Evaluation of Deep Learning for Automatic Multi-View Face Detection in Cattle
Abstract
:1. Introduction
2. Related Work
3. Materials and Methods
3.1. Overview of the Proposed Framework
3.2. RetinaNet-Based Object Detection
3.2.1. Feature Pyramid Networks
3.2.2. Focal Loss
3.3. Datasets Preparation and Preprocessing
4. Results
4.1. Implementation Details
4.2. Performance Analysis with Different Backbones
4.3. Comparison with Other State-of-the-Art Object Detection Algorithms
4.4. Evaluation of Multi-View Cattle Face Detection Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liaghat, S.; Balasundram, S.K. A Review: The Role of Remote Sensing in Precision Agriculture. Am. J. Agric. Biol. Sci. 2010, 5, 553–564. [Google Scholar] [CrossRef] [Green Version]
- Auernhammer, H. Precision farming—The environmental challenge. Comput. Electron. Agric. 2001, 30, 31–43. [Google Scholar] [CrossRef]
- Vranken, E.; Berckmans, D. Precision livestock farming for pigs. Anim. Front. 2017, 7, 32–37. [Google Scholar] [CrossRef] [Green Version]
- Andonovic, I.; Michie, C.; Cousin, P.; Janati, A.; Pham, C.; Diop, M. Precision Livestock Farming Technologies. In Proceedings of the 2018 Global Internet of Things Summit (GIoTS), Bilbao, Spain, 4–7 June 2018; pp. 1–6. [Google Scholar]
- Xu, B.; Wang, W.; Falzon, G.; Kwan, P.; Guo, L.; Chen, G.; Tait, A.; Schneider, D. Automated cattle counting using Mask R-CNN in quadcopter vision system. Comput. Electron. Agric. 2020, 171, 105300. [Google Scholar] [CrossRef]
- Disney, W.T.; Green, J.W.; Forsythe, K.W.; Wiemers, J.F.; Weber, S.J.R.T. Benefit-cost analysis of animal identification for disease prevention and control. Rev. Sci. Tech. l’OIE 2001, 20, 385–405. [Google Scholar] [CrossRef]
- Gwaza, D.; Gambo, D. Application of Radio Frequency Identification to Selection for Genetic improvement of Rural Livestock Breeds in Developing Countries. J. Anim. Husb. Dairy Sci. 2017, 1, 38–52. [Google Scholar]
- Yordanov, D.; Angelova, G. Identification and Traceability of Meat and Meat Products. Biotechnol. Biotechnol. Equip. 2006, 20, 3–8. [Google Scholar] [CrossRef]
- Awad, A.I. From classical methods to animal biometrics: A review on cattle identification and tracking. Comput. Electron. Agric. 2016, 123, 423–435. [Google Scholar] [CrossRef]
- Leslie, E.; Hernández-Jover, M.; Newman, R.; Holyoake, P. Assessment of acute pain experienced by piglets from ear tagging, ear notching and intraperitoneal injectable transponders. Appl. Anim. Behav. Sci. 2010, 127, 86–95. [Google Scholar] [CrossRef]
- Jones, S.M. Tattooing of Cattle and Goats; University of Arkansas System: Little Rock, AR, USA, 2014. [Google Scholar]
- Adcock, S.J.J.; Tucker, C.B.; Weerasinghe, G.; Rajapaksha, E. Branding Practices on Four Dairies in Kantale, Sri Lanka. Animals 2018, 8, 137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanford, K.; Stitt, J.; Kellar, J.A.; McAllister, T. Traceability in cattle and small ruminants in Canada. Rev. Sci. Et Tech. Int. Off. Epizoot. 2001, 20, 510–522. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Liu, X.Y.; Kim, J.S. Cloud-based Livestock Monitoring System Using RFID and Blockchain Technology. In Proceedings of the 2020 7th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2020 6th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom), New York, NY, USA, 1–3 August 2020; pp. 240–245. [Google Scholar]
