Characteristics of Agricultural Dust Emissions from Harvesting Operations: Case Study of a Whole-Feed Peanut Combine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Site and Samplers
2.2. Moisture Content Determination
2.3. Velocity of Dust-Particle Settling
2.4. Qualitative and Qualitative Analysis of Free Silica
2.5. Standard Curve of Free Silica for Quantitative Analysis
2.6. Content of Free Silica (Quartz)
2.7. Particle Size Distribution
2.8. Dust Concentration Calculations
2.9. Morphology Analysis of Dust
3. Results and Discussion
3.1. Particle Concentration Variations with Distance
3.2. Particle Concentration versus Moisture Content of Peanut Plant
3.3. Content of Free Silica in Dust
3.4. Particle Size Distributions
3.5. Morphology Analysis of Dust
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, Z.; Gao, L.; Chen, C.; Butts, C.L. Analysis on technology status and development of peanut harvest mechanization of China and the United States. Trans. Chin. Soc. Agric. Mach 2017, 48, 1–21. [Google Scholar]
- Yang, M.L. Analysis on Situation of Agricultural Mechanization Development in the Next Five Years. Chin. Agric. Mech. 2011, 1, 9–14. (In Chinese) [Google Scholar] [CrossRef]
- Shang, S.Q.; Wang, F.Y.; Liu, S.G.; Zhao, Z.H.; Wang, J.C. Research situation and development trend on peanut harvesting machinery. Trans. Chin. Soc. Agric. Eng. 2004, 20, 20–25. [Google Scholar]
- Polin, J.P.; Gu, Z.; Humburg, D.S.; Dalsted, K.J. Source of airborne sunflower dust generated during combine harvester operation. Biosyst. Eng. 2014, 126, 23–29. [Google Scholar] [CrossRef]
- Sharratt, B.; Auvermann, B. Dust Pollution from Agriculture. Encycl. Agric. Food Syst. 2014, 2, 487–504. [Google Scholar]
- Wang, J.; Miller, D.R.; Sammis, T.W.; Hiscox, A.L.; Yang, W.; Holmén, B.A. Local dust emission factors for agricultural tilling operations. Soil Sci. 2010, 175, 194–200. [Google Scholar] [CrossRef]
- Chen, W.; Tong, D.Q.; Zhang, S.; Zhang, X.; Zhao, H. Local PM10 and PM2.5 emission inventories from agricultural tillage and harvest in northeastern China. J. Environ. Sci. 2017, 57, 15–23. [Google Scholar] [CrossRef]
- Zhou, L.; Chen, X.; Tian, X. The impact of fine particulate matter (PM2.5) on China’s agricultural production from 2001 to 2010. J. Clean. Prod. 2018, 178, 133–141. [Google Scholar] [CrossRef]
- Kasumba, J.; Holmén, B.A.; Hiscox, A.; Wang, J.; Miller, D. Agricultural PM10 emissions from cotton field disking in Las Cruces, NM. Atmos. Environ. 2011, 45, 1668–1674. [Google Scholar] [CrossRef]
- Erisman, J.W.; Bleeker, A.; Hensen, A.; Vermeulen, A. Agricultural air quality in Europe and the future perspectives. Atmos. Environ. 2008, 42, 3209–3217. [Google Scholar] [CrossRef] [Green Version]
- Bogman, P.; Cornelis, W.; Rollé, H.; Gabriels, D. Prediction of TSP and PM10 emissions from agricultural operations in Flanders, Belgium. In Proceedings of the 14th International Conference “Transport and Air Pollution”, Graz, Austria, 1–3 June 2005; pp. 1–3. [Google Scholar]
- Downey, D.; Giles, D.; Thompson, J. In situ transmissiometer measurements for real-time monitoring of dust discharge during orchard nut harvesting. J. Environ. Qual. 2008, 37, 574–581. [Google Scholar] [CrossRef] [PubMed]
