ||
±0.00 | ±16.35 | ±34.84 | ±67.84 | ±63.35 | ±22.60 | |||||||
EF | 169.69 | 139.89 | 244.14 | 14.83 | 108.50 | 241.12 | 16.96 | *** | 12.31 | *** | 9.11 | *** |
±40.61 | ±64.89 | ±15.61 | ±2.98 | ±23.92 | ±179.51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinez, S.; Sánchez-Moreno, S.; Gabriel, J.L.; Álvarez, C.; Delgado, M.d.M. Valorization of a Bio-Stabilized Municipal Solid Waste Amendment for Faba Bean (Vicia faba L.) Fertilization. Agriculture 2021, 11, 1109. https://doi.org/10.3390/agriculture11111109
Martinez S, Sánchez-Moreno S, Gabriel JL, Álvarez C, Delgado MdM. Valorization of a Bio-Stabilized Municipal Solid Waste Amendment for Faba Bean (Vicia faba L.) Fertilization. Agriculture. 2021; 11(11):1109. https://doi.org/10.3390/agriculture11111109
Chicago/Turabian StyleMartinez, Sara, Sara Sánchez-Moreno, Jose Luis Gabriel, Cristina Álvarez, and Maria del Mar Delgado. 2021. "Valorization of a Bio-Stabilized Municipal Solid Waste Amendment for Faba Bean (Vicia faba L.) Fertilization" Agriculture 11, no. 11: 1109. https://doi.org/10.3390/agriculture11111109