- Klindtworth, M.; Wendl, G.; Klindtworth, K.; Pirkelmann, H. Electronic identification of cattle with injectable transponders. Comput. Electron. Agric. 1999, 24, 65–79. [Google Scholar] [CrossRef]
- Zaiqiong, W.; Zetian, F.; Wei, C.; Jinyou, H. A RFID-based traceability system for cattle breeding in China. In Proceedings of the 2010 International Conference on Computer Application and System Modeling (ICCASM 2010), Taiyuan, China, 22–24 October 2010; pp. V2-567–V2-571. [Google Scholar]
- Whittier, J.C.; Shadduck, J.A.; Golden, B.L. Secure Identification, Source Verification of Livestock—The Value of Retinal Images and GPS; Wageningen Academic Publishers: Wageningen, The Netherlands, 2003; pp. 167–172. [Google Scholar]
- Gonzales Barron, U.; Corkery, G.; Barry, B.; Butler, F.; McDonnell, K.; Ward, S. Assessment of retinal recognition technology as a biometric method for sheep identification. Comput. Electron. Agric. 2008, 60, 156–166. [Google Scholar] [CrossRef]
- Kumar, S.; Pandey, A.; Sai Ram Satwik, K.; Kumar, S.; Singh, S.K.; Singh, A.K.; Mohan, A. Deep learning framework for recognition of cattle using muzzle point image pattern. Measurement 2018, 116, 1–17. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, S.K.; Abidi, A.I.; Datta, D.; Sangaiah, A.K. Group Sparse Representation Approach for Recognition of Cattle on Muzzle Point Images. Int. J. Parallel Program. 2018, 46, 812–837. [Google Scholar] [CrossRef]
- Mukai, N.; Zhang, Y.; Chang, Y. Pet Face Detection. In Proceedings of the 2018 Nicograph International (NicoInt), Tainan, Taiwan, 28–29 June 2018; pp. 52–57. [Google Scholar]
- Kumar, S.; Tiwari, S.; Singh, S.K. Face recognition for cattle. In Proceedings of the 2015 Third International Conference on Image Information Processing (ICIIP), Waknaghat, India, 21–24 December 2015; pp. 65–72. [Google Scholar]
- Clark, A.W. Calculating the Weight of a Pig through Facial Geometry Using 2-Dimensional Image Processing. Master’s Thesis, Texas Tech University, Lubbock, TX, USA, 2015. [Google Scholar]
- Jaddoa, M.; Gonzalez, L.; Cuthbertson, H.; Al-Jumaily, A. Multi View Face Detection in Cattle Using Infrared Thermography. In Proceedings of the Applied Computing to Support Industry: Innovation and Technology; Ramadi, Iraq, 15–16 September 2019, Springer: Cham, Switzerland, 2020; pp. 223–236. [Google Scholar]
- Yamada, A.; Kojima, K.; Kiyama, J.; Okamoto, M.; Murata, H. Directional edge-based dog and cat face detection method for digital camera. In Proceedings of the 2011 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 9–12 January 2011; pp. 87–88. [Google Scholar]
- Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- Vlachynska, A.; Oplatkova, Z.K.; Turecek, T. Dogface Detection and Localization of Dogface’s Landmarks. In Artificial Intelligence and Algorithms in Intelligent Systems; Springer: Cham, Switzerland, 2019; pp. 465–476. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [Green Version]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Proceedings of the Computer Vision—ECCV 2016, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Cham, Switzerland, 2016; pp. 21–37. [Google Scholar]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Yao, L.; Hu, Z.; Liu, C.; Liu, H.; Kuang, Y.; Gao, Y. Cow face detection and recognition based on automatic feature extraction algorithm. In Proceedings of the ACM Turing Celebration Conference—China, Chengdu, China, 17–19 May 2019. [Google Scholar]
- Gou, X.; Huang, W.; Liu, Q. A Cattle Face Detection Method Based on Improved NMS. Comput. Modernization 2019, 7, 43–46. [Google Scholar]