- Polin, J.P.; Gu, Z.; Humburg, D.; Dalsted, K. Sunflower dust properties that contribute to increased fire risk during harvest and biorefinery operations. Ind. Crop. Prod. 2013, 50, 227–231. [Google Scholar] [CrossRef]
- Pye, K. Aeolian Dust and Dust Deposits; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Capareda, S.; Wang, L.; Parnell, J.C.; Shaw, B. Particle size distribution of particulate matter emitted by agricultural operations: Impacts on FRM PM10 and PM2.5 concentration measurements. In Proceedings of the Beltwide Cotton Production Conferences, National Cotton Council, Memphis, TN, USA, 5–9 January 2004. [Google Scholar]
- Xue, B.; Mitchell, B.; Geng, Y.; Ren, W.; Müller, K.; Ma, Z.; Oliveira, J.A.P.; Fujita, T.; Tobias, M. A review on China’s pollutant emissions reduction assessment. Ecol. Indic. 2014, 38, 272–278. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, L.; Tong, D.Q.; Wu, G.; Dan, M.; Teng, B. A systematic review of global desert dust and associated human health effects. Atmosphere 2016, 7, 158. [Google Scholar] [CrossRef] [Green Version]
- Stacey, P.; Thorpe, A.; Roberts, P.; Butler, O. Determination of respirable-sized crystalline silica in different ambient environments in the United Kingdom with a mobile high flow rate sampler utilising porous foams to achieve the required particle size selection. Atmos. Environ. 2018, 182, 51–57. [Google Scholar] [CrossRef]
- Donham, K.J. Hazardous agents in agricultural dusts and methods of evaluation. Am. J. Ind. Med. 1986, 10, 205–220. [Google Scholar] [CrossRef] [PubMed]
- Geng, H.; Meng, Z.; Zhang, Q. In vitro responses of rat alveolar macrophages to particle suspensions and water-soluble components of dust storm PM2.5. Toxicol. Vitr. 2006, 20, 575–584. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.S.; Rajkumar, P. Characterization of minerals in air dust particles in the state of Tamilnadu, India through FTIR, XRD and SEM analyses. Infrared Phys. Technol. 2014, 67, 30–41. [Google Scholar] [CrossRef]
- Li, R.; Kou, X.; Xie, L.; Cheng, F.; Geng, H. Effects of ambient PM 2.5 on pathological injury, inflammation, oxidative stress, metabolic enzyme activity, and expression of c-fos and c-jun in lungs of rats. Environ. Sci. Pollut. Res. 2015, 22, 20167–20176. [Google Scholar] [CrossRef]
- Pope Iii, C.A.; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 2002, 287, 1132–1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwartz, J.; Zanobetti, A.; Bateson, T. Morbidity and mortality among elderly residents in cities with daily PM measurements. Revis. Anal. Time Ser. Stud. Air Pollut. Health 2003, 5, 25–58. [Google Scholar]
- Von Klot, S.; Peters, A.; Aalto, P.; Bellander, T.; Berglind, N.; D’Ippoliti, D.; Elosua, R.; Hörmann, A.; Kulmala, M.; Lanki, T.; et al. Ambient air pollution is associated with increased risk of hospital cardiac readmissions of myocardial infarction survivors in five European cities. Circulation 2005, 112, 3073–3079. [Google Scholar] [CrossRef] [Green Version]
- The National Oil Crop Production Development Plan Was Promulgated (2016–2020); National Development and Reform Commission, Ministry of Agriculture and Rural Affairs and National Forestry Administration: Beijing, China, 2016. Available online: http://www.moa.gov.cn/nybgb/2016/dishiqi/201711/t20171126_5919612.htm (accessed on 29 October 2021). (In Chinese)