- Ochoa-Ruiz, G.; Angulo-Murillo, A.A.; Ochoa-Zezzatti, A.; Aguilar-Lobo, L.M.; Vega-Fernández, J.A.; Natraj, S. An Asphalt Damage Dataset and Detection System Based on RetinaNet for Road Conditions Assessment. Appl. Sci. 2020, 10, 3974. [Google Scholar] [CrossRef]
- Yunqi, C.; Basak, O. Automated Firearms Detection in Cargo X-Ray Images using RetinaNet; International Society for Optics and Photonics: Bellingham, WA, USA, 2019; Volume 10999. [Google Scholar] [CrossRef]
- Afif, M.; Ayachi, R.; Said, Y.; Pissaloux, E.; Atri, M. An Evaluation of RetinaNet on Indoor Object Detection for Blind and Visually Impaired Persons Assistance Navigation. Neural Process. Lett. 2020, 51, 2265–2279. [Google Scholar] [CrossRef]
- Zou, Z.; Shi, Z.; Guo, Y.; Ye, J. Object detection in 20 years: A survey. arXiv 2019, arXiv:1905.05055. [Google Scholar]
- Lin, T.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 318–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tu, S.; Pang, J.; Liu, H.; Zhuang, N.; Chen, Y.; Zheng, C.; Wan, H.; Xue, Y. Passion fruit detection and counting based on multiple scale faster R-CNN using RGB-D images. Precis. Agric. 2020, 21, 1072–1091. [Google Scholar] [CrossRef]
- Kang, H.; Chen, C. Fruit detection, segmentation and 3D visualisation of environments in apple orchards. Comput. Electron. Agric. 2020, 171, 105302. [Google Scholar] [CrossRef] [Green Version]
- Wan, S.; Goudos, S. Faster R-CNN for multi-class fruit detection using a robotic vision system. Comput. Netw. 2020, 168, 107036. [Google Scholar] [CrossRef]
- Xu, B.; Wang, W.; Falzon, G.; Kwan, P.; Guo, L.; Sun, Z.; Li, C. Livestock classification and counting in quadcopter aerial images using Mask R-CNN. Int. J. Remote Sens. 2020, 41, 8121–8142. [Google Scholar] [CrossRef] [Green Version]
- Nasirahmadi, A.; Sturm, B.; Edwards, S.; Jeppsson, K.-H.; Olsson, A.-C.; Müller, S.; Hensel, O. Deep Learning and Machine Vision Approaches for Posture Detection of Individual Pigs. Sensors 2019, 19, 3738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, L.; Feng, Y.; Wu, J.; Liu, Z.; Gao, F.; Majeed, Y.; Al-Mallahi, A.; Zhang, Q.; Li, R.; Cui, Y. Fast and accurate detection of kiwifruit in orchard using improved YOLOv3-tiny model. Precis. Agric. 2020, 22, 754–776. [Google Scholar] [CrossRef]
- Koirala, A.; Walsh, K.B.; Wang, Z.; McCarthy, C. Deep learning for real-time fruit detection and orchard fruit load estimation: Benchmarking of ‘MangoYOLO’. Precis. Agric. 2019, 20, 1107–1135. [Google Scholar] [CrossRef]
- Tian, Y.; Yang, G.; Wang, Z.; Li, E.; Liang, Z. Detection of Apple Lesions in Orchards Based on Deep Learning Methods of CycleGAN and YOLOV3-Dense. J. Sens. 2019, 2019, 7630926. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Maleva, T.; Soloviev, V. Detecting Apples in Orchards Using YOLOv3. In Proceedings of the Computational Science and Its Applications (ICCSA) 2020, Cagliari, Italy, 1–4 July 2020; Springer: Cham, Switzerland, 2020; pp. 923–934. [Google Scholar]
- Zhou, J.; Tian, Y.; Yuan, C.; Yin, K.; Yang, G.; Wen, M. Improved UAV Opium Poppy Detection Using an Updated YOLOv3 Model. Sensors 2019, 19, 4851. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Wang, X. Tomato Diseases and Pests Detection Based on Improved Yolo V3 Convolutional Neural Network. Front. Plant Sci. 2020, 11, 898. [Google Scholar] [CrossRef]