- Li, J.; Song, Y.; Mao, Y.; Mao, Z.; Wu, Y.; Li, M.; Huang, X.; He, Q.; Hu, M. Chemical characteristics and source apportionment of PM2.5 during the harvest season in eastern China’s agricultural regions. Atmos. Environ. 2014, 92, 442–448. [Google Scholar] [CrossRef]
- DB41/T-2020. Guiding Opinions on Control of Dust from Mechanized Peanut Harvesting in Henan Province; Department of Ecology and Environment of Henan Province: Henan, China; Administration for Market Regulation Henan Province: Luoyang, Henan, China, 2019. (In Chinese) [Google Scholar]
- Management Norms for Prevention and Control of Dust Pollution Caused by Mechanized Harvesting and Hulling of Peanuts; Local Standard Information Service Center, Department of Ecology and Environment of Henan Province: Zhengzhou, Henan, China, 2020. (In Chinese)
- DB41/T 1967–2020. Technical Specification for Prevention and Control of Dust Pollution from Mechanized Harvesting of Peanuts; Local Standard Information Service Center, Department of Ecology and Environment of Henan Province: Zhengzhou, Henan, China, 2020. (In Chinese) [Google Scholar]
- FAO. Food and Agriculture Data; Food and Agriculture Organization of the United Nations: Rome, Italy, 2020. [Google Scholar]
- Liu, D. Investigation on Peanut Planting Area and Production Situation in 2020. In Proceedings of the China Peanut Industry Development Conference, Qingdao, China, 8–9 July 2021. (In Chinese). [Google Scholar]
- Shi, X.; Yu, D.; Warner, E.; Pan, X.; Petersen, G.; Gong, Z.; Weindorf, D. Soil database of 1:1,000,000 digital soil survey and reference system of the Chinese genetic soil classification system. Soil Surv. Horiz. 2004, 45, 129–136. [Google Scholar] [CrossRef]
- Shi, X.; Yu, D.; Warner, E.D.; Sun, W.; Petersen, G.; Gong, Z.; Lin, H. Cross-reference system for translating between genetic soil classification of China and soil taxonomy. Soil Sci. Soc. Am. J. 2006, 70, 78–83. [Google Scholar] [CrossRef]
- CEN 481-1993. Workplace Atmospheres: Size Fraction Definitions for Measurement of Airborne Particles in the Workplace; Centre European de Normalisation, CEN: Brussels, Belgium, 1993; Volume EN 481. [Google Scholar]
- ISO. Stationary Source Emissions Determination of Mass Concentration of Particulate Matter (Dust) at Low Concentrations—Manual Gravimetric Method; International Organisation for Standardisation: Geneva, Switzerland, 2002; p. 12141. [Google Scholar]
- GBZ 3543.6. Rules for Agricultural Seed Testing. Determination of Moisture Content; Standardization Administration of the People’s Republic of China: Beijing, China, 1995. [Google Scholar]
- Concha, F.; Almendra, E. Settling velocities of particulate systems, 1. Settling velocities of individual spherical particles. Int. J. Miner. Process. 1979, 5, 349–367. [Google Scholar] [CrossRef]
- GBZ/T 192.3. Method for Determination of Dust in the Air of Workplace. Part 3: Distribution of Particulate; Standardization Administration of the People’s Republic of China: Beijing, China, 2007. [Google Scholar]
- ISO 13322-1. Particle Size Analysis—Image Analysis Methods. Part 1: Static Image Analysis Methods; International Organization for Standardization: Geneva, Switzerland, 2014; Available online: https://www.iso.org/standard/38664.html (accessed on 26 October 2021).