- Liu, G.; Nouaze, J.C.; Touko Mbouembe, P.L.; Kim, J.H. YOLO-Tomato: A Robust Algorithm for Tomato Detection Based on YOLOv3. Sensors 2020, 20, 2145. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wang, N.; Li, L.; Ren, Z. Real-time behavior detection and judgment of egg breeders based on YOLO v3. Neural Comput. Appl. 2020, 32, 5471–5481. [Google Scholar] [CrossRef]
- Raza, K.; Hong, S. Fast and Accurate Fish Detection Design with Improved YOLO-v3 Model and Transfer Learning. Int. J. Adv. Comput. Sci. Appl. 2020, 11, 7–16. [Google Scholar] [CrossRef]
- Wang, H.; Qin, J.; Hou, Q.; Gong, S. Cattle Face Recognition Method Based on Parameter Transfer and Deep Learning. J. Phys. Conf. Ser. 2020, 1453, 012054. [Google Scholar] [CrossRef]
- Zhao, J.; Li, A.; Jin, X.; Pan, L. Technologies in individual animal identification and meat products traceability. Biotechnol. Biotechnol. Equip. 2020, 34, 48–57. [Google Scholar] [CrossRef]
- Wang, G.; Sun, Y.; Wang, J. Automatic Image-Based Plant Disease Severity Estimation Using Deep Learning. Comput. Intell. Neurosci. 2017, 2017, 2917536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayan, E.; Erbay, H.; Varçın, F. Crop pest classification with a genetic algorithm-based weighted ensemble of deep convolutional neural networks. Comput. Electron. Agric. 2020, 179, 105809. [Google Scholar] [CrossRef]
- Ferentinos, K.P. Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric. 2018, 145, 311–318. [Google Scholar] [CrossRef]
Backbone | Precision | Recall | F1 | TP | FP | FN |
---|---|---|---|---|---|---|
ResNet 50 | 0.9980 | 1.0000 | 0.9990 | 500 | 1 | 0 |
ResNet 101 | 0.9840 | 1.0000 | 0.9920 | 500 | 8 | 0 |
ResNet 152 | 0.9840 | 1.0000 | 0.9920 | 500 | 8 | 0 |
VGG16 | 0.8040 | 1.0000 | 0.8910 | 500 | 122 | 0 |
VGG19 | 0.8800 | 1.0000 | 0.9390 | 500 | 65 | 0 |
Densenet 121 | 0.3850 | 0.4220 | 0.4030 | 211 | 337 | 289 |
Densenet 169 | 0.6270 | 0.2760 | 0.3830 | 138 | 82 | 362 |
Methods | AP | Atime | Precision | Recall | F1 | TP | FP | FN |
---|---|---|---|---|---|---|---|---|
Yolov3 | 0.9968 | 0.1368 | 0.8700 | 1 | 0.9300 | 498 | 72 | 2 |
Faster R-CNN | 0.9857 | 0.1526 | 0.9940 | 1 | 0.9970 | 500 | 3 | 0 |
RetinaNet + ResNet 50 | 0.9980 | 0.0438 | 0.9980 | 1 | 0.9990 | 500 | 1 | 0 |
Methods | Partial Occlusion | Light Variation | Posture Change | |||
---|---|---|---|---|---|---|
AP | F1 | AP | F1 | AP | F1 | |
Yolov3 | 0.9980 | 1.0000 | 1.0000 | 1.0000 | 0.9720 | 0.9980 |
Faster R-CNN | 0.9910 | 0.9990 | 1.0000 | 1.0000 | 0.9840 | 0.9980 |
RetinaNet + ResNet 50 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9980 | 0.9990 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, B.; Wang, W.; Guo, L.; Chen, G.; Wang, Y.; Zhang, W.; Li, Y. Evaluation of Deep Learning for Automatic Multi-View Face Detection in Cattle. Agriculture 2021, 11, 1062. https://doi.org/10.3390/agriculture11111062
Xu B, Wang W, Guo L, Chen G, Wang Y, Zhang W, Li Y. Evaluation of Deep Learning for Automatic Multi-View Face Detection in Cattle. Agriculture. 2021; 11(11):1062. https://doi.org/10.3390/agriculture11111062
Chicago/Turabian StyleXu, Beibei, Wensheng Wang, Leifeng Guo, Guipeng Chen, Yaowu Wang, Wenju Zhang, and Yongfeng Li. 2021. "Evaluation of Deep Learning for Automatic Multi-View Face Detection in Cattle" Agriculture 11, no. 11: 1062. https://doi.org/10.3390/agriculture11111062
APA StyleXu, B., Wang, W., Guo, L., Chen, G., Wang, Y., Zhang, W., & Li, Y. (2021). Evaluation of Deep Learning for Automatic Multi-View Face Detection in Cattle. Agriculture, 11(11), 1062. https://doi.org/10.3390/agriculture11111062