- GBZ/T 192.1. Determination of Dust in the Air of Workplace. Part 1: Total Dust Concentration; Standardization Administration of the People’s Republic of China: Beijing, China, 2007. [Google Scholar]
- GBZ/T 192.2. Method for Determination of Dust in the Air of Workplace. Part 2: Respirable Dust Concentration; Standardization Administration of the People’s Republic of China: Beijing, China, 2007. [Google Scholar]
- Azam, S.; Mishra, D.P. Effects of particle size, dust concentration and dust-dispersion-air pressure on rock dust inertant requirement for coal dust explosion suppression in underground coal mines. Process Saf. Environ. Prot. 2019, 126, 35–43. [Google Scholar] [CrossRef]
- He, R.W.; Li, Y.Z.; Xiang, P.; Li, C.; Cui, X.Y.; Ma, L.Q. Impact of particle size on distribution and human exposure of flame retardants in indoor dust. Environ. Res. 2018, 162, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Hiscox, A.L.; Miller, D.R.; Holmén, B.A.; Yang, W.; Wang, J. Near-field dust exposure from cotton field tilling and harvesting. J. Environ. Qual. 2008, 37, 551–556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, X.; Sun, L.; Yu, X.; Jia, G.; Liu, J.; Liu, Z.; Zhu, X.; Wang, Y. Effect of windbreaks on particle concentrations from agricultural fields under a variety of wind conditions in the farming-pastoral ecotone of northern China. Agric. Ecosyst. Environ. 2019, 281, 16–24. [Google Scholar] [CrossRef]
- GBZ.2.1. Occupational Exposure Limits for Hazardous Agents in the Workplace. Part 1: Chemical Hazardous Agents; Standardization Administration of the People’s Republic of China: Beijing, China, 2019. [Google Scholar]
- ACGIH. TLVs® and BEIs®: Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices; American Conference of Governmental Industrial Hygienists Cincinnati: Cincinnati, OH, USA, 2020. [Google Scholar]
- Chen, J.; Wang, X.; Lou, J.; Liu, Z. Relationship of jute dust to interstitial fibrosis in rat lung. Agric. Ecosyst. Environ. 2003, 58, 151–155. [Google Scholar] [CrossRef]
- Li, W.; Liu, L.; Xu, L.; Zhang, J.; Yuan, Q.; Ding, X.; Hu, W.; Fu, P.; Zhang, D. Overview of primary biological aerosol particles from a Chinese boreal forest: Insight into morphology, size, and mixing state at microscopic scale. Sci. Total. Environ. 2020, 719, 137520. [Google Scholar] [CrossRef] [PubMed]
Parameter | Value |
---|---|
Diameter of glass microfiber (mm) | 90 |
Sampling flow (L/min) | 100 ± 0.20 |
Sampling duration (min) | 60 |
Atmospheric pressure (kPa) | 101.5 |
Average temperature (°C) | 29.6 |
Average humidity (%RH) | 39.5 |
Average wind velocity (m/s) | 0.64 |
Moisture content of peanut straw (%) | 13.8 |
Rate of harvesting operation (kh2/h) | 0.7 |
Distance of sampling point from combine (m) | 3,10, 20, 30, 50 |
Type of peanut combine | 4HJL-Z |
Area of harvesting operation (ha) | 0.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P.; Xu, H.; Hu, Z.; Chen, Y.; Cao, M.; Yu, Z.; Mao, E. Characteristics of Agricultural Dust Emissions from Harvesting Operations: Case Study of a Whole-Feed Peanut Combine. Agriculture 2021, 11, 1068. https://doi.org/10.3390/agriculture11111068
Zhang P, Xu H, Hu Z, Chen Y, Cao M, Yu Z, Mao E. Characteristics of Agricultural Dust Emissions from Harvesting Operations: Case Study of a Whole-Feed Peanut Combine. Agriculture. 2021; 11(11):1068. https://doi.org/10.3390/agriculture11111068
Chicago/Turabian StyleZhang, Peng, Hongbo Xu, Zhichao Hu, Youqing Chen, Mingzhu Cao, Zhaoyang Yu, and Enrong Mao. 2021. "Characteristics of Agricultural Dust Emissions from Harvesting Operations: Case Study of a Whole-Feed Peanut Combine" Agriculture 11, no. 11: 1068. https://doi.org/10.3390/agriculture11111068
APA StyleZhang, P., Xu, H., Hu, Z., Chen, Y., Cao, M., Yu, Z., & Mao, E. (2021). Characteristics of Agricultural Dust Emissions from Harvesting Operations: Case Study of a Whole-Feed Peanut Combine. Agriculture, 11(11), 1068. https://doi.org/10.3390/agriculture11111068